This patch makes the {read,write}_reg functions const, this is a preparation to
make use of {read,write}_reg in the hwinit callback.
Signed-off-by: Thor Thayer <tthayer@altera.com>
Signed-off-by: Pavel Machek <pavel@denx.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The pch_can driver is for a companion chip to the Intel Atom E600
series processors. These are 32-bit x86 processors so the driver is
only needed on X86_32. Add COMPILE_TEST as an alternative, so that the
driver can still be build-tested elsewhere.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The only driver based on MSCAN at the moment is for PPC machines,
so it makes no sense to present the menu on M68K. The menu will always
be empty there.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The at91_can driver is AT91-specific so it should depend on ARCH_AT91
rather than just ARM. Add COMPILE_TEST as an alternative, so that the
driver can still be build-tested elsewhere.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
drivers/net/can/spi/mcp251x.c:953:7-27: ERROR: Threaded IRQ with no primary handler requested without IRQF_ONESHOT
Make sure threaded IRQs without a primary handler are always request with
IRQF_ONESHOT
Generated by: scripts/coccinelle/misc/irqf_oneshot.cocci
CC: Stefano Babic <sbabic@denx.de>
CC: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Conflicts:
drivers/net/ethernet/altera/altera_sgdma.c
net/netlink/af_netlink.c
net/sched/cls_api.c
net/sched/sch_api.c
The netlink conflict dealt with moving to netlink_capable() and
netlink_ns_capable() in the 'net' tree vs. supporting 'tc' operations
in non-init namespaces. These were simple transformations from
netlink_capable to netlink_ns_capable.
The Altera driver conflict was simply code removal overlapping some
void pointer cast cleanups in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
'frequency' indicates the embedded cpu's frequency, but that
should not be necessary for any purpose.
'txpending' is an attribute for debugging.
Signed-off-by: Kurt Van Dijck <kurt.van.dijck@eia.be>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
netdev->dev_id obsoletes this property.
None of the remaining properties contribute to udev detection methods.
The regular calls for the sysfs group can thus safely be restored.
Signed-off-by: Kurt Van Dijck <kurt.van.dijck@eia.be>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Alexander Stein <alexander.stein@systec-electronic.com>
Acked-by: Wolfgang Grandegger <wg@grandegger.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Add two new USB devices supported by the driver and fix bad
english.
Signed-off-by: Olivier Sobrie <olivier@sobrie.be>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch adds support for the Kvaser Leaf v2 and Leaf usb mini
PCIe card.
Signed-off-by: Olivier Sobrie <olivier@sobrie.be>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
On some Kvaser hardware, the firmware returns extra messages after the
request for card info. For instance on a Leaf Light v2:
--> CMD_GET_CARD_INFO
<-- CMD_USB_THROTTLE
<-- CMD_GET_CARD_INFO2
<-- CMD_GET_CARD_INFO_REQ
When it happens, the probing function fails because we only read
the first usb message.
To overcome this issue, we add a mechanism of retries to the
kvaser_usb_wait_msg() function.
I tested this patch with the following hardware:
- Kvaser Leaf Light
- Kvaser Leaf Light v2
- Kvaser USBCan R
This patch is necessary for the Leaf Light v2 hardware.
Signed-off-by: Olivier Sobrie <olivier@sobrie.be>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Create a directory for all CAN drivers using SPI and move mcp251x driver there.
Signed-off-by: Stefano Babic <sbabic@denx.de>
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch adds check for mcp251x_hw_reset() result on startup and
removes unnecessary checking for CANSTAT register since this value
is being checked in mcp251x_hw_reset().
Signed-off-by: Alexander Shiyan <shc_work@mail.ru>
Tested-by: Alexander Shiyan <shc_work@mail.ru>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The MCP251x utilizes an oscillator startup timer (OST), which holds the
chip in reset, to insure that the oscillator has stabilized before the
internal state machine begins to operate. The OST maintains reset for
the first 128 OSC clock cycles after power up or reset.
So, this patch removes unnecessary loops and reduce delay for power on
and reset to the safe value.
Signed-off-by: Alexander Shiyan <shc_work@mail.ru>
Tested-by: Alexander Shiyan <shc_work@mail.ru>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch moves setup of SPI bus a bit earlier and adds check for spi_setup()
result to be sure SPI bus is communicating with the device properly.
Signed-off-by: Alexander Shiyan <shc_work@mail.ru>
Tested-by: Alexander Shiyan <shc_work@mail.ru>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
slc_xmit is called within softirq context and locks sl->lock, but
slcan_write_wakeup is not softirq context, so we need to use
spin_[un]lock_bh!
Detected using kernel lock debugging mechanism.
Signed-off-by: Alexander Stein <alexander.stein@systec-electronic.com>
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
When trying to set a data bitrate on non CAN FD devices the 'ip' tool
answers with:
RTNETLINK answers: Unknown error 524
Rename '-ENOTSUPP' to '-EOPNOTSUPP' so that 'ip' answers correctly:
RTNETLINK answers: Operation not supported
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
When accessing the SJA1000 controller registers in the indirect access mode,
writing the register number and reading/writing the data has to be an atomic
attempt.
As the sja1000_isa driver is an old style driver with a fixed number of
instances the locking variable depends on the same index like all the other
configuration elements given on the module command line.
As a positive side effect dev->dev_id is populated by the instance index,
which was missing in 3e66d0138c ("can: populate netdev::dev_id for udev
discrimination").
Reported-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Coverity complains that c_can_pci_probe() calls pci_enable_msi() without
checking the result:
CID 712278 (#1 of 1): Unchecked return value (CHECKED_RETURN) 3. check_return:
Calling pci_enable_msi_block without checking return value (as is done
elsewhere 88 out of 105 times).
88 pci_enable_msi(pdev);
This is CID 712278.
Signed-off-by: Wolfgang Grandegger <wg@grandegger.com>
Reported-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Commit 6439fbce10 (can: c_can: fix error checking of priv->instance in
probe()) found the warning but applied a suboptimal solution. Since, both
pdev->id and of_alias_get_id() return integers, it makes sense to convert the
variable to an integer and avoid the cast.
Signed-off-by: Wolfram Sang <wsa@sang-engineering.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
It's suffcient to kill the TXIE bit in the message control register
even if the documentation of C and D CAN says that it's not allowed to
do that while MSGVAL is set. Reality tells a different story and this
change gives us another 2% of CPU back for not waiting on I/O.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Mark suggested to use one IF for the softirq and the other for the
xmit function to avoid the xmit lock.
That requires to write the frame into the interface first, then handle
the echo skb and store the dlc before committing the TX request to the
message ram.
We use an atomic to handle the active buffers instead of reading the
MSGVAL register as thats way faster especially on PCH/x86.
Suggested-by: Mark <mark5@del-llc.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Instead of obfuscating the code by artificial 16 bit splits use the
proper 32 bit assignments and split the result when writing to the
interface.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Remove the MASK from the TX transfer side.
Make the code readable and get rid of the annoying IFX_WRITE_XXX_16BIT
macros which are just obfuscating the code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Sigh!
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Alexander reported that the new optimized handling of the RX fifo
causes random packet loss on Intel PCH C_CAN hardware.
After a few fruitless debugging sessions I got hold of a PCH (eg20t)
afflicted system. That machine does not have the CAN interface wired
up, but it was possible to reproduce the issue with the HW loopback
mode.
As Alexander observed correctly, clearing the NewDat flag along with
reading out the message buffer causes that issue on C_CAN, while D_CAN
handles that correctly.
Instead of restoring the original message buffer handling horror the
following workaround solves the issue:
transfer buffer to IF without clearing the NewDat
handle the message
clear NewDat bit
That's similar to the original code but conditional for C_CAN.
I really wonder why all user manuals (C_CAN, Intel PCH and some more)
recommend to clear the NewDat bit right away. The knows it all Oracle
operated by Gurgle does not unearth any useful information either. I
simply cannot believe that we are the first to uncover that HW issue.
Reported-and-tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The RX buffer split causes packet loss in the hardware:
What happens is:
RX Packet 1 --> message buffer 1 (newdat bit is not cleared)
RX Packet 2 --> message buffer 2 (newdat bit is not cleared)
RX Packet 3 --> message buffer 3 (newdat bit is not cleared)
RX Packet 4 --> message buffer 4 (newdat bit is not cleared)
RX Packet 5 --> message buffer 5 (newdat bit is not cleared)
RX Packet 6 --> message buffer 6 (newdat bit is not cleared)
RX Packet 7 --> message buffer 7 (newdat bit is not cleared)
RX Packet 8 --> message buffer 8 (newdat bit is not cleared)
Clear newdat bit in message buffer 1
Clear newdat bit in message buffer 2
Clear newdat bit in message buffer 3
Clear newdat bit in message buffer 4
Clear newdat bit in message buffer 5
Clear newdat bit in message buffer 6
Clear newdat bit in message buffer 7
Clear newdat bit in message buffer 8
Now if during that clearing of newdat bits, a new message comes in,
the HW gets confused and drops it.
It does not matter how many of them you clear. I put a delay between
clear of buffer 1 and buffer 2 which was long enough that the message
should have been queued either in buffer 1 or buffer 9. But it did not
show up anywhere. The next message ended up in buffer 1. So the
hardware lost a packet of course without telling it via one of the
error handlers.
That does not happen on all clear newdat bit events. I see one of 10k
packets dropped in the scenario which allows us to reproduce. But the
trace looks always the same.
Not splitting the RX Buffer avoids the packet loss but can cause
reordering. It's hard to trigger, but it CAN happen.
With that mode we use the HW as it was probably designed for. We read
from the buffer 1 upwards and clear the buffer as we get the
message. That's how all microcontrollers use it. So I assume that the
way we handle the buffers was never really tested. According to the
public documentation it should just work :)
Let the user decide which evil is the lesser one.
[ Oliver Hartkopp: Provided a sane config option and help text and
made me switch to favour potential and unlikely reordering over
packet loss ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The driver handles pointlessly TWO interrupts per packet. The reason
is that it enables the status interrupt which fires for each rx and tx
packet and it enables the per message object interrupts as well.
The status interrupt merily acks or in case of D_CAN ignores the TX/RX
state and then the message object interrupt fires.
The message objects interrupts are only useful if all message objects
have hardware filters activated.
But we don't have that and its not simple to implement in that driver
without rewriting it completely.
So we can ditch the message object interrupts and handle the RX/TX
right away from the status interrupt. Instead of TWO we handle ONE.
Note: We must keep the TXIE/RXIE bits in the message buffers because
the status interrupt alone is not reliable enough in corner cases.
If we ever have the need for HW filtering, then this code needs a
complete overhaul and we can think about it then. For now we prefer a
lower interrupt load.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
On D_CAN the RXOK, TXOK and LEC bits are cleared/set on read of the
status register. No need to update them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Instead of writing to the message object we can simply clear the
NewDat bit with the get method.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
If the allocation of the error skb fails, we still want to see the
error statistics.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Reading the LEC type with
return (mode & ENABLED) && (status & LEC_MASK);
is not guaranteed to return (status & LEC_MASK) if the enabled bit in
mode is set. It's guaranteed to return 0 or !=0.
Remove the inline function and call unconditionally into the
berr_handling code and return early when the reporting is disabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
If the allocation of an error skb fails, the state change handling
returns w/o doing any work. That leaves the interface in a wreckaged
state as the internal status is wrong.
Split the interface handling and the skb handling.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
There is no guarantee that the skb is in the same state after calling
net_receive_skb(). It might be freed or reused. Not really harmful as
its a read access, except you turn on the proper debugging options
which catch a use after free.
The whole can subsystem is full of this. Copy and paste ....
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The state change handler is called with device interrupts disabled
already. So no point in disabling them again when we enter bus off
state.
But what's worse is that we reenable the interrupts at the end of NAPI
poll unconditionally. So c_can_start() which is called from the
restart timer can trigger interrupts which confuse the hell out of the
half reinitialized driver/hw.
Remove the pointless device interrupt disable in the BUS_OFF handler
and prevent reenabling the device interrupts at the end of the poll
routine when the current state is BUS_OFF.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
c_can_start() enables interrupts way too early. The first enabling
happens when setting the control mode in c_can_chip_config() and then
again at the end of the function.
But that happens before napi_enable() and that means that an interrupt
which comes in will disable interrupts again and call napi_schedule,
which ignores the request and the later napi_enable() is not making
thinks work either. So the interface is up with all device interrupts
disabled.
Move the device interrupt after napi_enable() and add it to the other
callsites of c_can_start() in c_can_set_mode() and c_can_power_up()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
All type checks in c_can.c are != BOSCH_D_CAN so nobody noticed so far
that the pci code does not update the type information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
If the renamed symbol is defined lib/iomap.c implements ioport_map and
ioport_unmap and currently (nearly) all platforms define the port
accessor functions outb/inb and friend unconditionally. So
HAS_IOPORT_MAP is the better name for this.
Consequently NO_IOPORT is renamed to NO_IOPORT_MAP.
The motivation for this change is to reintroduce a symbol HAS_IOPORT
that signals if outb/int et al are available. I will address that at
least one merge window later though to keep surprises to a minimum and
catch new introductions of (HAS|NO)_IOPORT.
The changes in this commit were done using:
$ git grep -l -E '(NO|HAS)_IOPORT' | xargs perl -p -i -e 's/\b((?:CONFIG_)?(?:NO|HAS)_IOPORT)\b/$1_MAP/'
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iEYEABECAAYFAlM6jfsACgkQjTAFq1RaXHOVTwCeOyOYOJ+Ze2x33WydGcGsvX8a
QPoAoJVAcekmL5MVbcMTTvc8QL1AebAm
=4aEp
-----END PGP SIGNATURE-----
Merge tag 'linux-can-fixes-for-3.15-20140401' of git://gitorious.org/linux-can/linux-can
linux-can-fixes-for-3.15-20140401
Marc Kleine-Budde says:
====================
this is a pull request of 16 patches for the 3.15 release cycle.
Bjorn Van Tilt contributes a patch which fixes a memory leak in usb_8dev's
usb_8dev_start_xmit()s error path. A patch by Robert Schwebel fixes a typo in
the can documentation. The remaining patches all target the c_can driver. Two
of them are by me; they add a missing netif_napi_del() and return value
checking. Thomas Gleixner contributes 12 patches, which address several
shortcomings in the driver like hardware initialisation, concurrency, message
ordering and poor performance.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
There is no point to toggle the RX led for every packet. Especially if
we have a full FIFO we want to avoid everything we can.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The function loads the message object from the hardware to get the
payload length. The previous patch stores that information in an
array, so we can avoid the hardware access.
Remove the hardware access and move the led toggle outside of the
spinlocked region. Toggle the led only once when at least one packet
has been received.
Binary size shrinks along with the code
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
We can avoid the HW access in TX cleanup path for retrieving the DLC
of the sent package if we store the DLC in a private array.
Ideally this should be handled in the can_echo_skb functions, but I
leave that exercise to the CAN folks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
commit 4ce78a838c (can: c_can: Speed up rx_poll function) hyped a
performance improvement by reducing the access to the interrupt
pending register from a dual 16 bit to a single 16 bit access. Wow!
Thereby it crippled the driver to cast the 16 msg objects in stone,
which is completly braindead as contemporary hardware has up to 128
message objects. Supporting larger object buffers is a major surgery,
but it'd be definitely worth it especially as the driver does not
support HW message filtering ....
The logic of the "FIFO" implementation is to split the FIFO in half.
For the lower half we read the buffers and clear the interrupt pending
bit, but keep the newdat bit set, so the HW will queue above those
buffers.
When we read out the last low buffer then we reenable all the low half
buffers by clearing the newdat bit.
The upper half buffers clear the newdat and the interrupt pending bit
right away as we know that the lower half bits are clear and give us a
headstart against the hardware.
Now the implementation is:
transfer_message_object()
read_object_and_put_into_skb();
if (obj < END_OF_LOW_BUF)
clear_intpending(obj)
else if (obj > END_OF_LOW_BUF)
clear_intpending_and_newdat(obj)
else if (obj == END_OF_LOW_BUF)
clear_newdat_of_all_low_objects()
The hardware allows to avoid most of the mess simply because we can
tell the transfer_message_object() function to clear bits right away.
So we can be clever and do:
if (obj <= END_OF_LOW_BUF)
ctrl = TRANSFER_MSG | CLEAR_INTPND;
else
ctrl = TRANSFER_MSG | CLEAR_INTPND | CLEAR_NEWDAT;
transfer_message_object(ctrl)
read_object_and_put_into_skb();
if (obj == END_OF_LOW_BUF)
clear_newdat_of_all_low_objects()
So we save a complete control operation on all message objects except
the one which is the end of the low buffer. That's a few micro seconds
per object.
I'm not adding a boasting profile to that, simply because it's self
explaining.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[mkl: adjusted subject and commit message]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
If every other line contains line breaks, that's a clear sign for
indentation level madness. Split out the inner loop and move the code
to a separate function. gcc creates slightly worse code for that, but
we'll fix that in the next step.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[mkl: adjusted subject]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The network core does not serialize the access to the hardware. The
xmit related code lets the following happen:
CPU0 CPU1
interrupt()
do_poll()
c_can_do_tx()
Fiddle with HW and xmit()
internal data Fiddle with HW and
internal data
due the complete lack of serialization.
Add proper locking.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>