Commit Graph

519 Commits

Author SHA1 Message Date
Linus Torvalds
e2defd0271 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "Thiscontains misc fixes: preempt_schedule_common() and io_schedule()
  recursion fixes, sched/dl fixes, a completion_done() revert, two
  sched/rt fixes and a comment update patch"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/rt: Avoid obvious configuration fail
  sched/autogroup: Fix failure to set cpu.rt_runtime_us
  sched/dl: Do update_rq_clock() in yield_task_dl()
  sched: Prevent recursion in io_schedule()
  sched/completion: Serialize completion_done() with complete()
  sched: Fix preempt_schedule_common() triggering tracing recursion
  sched/dl: Prevent enqueue of a sleeping task in dl_task_timer()
  sched: Make dl_task_time() use task_rq_lock()
  sched: Clarify ordering between task_rq_lock() and move_queued_task()
2015-02-21 10:40:02 -08:00
Peter Zijlstra
2636ed5f8d sched/rt: Avoid obvious configuration fail
Setting the root group's cpu.rt_runtime_us to 0 is a bad thing; it
would disallow the kernel creating RT tasks.

One can of course still set it to 1, which will (likely) still wreck
your kernel, but at least make it clear that setting it to 0 is not
good.

Collect both sanity checks into the one place while we're there.

Suggested-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20150209112715.GO24151@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 16:17:23 +01:00
Peter Zijlstra
1fe89e1b6d sched/autogroup: Fix failure to set cpu.rt_runtime_us
Because task_group() uses a cache of autogroup_task_group(), whose
output depends on sched_class, switching classes can generate
problems.

In particular, when started as fair, the cache points to the
autogroup, so when switching to RT the tg_rt_schedulable() test fails
for every cpu.rt_{runtime,period}_us change because now the autogroup
has tasks and no runtime.

Furthermore, going back to the previous semantics of varying
task_group() with sched_class has the down-side that the sched_debug
output varies as well, even though the task really is in the
autogroup.

Therefore add an autogroup exception to tg_has_rt_tasks() -- such that
both (all) task_group() usages in sched/core now have one. And remove
all the remnants of the variable task_group() output.

Reported-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Stefan Bader <stefan.bader@canonical.com>
Fixes: 8323f26ce3 ("sched: Fix race in task_group()")
Link: http://lkml.kernel.org/r/20150209112237.GR5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 16:17:20 +01:00
NeilBrown
9cff8adeaa sched: Prevent recursion in io_schedule()
io_schedule() calls blk_flush_plug() which, depending on the
contents of current->plug, can initiate arbitrary blk-io requests.

Note that this contrasts with blk_schedule_flush_plug() which requires
all non-trivial work to be handed off to a separate thread.

This makes it possible for io_schedule() to recurse, and initiating
block requests could possibly call mempool_alloc() which, in times of
memory pressure, uses io_schedule().

Apart from any stack usage issues, io_schedule() will not behave
correctly when called recursively as delayacct_blkio_start() does
not allow for repeated calls.

So:
 - use ->in_iowait to detect recursion.  Set it earlier, and restore
   it to the old value.
 - move the call to "raw_rq" after the call to blk_flush_plug().
   As this is some sort of per-cpu thing, we want some chance that
   we are on the right CPU
 - When io_schedule() is called recurively, use blk_schedule_flush_plug()
   which cannot further recurse.
 - as this makes io_schedule() a lot more complex and as io_schedule()
   must match io_schedule_timeout(), but all the changes in io_schedule_timeout()
   and make io_schedule a simple wrapper for that.

Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ Moved the now rudimentary io_schedule() into sched.h. ]
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Link: http://lkml.kernel.org/r/20150213162600.059fffb2@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 14:27:44 +01:00
Frederic Weisbecker
06b1f8083d sched: Fix preempt_schedule_common() triggering tracing recursion
Since the function graph tracer needs to disable preemption, it might
call preempt_schedule() after reenabling  it if something triggered the
need for rescheduling in between.

Therefore we can't trace preempt_schedule() itself because we would
face a function tracing recursion otherwise as the tracer is always
called before PREEMPT_ACTIVE gets set to prevent that recursion. This is
why preempt_schedule() is tagged as "notrace".

But the same issue applies to every function called by preempt_schedule()
before PREEMPT_ACTIVE is actually set. And preempt_schedule_common() is
one such example. Unfortunately we forgot to tag it as notrace as well
and as a result we are encountering tracing recursion since it got
introduced by:

   a18b5d0181 ("sched: Fix missing preemption opportunity")

Let's fix that by applying the appropriate function tag to
preempt_schedule_common().

Reported-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1424110807-15057-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 14:27:38 +01:00
Peter Zijlstra
3960c8c0c7 sched: Make dl_task_time() use task_rq_lock()
Kirill reported that a dl task can be throttled and dequeued at the
same time. This happens, when it becomes throttled in schedule(),
which is called to go to sleep:

current->state = TASK_INTERRUPTIBLE;
schedule()
    deactivate_task()
        dequeue_task_dl()
            update_curr_dl()
                start_dl_timer()
            __dequeue_task_dl()
    prev->on_rq = 0;

This invalidates the assumption from commit 0f397f2c90 ("sched/dl:
Fix race in dl_task_timer()"):

  "The only reason we don't strictly need ->pi_lock now is because
   we're guaranteed to have p->state == TASK_RUNNING here and are
   thus free of ttwu races".

And therefore we have to use the full task_rq_lock() here.

This further amends the fact that we forgot to update the rq lock loop
for TASK_ON_RQ_MIGRATE, from commit cca26e8009 ("sched: Teach
scheduler to understand TASK_ON_RQ_MIGRATING state").

Reported-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Link: http://lkml.kernel.org/r/20150217123139.GN5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 14:27:30 +01:00
Peter Zijlstra
74b8a4cb6c sched: Clarify ordering between task_rq_lock() and move_queued_task()
There was a wee bit of confusion around the exact ordering here;
clarify things.

Reported-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20150217121258.GM5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 14:27:28 +01:00
Tejun Heo
333470ee46 sched: use %*pb[l] to print bitmaps including cpumasks and nodemasks
printk and friends can now format bitmaps using '%*pb[l]'.  cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:37 -08:00
Linus Torvalds
5b9b28a63f Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main scheduler changes in this cycle were:

   - various sched/deadline fixes and enhancements

   - rescheduling latency fixes/cleanups

   - rework the rq->clock code to be more consistent and more robust.

   - minor micro-optimizations

   - ->avg.decay_count fixes

   - add a stack overflow check to might_sleep()

   - idle-poll handler fix, possibly resulting in power savings

   - misc smaller updates and fixes"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/Documentation: Remove unneeded word
  sched/wait: Introduce wait_on_bit_timeout()
  sched: Pull resched loop to __schedule() callers
  sched/deadline: Remove cpu_active_mask from cpudl_find()
  sched: Fix hrtick_start() on UP
  sched/deadline: Avoid pointless __setscheduler()
  sched/deadline: Fix stale yield state
  sched/deadline: Fix hrtick for a non-leftmost task
  sched/deadline: Modify cpudl::free_cpus to reflect rd->online
  sched/idle: Add missing checks to the exit condition of cpu_idle_poll()
  sched: Fix missing preemption opportunity
  sched/rt: Reduce rq lock contention by eliminating locking of non-feasible target
  sched/debug: Print rq->clock_task
  sched/core: Rework rq->clock update skips
  sched/core: Validate rq_clock*() serialization
  sched/core: Remove check of p->sched_class
  sched/fair: Fix sched_entity::avg::decay_count initialization
  sched/debug: Fix potential call to __ffs(0) in sched_show_task()
  sched/debug: Check for stack overflow in ___might_sleep()
  sched/fair: Fix the dealing with decay_count in __synchronize_entity_decay()
2015-02-09 16:06:06 -08:00
Linus Torvalds
a4cbbf549a Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
 "Kernel side changes:

   - AMD range breakpoints support:

     Extend breakpoint tools and core to support address range through
     perf event with initial backend support for AMD extended
     breakpoints.

     The syntax is:

         perf record -e mem:addr/len:type

     For example set write breakpoint from 0x1000 to 0x1200 (0x1000 + 512)

         perf record -e mem:0x1000/512:w

   - event throttling/rotating fixes

   - various event group handling fixes, cleanups and general paranoia
     code to be more robust against bugs in the future.

    - kernel stack overhead fixes

  User-visible tooling side changes:

   - Show precise number of samples in at the end of a 'record' session,
     if processing build ids, since we will then traverse the whole
     perf.data file and see all the PERF_RECORD_SAMPLE records,
     otherwise stop showing the previous off-base heuristicly counted
     number of "samples" (Namhyung Kim).

   - Support to read compressed module from build-id cache (Namhyung
     Kim)

   - Enable sampling loads and stores simultaneously in 'perf mem'
     (Stephane Eranian)

   - 'perf diff' output improvements (Namhyung Kim)

   - Fix error reporting for evsel pgfault constructor (Arnaldo Carvalho
     de Melo)

  Tooling side infrastructure changes:

   - Cache eh/debug frame offset for dwarf unwind (Namhyung Kim)

   - Support parsing parameterized events (Cody P Schafer)

   - Add support for IP address formats in libtraceevent (David Ahern)

  Plus other misc fixes"

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
  perf: Decouple unthrottling and rotating
  perf: Drop module reference on event init failure
  perf: Use POLLIN instead of POLL_IN for perf poll data in flag
  perf: Fix put_event() ctx lock
  perf: Fix move_group() order
  perf: Fix event->ctx locking
  perf: Add a bit of paranoia
  perf symbols: Convert lseek + read to pread
  perf tools: Use perf_data_file__fd() consistently
  perf symbols: Support to read compressed module from build-id cache
  perf evsel: Set attr.task bit for a tracking event
  perf header: Set header version correctly
  perf record: Show precise number of samples
  perf tools: Do not use __perf_session__process_events() directly
  perf callchain: Cache eh/debug frame offset for dwarf unwind
  perf tools: Provide stub for missing pthread_attr_setaffinity_np
  perf evsel: Don't rely on malloc working for sz 0
  tools lib traceevent: Add support for IP address formats
  perf ui/tui: Show fatal error message only if exists
  perf tests: Fix typo in sample-parsing.c
  ...
2015-02-09 15:43:55 -08:00
Linus Torvalds
396e9099ea Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "Misc fixes"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/deadline: Fix deadline parameter modification handling
  sched/wait: Remove might_sleep() from wait_event_cmd()
  sched: Fix crash if cpuset_cpumask_can_shrink() is passed an empty cpumask
  sched/fair: Avoid using uninitialized variable in preferred_group_nid()
2015-02-06 13:34:26 -08:00
Ingo Molnar
8f4bf4bcc4 Linux 3.19-rc7
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJUzvgKAAoJEHm+PkMAQRiG8XQH/1qVbHI4pP0KcnzfZUHq/mXq
 RuS4aJMwLm/Y6cXFraXBDaPde1A3CPtwtpob2C6giKcfu2zXGunY65haOEeJWNpX
 lCbBsLkNC3oDNkygBpVr5Zd6yibaw63WBjjLnpAi7pn2G2Zm2zB8DfILWWWMb7yz
 MH8ZXV+/xIYCTkjNWGWA1iMjmdYqu0PQHPeOgLsYQ+u7rxfM1zb/wHEkjqUZS6iu
 IaaZv7PV2PnFYnqib/iIPYjAEDvSQ4vN/7b82zlFd2Culm9j/568KCCWUPhJTb2l
 X0u4QYs49GnMTWVRa3bgYxS/nTUaE/6DeWs2y2WzqTt0/XDntVUnok0blUeDxGk=
 =o2kS
 -----END PGP SIGNATURE-----

Merge tag 'v3.19-rc7' into perf/core, to merge fixes before applying new changes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-04 07:58:29 +01:00
Frederic Weisbecker
bfd9b2b5f8 sched: Pull resched loop to __schedule() callers
__schedule() disables preemption during its job and re-enables it
afterward without doing a preemption check to avoid recursion.

But if an event happens after the context switch which requires
rescheduling, we need to check again if a task of a higher priority
needs the CPU. A preempt irq can raise such a situation. To handle that,
__schedule() loops on need_resched().

But preempt_schedule_*() functions, which call __schedule(), also loop
on need_resched() to handle missed preempt irqs. Hence we end up with
the same loop happening twice.

Lets simplify that by attributing the need_resched() loop responsibility
to all __schedule() callers.

There is a risk that the outer loop now handles reschedules that used
to be handled by the inner loop with the added overhead of caller details
(inc/dec of PREEMPT_ACTIVE, irq save/restore) but assuming those inner
rescheduling loop weren't too frequent, this shouldn't matter. Especially
since the whole preemption path is now losing one loop in any case.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1422404652-29067-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-04 07:52:30 +01:00
Wanpeng Li
868933359a sched: Fix hrtick_start() on UP
The commit 177ef2a631 ("sched/deadline: Fix a precision problem in
the microseconds range") forgot to change the UP version of
hrtick_start(), do so now.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Fixes: 177ef2a631 ("sched/deadline: Fix a precision problem in the microseconds range")
[ Fixed the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1416962647-76792-7-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-04 07:52:28 +01:00
Wanpeng Li
75381608e8 sched/deadline: Avoid pointless __setscheduler()
There is no need to dequeue/enqueue and push/pull if there are
no scheduling parameters changed for the DL class.

Both fair and RT classes already check if parameters changed for
them to avoid unnecessary overhead. This patch add the parameters
changed test for the DL class in order to reduce overhead.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
[ Fixed up the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1416962647-76792-5-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-04 07:52:27 +01:00
Ingo Molnar
4c195c8a19 Merge branch 'sched/urgent' into sched/core, to merge fixes before applying new patches
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-04 07:44:00 +01:00
Peter Zijlstra
40767b0dc7 sched/deadline: Fix deadline parameter modification handling
Commit 67dfa1b756 ("sched/deadline: Implement cancel_dl_timer() to
use in switched_from_dl()") removed the hrtimer_try_cancel() function
call out from init_dl_task_timer(), which gets called from
__setparam_dl().

The result is that we can now re-init the timer while its active --
this is bad and corrupts timer state.

Furthermore; changing the parameters of an active deadline task is
tricky in that you want to maintain guarantees, while immediately
effective change would allow one to circumvent the CBS guarantees --
this too is bad, as one (bad) task should not be able to affect the
others.

Rework things to avoid both problems. We only need to initialize the
timer once, so move that to __sched_fork() for new tasks.

Then make sure __setparam_dl() doesn't affect the current running
state but only updates the parameters used to calculate the next
scheduling period -- this guarantees the CBS functions as expected
(albeit slightly pessimistic).

This however means we need to make sure __dl_clear_params() needs to
reset the active state otherwise new (and tasks flipping between
classes) will not properly (re)compute their first instance.

Todo: close class flipping CBS hole.
Todo: implement delayed BW release.

Reported-by: Luca Abeni <luca.abeni@unitn.it>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Luca Abeni <luca.abeni@unitn.it>
Fixes: 67dfa1b756 ("sched/deadline: Implement cancel_dl_timer() to use in switched_from_dl()")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20150128140803.GF23038@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-04 07:42:48 +01:00
Linus Torvalds
00845eb968 sched: don't cause task state changes in nested sleep debugging
Commit 8eb23b9f35 ("sched: Debug nested sleeps") added code to report
on nested sleep conditions, which we generally want to avoid because the
inner sleeping operation can re-set the thread state to TASK_RUNNING,
but that will then cause the outer sleep loop not actually sleep when it
calls schedule.

However, that's actually valid traditional behavior, with the inner
sleep being some fairly rare case (like taking a sleeping lock that
normally doesn't actually need to sleep).

And the debug code would actually change the state of the task to
TASK_RUNNING internally, which makes that kind of traditional and
working code not work at all, because now the nested sleep doesn't just
sometimes cause the outer one to not block, but will cause it to happen
every time.

In particular, it will cause the cardbus kernel daemon (pccardd) to
basically busy-loop doing scheduling, converting a laptop into a heater,
as reported by Bruno Prémont.  But there may be other legacy uses of
that nested sleep model in other drivers that are also likely to never
get converted to the new model.

This fixes both cases:

 - don't set TASK_RUNNING when the nested condition happens (note: even
   if WARN_ONCE() only _warns_ once, the return value isn't whether the
   warning happened, but whether the condition for the warning was true.
   So despite the warning only happening once, the "if (WARN_ON(..))"
   would trigger for every nested sleep.

 - in the cases where we knowingly disable the warning by using
   "sched_annotate_sleep()", don't change the task state (that is used
   for all core scheduling decisions), instead use '->task_state_change'
   that is used for the debugging decision itself.

(Credit for the second part of the fix goes to Oleg Nesterov: "Can't we
avoid this subtle change in behaviour DEBUG_ATOMIC_SLEEP adds?" with the
suggested change to use 'task_state_change' as part of the test)

Reported-and-bisected-by: Bruno Prémont <bonbons@linux-vserver.org>
Tested-by: Rafael J Wysocki <rjw@rjwysocki.net>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>,
Cc: Ilya Dryomov <ilya.dryomov@inktank.com>,
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Hurley <peter@hurleysoftware.com>,
Cc: Davidlohr Bueso <dave@stgolabs.net>,
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-01 12:23:32 -08:00
Frederic Weisbecker
a18b5d0181 sched: Fix missing preemption opportunity
If an interrupt fires in cond_resched(), between the call to __schedule()
and the PREEMPT_ACTIVE count decrementation, and that interrupt sets
TIF_NEED_RESCHED, the call to preempt_schedule_irq() will be ignored
due to the PREEMPT_ACTIVE count. This kind of scenario, with irq preemption
being delayed because it's interrupting a preempt-disabled area, is
usually fixed up after preemption is re-enabled back with an explicit
call to preempt_schedule().

This is what preempt_enable() does but a raw preempt count decrement as
performed by __preempt_count_sub(PREEMPT_ACTIVE) doesn't handle delayed
preemption check. Therefore when such a race happens, the rescheduling
is going to be delayed until the next scheduler or preemption entrypoint.
This can be a problem for scheduler latency sensitive workloads.

Lets fix that by consolidating cond_resched() with preempt_schedule()
internals.

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Ingo Molnar <mingo@kernel.org>
Original-patch-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1421946484-9298-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-30 19:38:51 +01:00
Ingo Molnar
3847b27224 Merge branch 'sched/urgent' into sched/core
Merge all pending fixes and refresh the tree, before applying new changes.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-30 19:28:36 +01:00
Mike Galbraith
bb2bc55a69 sched: Fix crash if cpuset_cpumask_can_shrink() is passed an empty cpumask
While creating an exclusive cpuset, we passed cpuset_cpumask_can_shrink()
an empty cpumask (cur), and dl_bw_of(cpumask_any(cur)) made boom with it:

 CPU: 0 PID: 6942 Comm: shield.sh Not tainted 3.19.0-master #19
 Hardware name: MEDIONPC MS-7502/MS-7502, BIOS 6.00 PG 12/26/2007
 task: ffff880224552450 ti: ffff8800caab8000 task.ti: ffff8800caab8000
 RIP: 0010:[<ffffffff81073846>]  [<ffffffff81073846>] cpuset_cpumask_can_shrink+0x56/0xb0
 [...]
 Call Trace:
  [<ffffffff810cb82a>] validate_change+0x18a/0x200
  [<ffffffff810cc877>] cpuset_write_resmask+0x3b7/0x720
  [<ffffffff810c4d58>] cgroup_file_write+0x38/0x100
  [<ffffffff811d953a>] kernfs_fop_write+0x12a/0x180
  [<ffffffff8116e1a3>] vfs_write+0xb3/0x1d0
  [<ffffffff8116ed06>] SyS_write+0x46/0xb0
  [<ffffffff8159ced6>] system_call_fastpath+0x16/0x1b

Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Fixes: f82f80426f ("sched/deadline: Ensure that updates to exclusive cpusets don't break AC")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1422417235.5716.5.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-28 15:28:15 +01:00
Peter Zijlstra (Intel)
86038c5ea8 perf: Avoid horrible stack usage
Both Linus (most recent) and Steve (a while ago) reported that perf
related callbacks have massive stack bloat.

The problem is that software events need a pt_regs in order to
properly report the event location and unwind stack. And because we
could not assume one was present we allocated one on stack and filled
it with minimal bits required for operation.

Now, pt_regs is quite large, so this is undesirable. Furthermore it
turns out that most sites actually have a pt_regs pointer available,
making this even more onerous, as the stack space is pointless waste.

This patch addresses the problem by observing that software events
have well defined nesting semantics, therefore we can use static
per-cpu storage instead of on-stack.

Linus made the further observation that all but the scheduler callers
of perf_sw_event() have a pt_regs available, so we change the regular
perf_sw_event() to require a valid pt_regs (where it used to be
optional) and add perf_sw_event_sched() for the scheduler.

We have a scheduler specific call instead of a more generic _noregs()
like construct because we can assume non-recursion from the scheduler
and thereby simplify the code further (_noregs would have to put the
recursion context call inline in order to assertain which __perf_regs
element to use).

One last note on the implementation of perf_trace_buf_prepare(); we
allow .regs = NULL for those cases where we already have a pt_regs
pointer available and do not need another.

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Javi Merino <javi.merino@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.cz>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tom Zanussi <tom.zanussi@linux.intel.com>
Cc: Vaibhav Nagarnaik <vnagarnaik@google.com>
Link: http://lkml.kernel.org/r/20141216115041.GW3337@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 15:11:45 +01:00
Peter Zijlstra
9edfbfed3f sched/core: Rework rq->clock update skips
The original purpose of rq::skip_clock_update was to avoid 'costly' clock
updates for back to back wakeup-preempt pairs. The big problem with it
has always been that the rq variable is unaware of the context and
causes indiscrimiate clock skips.

Rework the entire thing and create a sense of context by only allowing
schedule() to skip clock updates. (XXX can we measure the cost of the
added store?)

By ensuring only schedule can ever skip an update, we guarantee we're
never more than 1 tick behind on the update.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150105103554.432381549@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:20 +01:00
Yao Dongdong
1b537c7d1e sched/core: Remove check of p->sched_class
Search all usage of p->sched_class in sched/core.c, no one check it
before use, so it seems that every task must belong to one sched_class.

Signed-off-by: Yao Dongdong <yaodongdong@huawei.com>
[ Moved the early class assignment to make it boot. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1419835303-28958-1-git-send-email-yaodongdong@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:17 +01:00
Kirill Tkhai
bb04159df9 sched/fair: Fix sched_entity::avg::decay_count initialization
Child has the same decay_count as parent. If it's not zero,
we add it to parent's cfs_rq->removed_load:

wake_up_new_task()->set_task_cpu()->migrate_task_rq_fair().

Child's load is a just garbade after copying of parent,
it hasn't been on cfs_rq yet, and it must not be added to
cfs_rq::removed_load in migrate_task_rq_fair().

The patch moves sched_entity::avg::decay_count intialization
in sched_fork(). So, migrate_task_rq_fair() does not change
removed_load.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418644618.6074.13.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:16 +01:00
Tetsuo Handa
1f8a763309 sched/debug: Fix potential call to __ffs(0) in sched_show_task()
"struct task_struct"->state is "volatile long" and __ffs() warns that
"Undefined if no bit exists, so code should check against 0 first."

Therefore, at expression

  state = p->state ? __ffs(p->state) + 1 : 0;

in sched_show_task(), CPU might see "p->state" before "?" as "non-zero"
but "p->state" after "?" as "zero", which could result in
"state >= sizeof(stat_nam)" being true and bogus '?' is printed.

This patch changes "state" from "unsigned int" to "unsigned long" and
save "p->state" before calling __ffs(), in order to avoid potential call
to __ffs(0).

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/201412052131.GCE35924.FVHFOtLOJOMQFS@I-love.SAKURA.ne.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:15 +01:00
Eric Sandeen
a8b686b3af sched/debug: Check for stack overflow in ___might_sleep()
Sometimes a "BUG: sleeping function called from invalid context"
message is not indicative of locking problems, but is the result
of a stack overflow corrupting the thread info.

Witness http://oss.sgi.com/archives/xfs/2014-02/msg00325.html
for example, which took a few go-rounds to sort out.

If we're printing the warning, things are wonky already, and
it'd be informative to check for the stack end corruption at this
point, too.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/5490B158.4060005@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:14 +01:00
Alex Thorlton
b74e6278fd sched: Fix KMALLOC_MAX_SIZE overflow during cpumask allocation
When allocating space for load_balance_mask, in sched_init, when
CPUMASK_OFFSTACK is set, we've managed to spill over
KMALLOC_MAX_SIZE on our 6144 core machine.  The patch below
breaks up the allocations so that they don't overflow the max
alloc size.  It also allocates the masks on the the node from
which they'll most commonly be accessed, to minimize remote
accesses on NUMA machines.

Suggested-by: George Beshers <gbeshers@sgi.com>
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Cc: George Beshers <gbeshers@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418928270-148543-1-git-send-email-athorlton@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-12-23 11:43:48 +01:00
Oleg Nesterov
a90e984c8a sched_show_task: fix unsafe usage of ->real_parent
rcu_read_lock() can not protect p->real_parent if release_task(p) was
already called, change sched_show_task() to check pis_alive() like other
users do.

Note: we need some helpers to cleanup the code like this.  And it seems
that that the usage of cpu_curr(cpu) in dump_cpu_task() is not safe too.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>,
Cc: Sterling Alexander <stalexan@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Roland McGrath <roland@hack.frob.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:09 -08:00
Linus Torvalds
86c6a2fddf Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle are:

   - 'Nested Sleep Debugging', activated when CONFIG_DEBUG_ATOMIC_SLEEP=y.

     This instruments might_sleep() checks to catch places that nest
     blocking primitives - such as mutex usage in a wait loop.  Such
     bugs can result in hard to debug races/hangs.

     Another category of invalid nesting that this facility will detect
     is the calling of blocking functions from within schedule() ->
     sched_submit_work() -> blk_schedule_flush_plug().

     There's some potential for false positives (if secondary blocking
     primitives themselves are not ready yet for this facility), but the
     kernel will warn once about such bugs per bootup, so the warning
     isn't much of a nuisance.

     This feature comes with a number of fixes, for problems uncovered
     with it, so no messages are expected normally.

   - Another round of sched/numa optimizations and refinements, for
     CONFIG_NUMA_BALANCING=y.

   - Another round of sched/dl fixes and refinements.

  Plus various smaller fixes and cleanups"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
  sched: Add missing rcu protection to wake_up_all_idle_cpus
  sched/deadline: Introduce start_hrtick_dl() for !CONFIG_SCHED_HRTICK
  sched/numa: Init numa balancing fields of init_task
  sched/deadline: Remove unnecessary definitions in cpudeadline.h
  sched/cpupri: Remove unnecessary definitions in cpupri.h
  sched/deadline: Fix rq->dl.pushable_tasks bug in push_dl_task()
  sched/fair: Fix stale overloaded status in the busiest group finding logic
  sched: Move p->nr_cpus_allowed check to select_task_rq()
  sched/completion: Document when to use wait_for_completion_io_*()
  sched: Update comments about CLONE_NEWUTS and CLONE_NEWIPC
  sched/fair: Kill task_struct::numa_entry and numa_group::task_list
  sched: Refactor task_struct to use numa_faults instead of numa_* pointers
  sched/deadline: Don't check CONFIG_SMP in switched_from_dl()
  sched/deadline: Reschedule from switched_from_dl() after a successful pull
  sched/deadline: Push task away if the deadline is equal to curr during wakeup
  sched/deadline: Add deadline rq status print
  sched/deadline: Fix artificial overrun introduced by yield_task_dl()
  sched/rt: Clean up check_preempt_equal_prio()
  sched/core: Use dl_bw_of() under rcu_read_lock_sched()
  sched: Check if we got a shallowest_idle_cpu before searching for least_loaded_cpu
  ...
2014-12-09 21:21:34 -08:00
Linus Torvalds
c30110608c Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
 "These are the main changes in this cycle:

    - Streamline RCU's use of per-CPU variables, shifting from "cpu"
      arguments to functions to "this_"-style per-CPU variable
      accessors.

    - signal-handling RCU updates.

    - real-time updates.

    - torture-test updates.

    - miscellaneous fixes.

    - documentation updates"

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
  rcu: Fix FIXME in rcu_tasks_kthread()
  rcu: More info about potential deadlocks with rcu_read_unlock()
  rcu: Optimize cond_resched_rcu_qs()
  rcu: Add sparse check for RCU_INIT_POINTER()
  documentation: memory-barriers.txt: Correct example for reorderings
  documentation: Add atomic_long_t to atomic_ops.txt
  documentation: Additional restriction for control dependencies
  documentation: Document RCU self test boot params
  rcutorture: Fix rcu_torture_cbflood() memory leak
  rcutorture: Remove obsolete kversion param in kvm.sh
  rcutorture: Remove stale test configurations
  rcutorture: Enable RCU self test in configs
  rcutorture: Add early boot self tests
  torture: Run Linux-kernel binary out of results directory
  cpu: Avoid puts_pending overflow
  rcu: Remove "cpu" argument to rcu_cleanup_after_idle()
  rcu: Remove "cpu" argument to rcu_prepare_for_idle()
  rcu: Remove "cpu" argument to rcu_needs_cpu()
  rcu: Remove "cpu" argument to rcu_note_context_switch()
  rcu: Remove "cpu" argument to rcu_preempt_check_callbacks()
  ...
2014-12-09 20:23:19 -08:00
Andy Lutomirski
fd7de1e8d5 sched: Add missing rcu protection to wake_up_all_idle_cpus
Locklessly doing is_idle_task(rq->curr) is only okay because of
RCU protection.  The older variant of the broken code checked
rq->curr == rq->idle instead and therefore didn't need RCU.

Fixes: f6be8af1c9 ("sched: Add new API wake_up_if_idle() to wake up the idle cpu")
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Chuansheng Liu <chuansheng.liu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/729365dddca178506dfd0a9451006344cd6808bc.1417277372.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-12-08 11:44:19 +01:00
Andy Lutomirski
7cc78f8fa0 context_tracking: Restore previous state in schedule_user
It appears that some SCHEDULE_USER (asm for schedule_user) callers
in arch/x86/kernel/entry_64.S are called from RCU kernel context,
and schedule_user will return in RCU user context.  This causes RCU
warnings and possible failures.

This is intended to be a minimal fix suitable for 3.18.

Reported-and-tested-by: Dave Jones <davej@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-03 20:55:58 -08:00
Ingo Molnar
d360b78f99 Merge branch 'rcu/next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull RCU updates from Paul E. McKenney:

 - Streamline RCU's use of per-CPU variables, shifting from "cpu"
   arguments to functions to "this_"-style per-CPU variable accessors.

 - Signal-handling RCU updates.

 - Real-time updates.

 - Torture-test updates.

 - Miscellaneous fixes.

 - Documentation updates.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-20 08:57:58 +01:00
Wanpeng Li
6c1d9410f0 sched: Move p->nr_cpus_allowed check to select_task_rq()
Move the p->nr_cpus_allowed check into kernel/sched/core.c: select_task_rq().
This change will make fair.c, rt.c, and deadline.c all start with the
same logic.

Suggested-and-Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "pang.xunlei" <pang.xunlei@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415150077-59053-1-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:58:55 +01:00
Kirill Tkhai
753899183c sched/fair: Kill task_struct::numa_entry and numa_group::task_list
Nobody iterates over numa_group::task_list, this just confuses the readers.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415358456.28592.17.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:58:48 +01:00
Ingo Molnar
e9ac5f0fa8 Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying more changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:50:25 +01:00
Stanislaw Gruszka
6e998916df sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency
Commit d670ec1317 "posix-cpu-timers: Cure SMP wobbles" fixes one glibc
test case in cost of breaking another one. After that commit, calling
clock_nanosleep(TIMER_ABSTIME, X) and then clock_gettime(&Y) can result
of Y time being smaller than X time.

Reproducer/tester can be found further below, it can be compiled and ran by:

	gcc -o tst-cpuclock2 tst-cpuclock2.c -pthread
	while ./tst-cpuclock2 ; do : ; done

This reproducer, when running on a buggy kernel, will complain
about "clock_gettime difference too small".

Issue happens because on start in thread_group_cputimer() we initialize
sum_exec_runtime of cputimer with threads runtime not yet accounted and
then add the threads runtime to running cputimer again on scheduler
tick, making it's sum_exec_runtime bigger than actual threads runtime.

KOSAKI Motohiro posted a fix for this problem, but that patch was never
applied: https://lkml.org/lkml/2013/5/26/191 .

This patch takes different approach to cure the problem. It calls
update_curr() when cputimer starts, that assure we will have updated
stats of running threads and on the next schedule tick we will account
only the runtime that elapsed from cputimer start. That also assure we
have consistent state between cpu times of individual threads and cpu
time of the process consisted by those threads.

Full reproducer (tst-cpuclock2.c):

	#define _GNU_SOURCE
	#include <unistd.h>
	#include <sys/syscall.h>
	#include <stdio.h>
	#include <time.h>
	#include <pthread.h>
	#include <stdint.h>
	#include <inttypes.h>

	/* Parameters for the Linux kernel ABI for CPU clocks.  */
	#define CPUCLOCK_SCHED          2
	#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
		((~(clockid_t) (pid) << 3) | (clockid_t) (clock))

	static pthread_barrier_t barrier;

	/* Help advance the clock.  */
	static void *chew_cpu(void *arg)
	{
		pthread_barrier_wait(&barrier);
		while (1) ;

		return NULL;
	}

	/* Don't use the glibc wrapper.  */
	static int do_nanosleep(int flags, const struct timespec *req)
	{
		clockid_t clock_id = MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED);

		return syscall(SYS_clock_nanosleep, clock_id, flags, req, NULL);
	}

	static int64_t tsdiff(const struct timespec *before, const struct timespec *after)
	{
		int64_t before_i = before->tv_sec * 1000000000ULL + before->tv_nsec;
		int64_t after_i = after->tv_sec * 1000000000ULL + after->tv_nsec;

		return after_i - before_i;
	}

	int main(void)
	{
		int result = 0;
		pthread_t th;

		pthread_barrier_init(&barrier, NULL, 2);

		if (pthread_create(&th, NULL, chew_cpu, NULL) != 0) {
			perror("pthread_create");
			return 1;
		}

		pthread_barrier_wait(&barrier);

		/* The test.  */
		struct timespec before, after, sleeptimeabs;
		int64_t sleepdiff, diffabs;
		const struct timespec sleeptime = {.tv_sec = 0,.tv_nsec = 100000000 };

		/* The relative nanosleep.  Not sure why this is needed, but its presence
		   seems to make it easier to reproduce the problem.  */
		if (do_nanosleep(0, &sleeptime) != 0) {
			perror("clock_nanosleep");
			return 1;
		}

		/* Get the current time.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &before) < 0) {
			perror("clock_gettime[2]");
			return 1;
		}

		/* Compute the absolute sleep time based on the current time.  */
		uint64_t nsec = before.tv_nsec + sleeptime.tv_nsec;
		sleeptimeabs.tv_sec = before.tv_sec + nsec / 1000000000;
		sleeptimeabs.tv_nsec = nsec % 1000000000;

		/* Sleep for the computed time.  */
		if (do_nanosleep(TIMER_ABSTIME, &sleeptimeabs) != 0) {
			perror("absolute clock_nanosleep");
			return 1;
		}

		/* Get the time after the sleep.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &after) < 0) {
			perror("clock_gettime[3]");
			return 1;
		}

		/* The time after sleep should always be equal to or after the absolute sleep
		   time passed to clock_nanosleep.  */
		sleepdiff = tsdiff(&sleeptimeabs, &after);
		if (sleepdiff < 0) {
			printf("absolute clock_nanosleep woke too early: %" PRId64 "\n", sleepdiff);
			result = 1;

			printf("Before %llu.%09llu\n", before.tv_sec, before.tv_nsec);
			printf("After  %llu.%09llu\n", after.tv_sec, after.tv_nsec);
			printf("Sleep  %llu.%09llu\n", sleeptimeabs.tv_sec, sleeptimeabs.tv_nsec);
		}

		/* The difference between the timestamps taken before and after the
		   clock_nanosleep call should be equal to or more than the duration of the
		   sleep.  */
		diffabs = tsdiff(&before, &after);
		if (diffabs < sleeptime.tv_nsec) {
			printf("clock_gettime difference too small: %" PRId64 "\n", diffabs);
			result = 1;
		}

		pthread_cancel(th);

		return result;
	}

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141112155843.GA24803@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:04:20 +01:00
Peter Zijlstra
23cfa361f3 sched/cputime: Fix cpu_timer_sample_group() double accounting
While looking over the cpu-timer code I found that we appear to add
the delta for the calling task twice, through:

  cpu_timer_sample_group()
    thread_group_cputimer()
      thread_group_cputime()
        times->sum_exec_runtime += task_sched_runtime();

    *sample = cputime.sum_exec_runtime + task_delta_exec();

Which would make the sample run ahead, making the sleep short.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20141112113737.GI10476@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:04:18 +01:00
Andrey Ryabinin
c123588b3b sched/numa: Fix out of bounds read in sched_init_numa()
On latest mm + KASan patchset I've got this:

    ==================================================================
    BUG: AddressSanitizer: out of bounds access in sched_init_smp+0x3ba/0x62c at addr ffff88006d4bee6c
    =============================================================================
    BUG kmalloc-8 (Not tainted): kasan error
    -----------------------------------------------------------------------------

    Disabling lock debugging due to kernel taint
    INFO: Allocated in alloc_vfsmnt+0xb0/0x2c0 age=75 cpu=0 pid=0
     __slab_alloc+0x4b4/0x4f0
     __kmalloc_track_caller+0x15f/0x1e0
     kstrdup+0x44/0x90
     alloc_vfsmnt+0xb0/0x2c0
     vfs_kern_mount+0x35/0x190
     kern_mount_data+0x25/0x50
     pid_ns_prepare_proc+0x19/0x50
     alloc_pid+0x5e2/0x630
     copy_process.part.41+0xdf5/0x2aa0
     do_fork+0xf5/0x460
     kernel_thread+0x21/0x30
     rest_init+0x1e/0x90
     start_kernel+0x522/0x531
     x86_64_start_reservations+0x2a/0x2c
     x86_64_start_kernel+0x15b/0x16a
    INFO: Slab 0xffffea0001b52f80 objects=24 used=22 fp=0xffff88006d4befc0 flags=0x100000000004080
    INFO: Object 0xffff88006d4bed20 @offset=3360 fp=0xffff88006d4bee70

    Bytes b4 ffff88006d4bed10: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a  ........ZZZZZZZZ
    Object ffff88006d4bed20: 70 72 6f 63 00 6b 6b a5                          proc.kk.
    Redzone ffff88006d4bed28: cc cc cc cc cc cc cc cc                          ........
    Padding ffff88006d4bee68: 5a 5a 5a 5a 5a 5a 5a 5a                          ZZZZZZZZ
    CPU: 0 PID: 1 Comm: swapper/0 Tainted: G    B          3.18.0-rc3-mm1+ #108
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
     ffff88006d4be000 0000000000000000 ffff88006d4bed20 ffff88006c86fd18
     ffffffff81cd0a59 0000000000000058 ffff88006d404240 ffff88006c86fd48
     ffffffff811fa3a8 ffff88006d404240 ffffea0001b52f80 ffff88006d4bed20
    Call Trace:
    dump_stack (lib/dump_stack.c:52)
    print_trailer (mm/slub.c:645)
    object_err (mm/slub.c:652)
    ? sched_init_smp (kernel/sched/core.c:6552 kernel/sched/core.c:7063)
    kasan_report_error (mm/kasan/report.c:102 mm/kasan/report.c:178)
    ? kasan_poison_shadow (mm/kasan/kasan.c:48)
    ? kasan_unpoison_shadow (mm/kasan/kasan.c:54)
    ? kasan_poison_shadow (mm/kasan/kasan.c:48)
    ? kasan_kmalloc (mm/kasan/kasan.c:311)
    __asan_load4 (mm/kasan/kasan.c:371)
    ? sched_init_smp (kernel/sched/core.c:6552 kernel/sched/core.c:7063)
    sched_init_smp (kernel/sched/core.c:6552 kernel/sched/core.c:7063)
    kernel_init_freeable (init/main.c:869 init/main.c:997)
    ? finish_task_switch (kernel/sched/sched.h:1036 kernel/sched/core.c:2248)
    ? rest_init (init/main.c:924)
    kernel_init (init/main.c:929)
    ? rest_init (init/main.c:924)
    ret_from_fork (arch/x86/kernel/entry_64.S:348)
    ? rest_init (init/main.c:924)
    Read of size 4 by task swapper/0:
    Memory state around the buggy address:
     ffff88006d4beb80: fc fc fc fc fc fc fc fc fc fc 00 fc fc fc fc fc
     ffff88006d4bec00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
     ffff88006d4bec80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
     ffff88006d4bed00: fc fc fc fc 00 fc fc fc fc fc fc fc fc fc fc fc
     ffff88006d4bed80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
    >ffff88006d4bee00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc 04 fc
                                                              ^
     ffff88006d4bee80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
     ffff88006d4bef00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
     ffff88006d4bef80: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
     ffff88006d4bf000: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
     ffff88006d4bf080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
    ==================================================================

Zero 'level' (e.g. on non-NUMA system) causing out of bounds
access in this line:

     sched_max_numa_distance = sched_domains_numa_distance[level - 1];

Fix this by exiting from sched_init_numa() earlier.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Fixes: 9942f79ba ("sched/numa: Export info needed for NUMA balancing on complex topologies")
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1415372020-1871-1-git-send-email-a.ryabinin@samsung.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-10 10:33:22 +01:00
Iulia Manda
44dba3d5d6 sched: Refactor task_struct to use numa_faults instead of numa_* pointers
This patch simplifies task_struct by removing the four numa_* pointers
in the same array and replacing them with the array pointer. By doing this,
on x86_64, the size of task_struct is reduced by 3 ulong pointers (24 bytes on
x86_64).

A new parameter is added to the task_faults_idx function so that it can return
an index to the correct offset, corresponding with the old precalculated
pointers.

All of the code in sched/ that depended on task_faults_idx and numa_* was
changed in order to match the new logic.

Signed-off-by: Iulia Manda <iulia.manda21@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: dave@stgolabs.net
Cc: riel@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141031001331.GA30662@winterfell
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:57 +01:00
Juri Lelli
75e23e49db sched/core: Use dl_bw_of() under rcu_read_lock_sched()
As per commit f10e00f4bf ("sched/dl: Use dl_bw_of() under
rcu_read_lock_sched()"), dl_bw_of() has to be protected by
rcu_read_lock_sched().

Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414497286-28824-1-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:52 +01:00
Kirill Tkhai
67dfa1b756 sched/deadline: Implement cancel_dl_timer() to use in switched_from_dl()
Currently used hrtimer_try_to_cancel() is racy:

raw_spin_lock(&rq->lock)
...                            dl_task_timer                 raw_spin_lock(&rq->lock)
...                               raw_spin_lock(&rq->lock)   ...
   switched_from_dl()             ...                        ...
      hrtimer_try_to_cancel()     ...                        ...
   switched_to_fair()             ...                        ...
...                               ...                        ...
...                               ...                        ...
raw_spin_unlock(&rq->lock)        ...                        (asquired)
...                               ...                        ...
...                               ...                        ...
do_exit()                         ...                        ...
   schedule()                     ...                        ...
      raw_spin_lock(&rq->lock)    ...                        raw_spin_unlock(&rq->lock)
      ...                         ...                        ...
      raw_spin_unlock(&rq->lock)  ...                        raw_spin_lock(&rq->lock)
      ...                         ...                        (asquired)
      put_task_struct()           ...                        ...
          free_task_struct()      ...                        ...
      ...                         ...                        raw_spin_unlock(&rq->lock)
...                               (asquired)                 ...
...                               ...                        ...
...                               (use after free)           ...

So, let's implement 100% guaranteed way to cancel the timer and let's
be sure we are safe even in very unlikely situations.

rq unlocking does not limit the area of switched_from_dl() use, because
this has already been possible in pull_dl_task() below.

Let's consider the safety of of this unlocking. New code in the patch
is working when hrtimer_try_to_cancel() fails. This means the callback
is running. In this case hrtimer_cancel() is just waiting till the
callback is finished. Two

1) Since we are in switched_from_dl(), new class is not dl_sched_class and
new prio is not less MAX_DL_PRIO. So, the callback returns early; it's
right after !dl_task() check. After that hrtimer_cancel() returns back too.

The above is:

raw_spin_lock(rq->lock);                  ...
...                                       dl_task_timer()
...                                          raw_spin_lock(rq->lock);
   switched_from_dl()                        ...
       hrtimer_try_to_cancel()               ...
          raw_spin_unlock(rq->lock);         ...
          hrtimer_cancel()                   ...
          ...                                raw_spin_unlock(rq->lock);
          ...                                return HRTIMER_NORESTART;
          ...                             ...
          raw_spin_lock(rq->lock);        ...

2) But the below is also possible:
                                   dl_task_timer()
                                      raw_spin_lock(rq->lock);
                                      ...
                                      raw_spin_unlock(rq->lock);
raw_spin_lock(rq->lock);              ...
   switched_from_dl()                 ...
       hrtimer_try_to_cancel()        ...
       ...                            return HRTIMER_NORESTART;
       raw_spin_unlock(rq->lock);  ...
       hrtimer_cancel();           ...
       raw_spin_lock(rq->lock);    ...

In this case hrtimer_cancel() returns immediately. Very unlikely case,
just to mention.

Nobody can manipulate the task, because check_class_changed() is
always called with pi_lock locked. Nobody can force the task to
participate in (concurrent) priority inheritance schemes (the same reason).

All concurrent task operations require pi_lock, which is held by us.
No deadlocks with dl_task_timer() are possible, because it returns
right after !dl_task() check (it does nothing).

If we receive a new dl_task during the time of unlocked rq, we just
don't have to do pull_dl_task() in switched_from_dl() further.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
[ Added comments]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414420852.19914.186.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:50 +01:00
Peter Zijlstra
e7097e8bd0 sched: Use WARN_ONCE for the might_sleep() TASK_RUNNING test
In some cases this can trigger a true flood of output.

Requested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:49 +01:00
Kirill Tkhai
f7b8a47da1 sched: Remove lockdep check in sched_move_task()
sched_move_task() is the only interface to change sched_task_group:
cpu_cgrp_subsys methods and autogroup_move_group() use it.

Everything is synchronized by task_rq_lock(), so cpu_cgroup_attach()
is ordered with other users of sched_move_task(). This means we do no
need RCU here: if we've dereferenced a tg here, the .attach method
hasn't been called for it yet.

Thus, we should pass "true" to task_css_check() to silence lockdep
warnings.

Fixes: eeb61e53ea ("sched: Fix race between task_group and sched_task_group")
Reported-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414473874.8574.2.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:07:30 +01:00
Paul E. McKenney
38200cf247 rcu: Remove "cpu" argument to rcu_note_context_switch()
The "cpu" argument to rcu_note_context_switch() is always the current
CPU, so drop it.  This in turn allows the "cpu" argument to
rcu_preempt_note_context_switch() to be removed, which allows the sole
use of "cpu" in both functions to be replaced with a this_cpu_ptr().
Again, the anticipated cross-CPU uses of these functions has been
replaced by NO_HZ_FULL.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
2014-11-03 19:20:34 -08:00
Peter Zijlstra
3427445afd sched: Exclude cond_resched() from nested sleep test
cond_resched() is a preemption point, not strictly a blocking
primitive, so exclude it from the ->state test.

In particular, preemption preserves task_struct::state.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: tglx@linutronix.de
Cc: ilya.dryomov@inktank.com
Cc: umgwanakikbuti@gmail.com
Cc: oleg@redhat.com
Cc: Alex Elder <alex.elder@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Axel Lin <axel.lin@ingics.com>
Cc: Daniel Borkmann <dborkman@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140924082242.656559952@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:56:57 +01:00
Peter Zijlstra
8eb23b9f35 sched: Debug nested sleeps
Validate we call might_sleep() with TASK_RUNNING, which catches places
where we nest blocking primitives, eg. mutex usage in a wait loop.

Since all blocking is arranged through task_struct::state, nesting
this will cause the inner primitive to set TASK_RUNNING and the outer
will thus not block.

Another observed problem is calling a blocking function from
schedule()->sched_submit_work()->blk_schedule_flush_plug() which will
then destroy the task state for the actual __schedule() call that
comes after it.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: tglx@linutronix.de
Cc: ilya.dryomov@inktank.com
Cc: umgwanakikbuti@gmail.com
Cc: oleg@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140924082242.591637616@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:56:52 +01:00
Juri Lelli
f82f80426f sched/deadline: Ensure that updates to exclusive cpusets don't break AC
How we deal with updates to exclusive cpusets is currently broken.
As an example, suppose we have an exclusive cpuset composed of
two cpus: A[cpu0,cpu1]. We can assign SCHED_DEADLINE task to it
up to the allowed bandwidth. If we want now to modify cpusetA's
cpumask, we have to check that removing a cpu's amount of
bandwidth doesn't break AC guarantees. This thing isn't checked
in the current code.

This patch fixes the problem above, denying an update if the
new cpumask won't have enough bandwidth for SCHED_DEADLINE tasks
that are currently active.

Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/5433E6AF.5080105@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:48:00 +01:00
Juri Lelli
7f51412a41 sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets
Exclusive cpusets are the only way users can restrict SCHED_DEADLINE tasks
affinity (performing what is commonly called clustered scheduling).
Unfortunately, such thing is currently broken for two reasons:

 - No check is performed when the user tries to attach a task to
   an exlusive cpuset (recall that exclusive cpusets have an
   associated maximum allowed bandwidth).

 - Bandwidths of source and destination cpusets are not correctly
   updated after a task is migrated between them.

This patch fixes both things at once, as they are opposite faces
of the same coin.

The check is performed in cpuset_can_attach(), as there aren't any
points of failure after that function. The updated is split in two
halves. We first reserve bandwidth in the destination cpuset, after
we pass the check in cpuset_can_attach(). And we then release
bandwidth from the source cpuset when the task's affinity is
actually changed. Even if there can be time windows when sched_setattr()
may erroneously fail in the source cpuset, we are fine with it, as
we can't perfom an atomic update of both cpusets at once.

Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: michael@amarulasolutions.com
Cc: luca.abeni@unitn.it
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/1411118561-26323-3-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:58 +01:00