Currently, the notifiers are called once for each CPU of the policy->cpus
cpumask. It would be more optimal if the notifier can be called only
once and all the relevant information be provided to it. Out of the 23
drivers that register for the transition notifiers today, only 4 of them
do per-cpu updates and the callback for the rest can be called only once
for the policy without any impact.
This would also avoid multiple function calls to the notifier callbacks
and reduce multiple iterations of notifier core's code (which does
locking as well).
This patch adds pointer to the cpufreq policy to the struct
cpufreq_freqs, so the notifier callback has all the information
available to it with a single call. The five drivers which perform
per-cpu updates are updated to use the cpufreq policy. The freqs->cpu
field is redundant now and is removed.
Acked-by: David S. Miller <davem@davemloft.net> (sparc)
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Fix the handling of Performance and Energy Bias Hint (EPB) on
Intel processors and expose it to user space via sysfs to avoid
having to access it through the generic MSR I/F (Rafael Wysocki).
- Improve the handling of global turbo changes made by the platform
firmware in the intel_pstate driver (Rafael Wysocki).
- Convert some slow-path static_cpu_has() callers to boot_cpu_has()
in cpufreq (Borislav Petkov).
- Fix the frequency calculation loop in the armada-37xx cpufreq
driver (Gregory CLEMENT).
- Fix possible object reference leaks in multuple cpufreq drivers
(Wen Yang).
- Fix kerneldoc comment in the centrino cpufreq driver (dongjian).
- Clean up the ACPI and maple cpufreq drivers (Viresh Kumar, Mohan
Kumar).
- Add support for lx2160a and ls1028a to the qoriq cpufreq driver
(Vabhav Sharma, Yuantian Tang).
- Fix kobject memory leak in the cpufreq core (Viresh Kumar).
- Simplify the IOwait boosting in the schedutil cpufreq governor
and rework the TSC cpufreq notifier on x86 (Rafael Wysocki).
- Clean up the cpufreq core and statistics code (Yue Hu, Kyle Lin).
- Improve the cpufreq documentation, add SPDX license tags to
some PM documentation files and unify copyright notices in
them (Rafael Wysocki).
- Add support for "CPU" domains to the generic power domains (genpd)
framework and provide low-level PSCI firmware support for that
feature (Ulf Hansson).
- Rearrange the PSCI firmware support code and add support for
SYSTEM_RESET2 to it (Ulf Hansson, Sudeep Holla).
- Improve genpd support for devices in multiple power domains (Ulf
Hansson).
- Unify target residency for the AFTR and coupled AFTR states in the
exynos cpuidle driver (Marek Szyprowski).
- Introduce new helper routine in the operating performance points
(OPP) framework (Andrew-sh.Cheng).
- Add support for passing on-die termination (ODT) and auto power
down parameters from the kernel to Trusted Firmware-A (TF-A) to
the rk3399_dmc devfreq driver (Enric Balletbo i Serra).
- Add tracing to devfreq (Lukasz Luba).
- Make the exynos-bus devfreq driver suspend all devices on system
shutdown (Marek Szyprowski).
- Fix a few minor issues in the devfreq subsystem and clean it up
somewhat (Enric Balletbo i Serra, MyungJoo Ham, Rob Herring,
Saravana Kannan, Yangtao Li).
- Improve system wakeup diagnostics (Stephen Boyd).
- Rework filesystem sync messages emitted during system suspend and
hibernation (Harry Pan).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAlzQEwUSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxxXwP/jrxikIXdCOV3CJVioV0NetyebwlOqYp
UsIA7lQBfZ/DY6dHw/oKuAT9LP01vcFg6XGe83Alkta9qczR5KZ/MYHFNSZXjXjL
kEvIMBCS/oykaBuW+Xn9am8Ke3Yq/rBSTKWVom3vzSQY0qvZ9GBwPDrzw+k63Zhz
P3afB4ThyY0e9ftgw4HvSSNm13Kn0ItUIQOdaLatXMMcPqP5aAdnUma5Ibinbtpp
rpTHuHKYx7MSjaCg6wl3kKTJeWbQP4wYO2ISZqH9zEwQgdvSHeFAvfPKTegUkmw9
uUsQnPD1JvdglOKovr2muehD1Ur+zsjKDf2OKERkWsWXHPyWzA/AqaVv1mkkU++b
KaWaJ9pE86kGlJ3EXwRbGfV0dM5rrl+dUUQW6nPI1XJnIOFlK61RzwAbqI26F0Mz
AlKxY4jyPLcM3SpQz9iILqyzHQqB67rm29XvId/9scoGGgoqEI4S+v6LYZqI3Vx6
aeSRu+Yof7p5w4Kg5fODX+HzrtMnMrPmLUTXhbExfsYZMi7hXURcN6s+tMpH0ckM
4yiIpnNGCKUSV4vxHBm8XJdAuUnR4Vcz++yFslszgDVVvw5tkvF7SYeHZ6HqcQVm
af9HdWzx3qajs/oyBwdRBedZYDnP1joC5donBI2ofLeF33NA7TEiPX8Zebw8XLkv
fNikssA7PGdv
=nY9p
-----END PGP SIGNATURE-----
Merge tag 'pm-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These fix the (Intel-specific) Performance and Energy Bias Hint (EPB)
handling and expose it to user space via sysfs, fix and clean up
several cpufreq drivers, add support for two new chips to the qoriq
cpufreq driver, fix, simplify and clean up the cpufreq core and the
schedutil governor, add support for "CPU" domains to the generic power
domains (genpd) framework and provide low-level PSCI firmware support
for that feature, fix the exynos cpuidle driver and fix a couple of
issues in the devfreq subsystem and clean it up.
Specifics:
- Fix the handling of Performance and Energy Bias Hint (EPB) on Intel
processors and expose it to user space via sysfs to avoid having to
access it through the generic MSR I/F (Rafael Wysocki).
- Improve the handling of global turbo changes made by the platform
firmware in the intel_pstate driver (Rafael Wysocki).
- Convert some slow-path static_cpu_has() callers to boot_cpu_has()
in cpufreq (Borislav Petkov).
- Fix the frequency calculation loop in the armada-37xx cpufreq
driver (Gregory CLEMENT).
- Fix possible object reference leaks in multuple cpufreq drivers
(Wen Yang).
- Fix kerneldoc comment in the centrino cpufreq driver (dongjian).
- Clean up the ACPI and maple cpufreq drivers (Viresh Kumar, Mohan
Kumar).
- Add support for lx2160a and ls1028a to the qoriq cpufreq driver
(Vabhav Sharma, Yuantian Tang).
- Fix kobject memory leak in the cpufreq core (Viresh Kumar).
- Simplify the IOwait boosting in the schedutil cpufreq governor and
rework the TSC cpufreq notifier on x86 (Rafael Wysocki).
- Clean up the cpufreq core and statistics code (Yue Hu, Kyle Lin).
- Improve the cpufreq documentation, add SPDX license tags to some PM
documentation files and unify copyright notices in them (Rafael
Wysocki).
- Add support for "CPU" domains to the generic power domains (genpd)
framework and provide low-level PSCI firmware support for that
feature (Ulf Hansson).
- Rearrange the PSCI firmware support code and add support for
SYSTEM_RESET2 to it (Ulf Hansson, Sudeep Holla).
- Improve genpd support for devices in multiple power domains (Ulf
Hansson).
- Unify target residency for the AFTR and coupled AFTR states in the
exynos cpuidle driver (Marek Szyprowski).
- Introduce new helper routine in the operating performance points
(OPP) framework (Andrew-sh.Cheng).
- Add support for passing on-die termination (ODT) and auto power
down parameters from the kernel to Trusted Firmware-A (TF-A) to the
rk3399_dmc devfreq driver (Enric Balletbo i Serra).
- Add tracing to devfreq (Lukasz Luba).
- Make the exynos-bus devfreq driver suspend all devices on system
shutdown (Marek Szyprowski).
- Fix a few minor issues in the devfreq subsystem and clean it up
somewhat (Enric Balletbo i Serra, MyungJoo Ham, Rob Herring,
Saravana Kannan, Yangtao Li).
- Improve system wakeup diagnostics (Stephen Boyd).
- Rework filesystem sync messages emitted during system suspend and
hibernation (Harry Pan)"
* tag 'pm-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (72 commits)
cpufreq: Fix kobject memleak
cpufreq: armada-37xx: fix frequency calculation for opp
cpufreq: centrino: Fix centrino_setpolicy() kerneldoc comment
cpufreq: qoriq: add support for lx2160a
x86: tsc: Rework time_cpufreq_notifier()
PM / Domains: Allow to attach a CPU via genpd_dev_pm_attach_by_id|name()
PM / Domains: Search for the CPU device outside the genpd lock
PM / Domains: Drop unused in-parameter to some genpd functions
PM / Domains: Use the base device for driver_deferred_probe_check_state()
cpufreq: qoriq: Add ls1028a chip support
PM / Domains: Enable genpd_dev_pm_attach_by_id|name() for single PM domain
PM / Domains: Allow OF lookup for multi PM domain case from ->attach_dev()
PM / Domains: Don't kfree() the virtual device in the error path
cpufreq: Move ->get callback check outside of __cpufreq_get()
PM / Domains: remove unnecessary unlikely()
cpufreq: Remove needless bios_limit check in show_bios_limit()
drivers/cpufreq/acpi-cpufreq.c: This fixes the following checkpatch warning
firmware/psci: add support for SYSTEM_RESET2
PM / devfreq: add tracing for scheduling work
trace: events: add devfreq trace event file
...
Pull x86 microcode loading update from Borislav Petkov:
"A nice Intel microcode blob loading cleanup which gets rid of the ugly
memcpy wrappers and switches the driver to use the iov_iter API. By
Jann Horn.
In addition, the /dev/cpu/microcode interface is finally deprecated as
it is inadequate for the same reasons the late microcode loading is"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Deprecate MICROCODE_OLD_INTERFACE
x86/microcode: Fix the ancient deprecated microcode loading method
x86/microcode/intel: Refactor Intel microcode blob loading
Pull x86 topology updates from Ingo Molnar:
"Two main changes: preparatory changes for Intel multi-die topology
support, plus a syslog message tweak"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/topology: Make DEBUG_HOTPLUG_CPU0 pr_info() more descriptive
x86/smpboot: Rename match_die() to match_pkg()
topology: Simplify cputopology.txt formatting and wording
x86/topology: Fix documentation typo
Pull x86 timer updates from Ingo Molnar:
"Two changes: an LTO improvement, plus the new 'nowatchdog' boot option
to disable the clocksource watchdog"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/timer: Don't inline __const_udelay()
x86/tsc: Add option to disable tsc clocksource watchdog
Pull x86 platform updates from Ingo Molnar:
"Smaller update for Hyper-V to support EOI assist, plus LTO fixes"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kvm: Make steal_time visible
x86/hyperv: Make hv_vcpu_is_preempted() visible
x86/hyper-v: Implement EOI assist
Pull x86 mm updates from Ingo Molnar:
"The changes in here are:
- text_poke() fixes and an extensive set of executability lockdowns,
to (hopefully) eliminate the last residual circumstances under
which we are using W|X mappings even temporarily on x86 kernels.
This required a broad range of surgery in text patching facilities,
module loading, trampoline handling and other bits.
- tweak page fault messages to be more informative and more
structured.
- remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the
default.
- reduce KASLR granularity on 5-level paging kernels from 512 GB to
1 GB.
- misc other changes and updates"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm: Initialize PGD cache during mm initialization
x86/alternatives: Add comment about module removal races
x86/kprobes: Use vmalloc special flag
x86/ftrace: Use vmalloc special flag
bpf: Use vmalloc special flag
modules: Use vmalloc special flag
mm/vmalloc: Add flag for freeing of special permsissions
mm/hibernation: Make hibernation handle unmapped pages
x86/mm/cpa: Add set_direct_map_*() functions
x86/alternatives: Remove the return value of text_poke_*()
x86/jump-label: Remove support for custom text poker
x86/modules: Avoid breaking W^X while loading modules
x86/kprobes: Set instruction page as executable
x86/ftrace: Set trampoline pages as executable
x86/kgdb: Avoid redundant comparison of patched code
x86/alternatives: Use temporary mm for text poking
x86/alternatives: Initialize temporary mm for patching
fork: Provide a function for copying init_mm
uprobes: Initialize uprobes earlier
x86/mm: Save debug registers when loading a temporary mm
...
Pull x86 kdump update from Ingo Molnar:
"This includes two changes:
- Raise the crash kernel reservation limit from from ~896MB to ~4GB.
Only very old (and already known-broken) kexec-tools is supposed to
be affected by this negatively.
- Allow higher than 4GB crash kernel allocations when low allocations
fail"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kdump: Fall back to reserve high crashkernel memory
x86/kdump: Have crashkernel=X reserve under 4G by default
Pull x86 irq updates from Ingo Molnar:
"Here are the main changes in this tree:
- Introduce x86-64 IRQ/exception/debug stack guard pages to detect
stack overflows immediately and deterministically.
- Clean up over a decade worth of cruft accumulated.
The outcome of this should be more clear-cut faults/crashes when any
of the low level x86 CPU stacks overflow, instead of silent memory
corruption and sporadic failures much later on"
* 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
x86/irq: Fix outdated comments
x86/irq/64: Remove stack overflow debug code
x86/irq/64: Remap the IRQ stack with guard pages
x86/irq/64: Split the IRQ stack into its own pages
x86/irq/64: Init hardirq_stack_ptr during CPU hotplug
x86/irq/32: Handle irq stack allocation failure proper
x86/irq/32: Invoke irq_ctx_init() from init_IRQ()
x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr
x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptr
x86/irq/32: Make irq stack a character array
x86/irq/32: Define IRQ_STACK_SIZE
x86/dumpstack/64: Speedup in_exception_stack()
x86/exceptions: Split debug IST stack
x86/exceptions: Enable IST guard pages
x86/exceptions: Disconnect IST index and stack order
x86/cpu: Remove orig_ist array
x86/cpu: Prepare TSS.IST setup for guard pages
x86/dumpstack/64: Use cpu_entry_area instead of orig_ist
x86/irq/64: Use cpu entry area instead of orig_ist
x86/traps: Use cpu_entry_area instead of orig_ist
...
Pull x86 cpu updates from Ingo Molnar:
"Two changes: a Hygon CPU fix, and an optimization Centaur CPUs"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/power: Optimize C3 entry on Centaur CPUs
x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors
Pull x86 cleanups from Ingo Molnar:
"A handful of cleanups: dma-ops cleanups, missing boot time kcalloc()
check, a Sparse fix and use struct_size() to simplify a vzalloc()
call"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pci: Clean up usage of X86_DEV_DMA_OPS
x86/Kconfig: Remove the unused X86_DMA_REMAP KConfig symbol
x86/kexec/crash: Use struct_size() in vzalloc()
x86/mm/tlb: Define LOADED_MM_SWITCHING with pointer-sized number
x86/platform/uv: Fix missing checks of kcalloc() return values
Pull x86 cache QoS updates from Ingo Molnar:
"An RDT cleanup and a fix for RDT initialization of new resource
groups"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Initialize a new resource group with default MBA values
x86/resctrl: Move per RDT domain initialization to a separate function
Pull x86 asm updates from Ingo Molnar:
"This includes the following changes:
- cpu_has() cleanups
- sync_bitops.h modernization to the rmwcc.h facility, similarly to
bitops.h
- continued LTO annotations/fixes
- misc cleanups and smaller cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/um/vdso: Drop unnecessary cc-ldoption
x86/vdso: Rename variable to fix -Wshadow warning
x86/cpu/amd: Exclude 32bit only assembler from 64bit build
x86/asm: Mark all top level asm statements as .text
x86/build/vdso: Add FORCE to the build rule of %.so
x86/asm: Modernize sync_bitops.h
x86/mm: Convert some slow-path static_cpu_has() callers to boot_cpu_has()
x86: Convert some slow-path static_cpu_has() callers to boot_cpu_has()
x86/asm: Clarify static_cpu_has()'s intended use
x86/uaccess: Fix implicit cast of __user pointer
x86/cpufeature: Remove __pure attribute to _static_cpu_has()
Pull x86 apic update from Ingo Molnar:
"A single commit which unifies the unnecessarily diverged
implementations of APIC timer initialization. As a result the
max_delta parameter is now consistently taken into account"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Unify duplicated local apic timer clockevent initialization
Pull perf updates from Ingo Molnar:
"The main kernel changes were:
- add support for Intel's "adaptive PEBS v4" - which embedds LBS data
in PEBS records and can thus batch up and reduce the IRQ (NMI) rate
significantly - reducing overhead and making call-graph profiling
less intrusive.
- add Intel CPU core and uncore support updates for Tremont, Icelake,
- extend the x86 PMU constraints scheduler with 'constraint ranges'
to better support Icelake hw constraints,
- make x86 call-chain support work better with CONFIG_FRAME_POINTER=y
- misc other changes
Tooling changes:
- updates to the main tools: 'perf record', 'perf trace', 'perf
stat'
- updated Intel and S/390 vendor events
- libtraceevent updates
- misc other updates and fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER
watchdog: Fix typo in comment
perf/x86/intel: Add Tremont core PMU support
perf/x86/intel/uncore: Add Intel Icelake uncore support
perf/x86/msr: Add Icelake support
perf/x86/intel/rapl: Add Icelake support
perf/x86/intel/cstate: Add Icelake support
perf/x86/intel: Add Icelake support
perf/x86: Support constraint ranges
perf/x86/lbr: Avoid reading the LBRs when adaptive PEBS handles them
perf/x86/intel: Support adaptive PEBS v4
perf/x86/intel/ds: Extract code of event update in short period
perf/x86/intel: Extract memory code PEBS parser for reuse
perf/x86: Support outputting XMM registers
perf/x86/intel: Force resched when TFA sysctl is modified
perf/core: Add perf_pmu_resched() as global function
perf/headers: Fix stale comment for struct perf_addr_filter
perf/core: Make perf_swevent_init_cpu() static
perf/x86: Add sanity checks to x86_schedule_events()
perf/x86: Optimize x86_schedule_events()
...
Pull EFI updates from Ingo Molnar:
"The changes in this cycle were:
- Squash a spurious warning when using the EFI framebuffer on a
non-EFI boot
- Use DMI data to annotate RAS memory errors on ARM just like we do
on Intel
- Followup cleanups for DMI
- libstub Makefile cleanups"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/libstub/arm: Omit unneeded stripping of ksymtab/kcrctab sections
efi: Unify DMI setup code over the arm/arm64, ia64 and x86 architectures
efi/arm: Show SMBIOS bank/device location in CPER and GHES error logs
efifb: Omit memory map check on legacy boot
efi/libstub: Refactor the cmd_stubcopy Makefile command
Pull stack trace updates from Ingo Molnar:
"So Thomas looked at the stacktrace code recently and noticed a few
weirdnesses, and we all know how such stories of crummy kernel code
meeting German engineering perfection end: a 45-patch series to clean
it all up! :-)
Here's the changes in Thomas's words:
'Struct stack_trace is a sinkhole for input and output parameters
which is largely pointless for most usage sites. In fact if embedded
into other data structures it creates indirections and extra storage
overhead for no benefit.
Looking at all usage sites makes it clear that they just require an
interface which is based on a storage array. That array is either on
stack, global or embedded into some other data structure.
Some of the stack depot usage sites are outright wrong, but
fortunately the wrongness just causes more stack being used for
nothing and does not have functional impact.
Another oddity is the inconsistent termination of the stack trace
with ULONG_MAX. It's pointless as the number of entries is what
determines the length of the stored trace. In fact quite some call
sites remove the ULONG_MAX marker afterwards with or without nasty
comments about it. Not all architectures do that and those which do,
do it inconsistenly either conditional on nr_entries == 0 or
unconditionally.
The following series cleans that up by:
1) Removing the ULONG_MAX termination in the architecture code
2) Removing the ULONG_MAX fixups at the call sites
3) Providing plain storage array based interfaces for stacktrace
and stackdepot.
4) Cleaning up the mess at the callsites including some related
cleanups.
5) Removing the struct stack_trace based interfaces
This is not changing the struct stack_trace interfaces at the
architecture level, but it removes the exposure to the generic
code'"
* 'core-stacktrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
x86/stacktrace: Use common infrastructure
stacktrace: Provide common infrastructure
lib/stackdepot: Remove obsolete functions
stacktrace: Remove obsolete functions
livepatch: Simplify stack trace retrieval
tracing: Remove the last struct stack_trace usage
tracing: Simplify stack trace retrieval
tracing: Make ftrace_trace_userstack() static and conditional
tracing: Use percpu stack trace buffer more intelligently
tracing: Simplify stacktrace retrieval in histograms
lockdep: Simplify stack trace handling
lockdep: Remove save argument from check_prev_add()
lockdep: Remove unused trace argument from print_circular_bug()
drm: Simplify stacktrace handling
dm persistent data: Simplify stack trace handling
dm bufio: Simplify stack trace retrieval
btrfs: ref-verify: Simplify stack trace retrieval
dma/debug: Simplify stracktrace retrieval
fault-inject: Simplify stacktrace retrieval
mm/page_owner: Simplify stack trace handling
...
Pull speculation mitigation update from Ingo Molnar:
"This adds the "mitigations=" bootline option, which offers a
cross-arch set of options that will work on x86, PowerPC and s390 that
will map to the arch specific option internally"
* 'core-speculation-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
s390/speculation: Support 'mitigations=' cmdline option
powerpc/speculation: Support 'mitigations=' cmdline option
x86/speculation: Support 'mitigations=' cmdline option
cpu/speculation: Add 'mitigations=' cmdline option
Pull rseq updates from Ingo Molnar:
"A cleanup and a fix to comments"
* 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rseq: Remove superfluous rseq_len from task_struct
rseq: Clean up comments by reflecting removal of event counter
Pull objtool updates from Ingo Molnar:
"This is a series from Peter Zijlstra that adds x86 build-time uaccess
validation of SMAP to objtool, which will detect and warn about the
following uaccess API usage bugs and weirdnesses:
- call to %s() with UACCESS enabled
- return with UACCESS enabled
- return with UACCESS disabled from a UACCESS-safe function
- recursive UACCESS enable
- redundant UACCESS disable
- UACCESS-safe disables UACCESS
As it turns out not leaking uaccess permissions outside the intended
uaccess functionality is hard when the interfaces are complex and when
such bugs are mostly dormant.
As a bonus we now also check the DF flag. We had at least one
high-profile bug in that area in the early days of Linux, and the
checking is fairly simple. The checks performed and warnings emitted
are:
- call to %s() with DF set
- return with DF set
- return with modified stack frame
- recursive STD
- redundant CLD
It's all x86-only for now, but later on this can also be used for PAN
on ARM and objtool is fairly cross-platform in principle.
While all warnings emitted by this new checking facility that got
reported to us were fixed, there might be GCC version dependent
warnings that were not reported yet - which we'll address, should they
trigger.
The warnings are non-fatal build warnings"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
mm/uaccess: Use 'unsigned long' to placate UBSAN warnings on older GCC versions
x86/uaccess: Dont leak the AC flag into __put_user() argument evaluation
sched/x86_64: Don't save flags on context switch
objtool: Add Direction Flag validation
objtool: Add UACCESS validation
objtool: Fix sibling call detection
objtool: Rewrite alt->skip_orig
objtool: Add --backtrace support
objtool: Rewrite add_ignores()
objtool: Handle function aliases
objtool: Set insn->func for alternatives
x86/uaccess, kcov: Disable stack protector
x86/uaccess, ftrace: Fix ftrace_likely_update() vs. SMAP
x86/uaccess, ubsan: Fix UBSAN vs. SMAP
x86/uaccess, kasan: Fix KASAN vs SMAP
x86/smap: Ditch __stringify()
x86/uaccess: Introduce user_access_{save,restore}()
x86/uaccess, signal: Fix AC=1 bloat
x86/uaccess: Always inline user_access_begin()
x86/uaccess, xen: Suppress SMAP warnings
...
Add a comment to clarify that users of text_poke() must ensure that
no races with module removal take place.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-22-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use new flag VM_FLUSH_RESET_PERMS for handling freeing of special
permissioned memory in vmalloc and remove places where memory was set NX
and RW before freeing which is no longer needed.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-21-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use new flag VM_FLUSH_RESET_PERMS for handling freeing of special
permissioned memory in vmalloc and remove places where memory was set NX
and RW before freeing which is no longer needed.
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-20-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are only two types of text poking: early and breakpoint based. The use
of a function pointer to perform text poking complicates the code and is
probably inefficient due to the use of indirect branches.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-13-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When modules and BPF filters are loaded, there is a time window in
which some memory is both writable and executable. An attacker that has
already found another vulnerability (e.g., a dangling pointer) might be
able to exploit this behavior to overwrite kernel code. Prevent having
writable executable PTEs in this stage.
In addition, avoiding having W+X mappings can also slightly simplify the
patching of modules code on initialization (e.g., by alternatives and
static-key), as would be done in the next patch. This was actually the
main motivation for this patch.
To avoid having W+X mappings, set them initially as RW (NX) and after
they are set as RO set them as X as well. Setting them as executable is
done as a separate step to avoid one core in which the old PTE is cached
(hence writable), and another which sees the updated PTE (executable),
which would break the W^X protection.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lkml.kernel.org/r/20190426001143.4983-12-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Set the page as executable after allocation. This patch is a
preparatory patch for a following patch that makes module allocated
pages non-executable.
While at it, do some small cleanup of what appears to be unnecessary
masking.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-11-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since alloc_module() will not set the pages as executable soon, set
ftrace trampoline pages as executable after they are allocated.
For the time being, do not change ftrace to use the text_poke()
interface. As a result, ftrace still breaks W^X.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-10-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_poke() already ensures that the written value is the correct one
and fails if that is not the case. There is no need for an additional
comparison. Remove it.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-9-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_poke() can potentially compromise security as it sets temporary
PTEs in the fixmap. These PTEs might be used to rewrite the kernel code
from other cores accidentally or maliciously, if an attacker gains the
ability to write onto kernel memory.
Moreover, since remote TLBs are not flushed after the temporary PTEs are
removed, the time-window in which the code is writable is not limited if
the fixmap PTEs - maliciously or accidentally - are cached in the TLB.
To address these potential security hazards, use a temporary mm for
patching the code.
Finally, text_poke() is also not conservative enough when mapping pages,
as it always tries to map 2 pages, even when a single one is sufficient.
So try to be more conservative, and do not map more than needed.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-8-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To prevent improper use of the PTEs that are used for text patching, the
next patches will use a temporary mm struct. Initailize it by copying
the init mm.
The address that will be used for patching is taken from the lower area
that is usually used for the task memory. Doing so prevents the need to
frequently synchronize the temporary-mm (e.g., when BPF programs are
installed), since different PGDs are used for the task memory.
Finally, randomize the address of the PTEs to harden against exploits
that use these PTEs.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Tested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: ard.biesheuvel@linaro.org
Cc: deneen.t.dock@intel.com
Cc: kernel-hardening@lists.openwall.com
Cc: kristen@linux.intel.com
Cc: linux_dti@icloud.com
Cc: will.deacon@arm.com
Link: https://lkml.kernel.org/r/20190426232303.28381-8-nadav.amit@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no apparent reason not to use text_poke_early() during
early-init, since no patching of code that might be on the stack is done
and only a single core is running.
This is required for the next patches that would set a temporary mm for
text poking, and this mm is only initialized after some static-keys are
enabled/disabled.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-3-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_mutex is currently expected to be held before text_poke() is
called, but kgdb does not take the mutex, and instead *supposedly*
ensures the lock is not taken and will not be acquired by any other core
while text_poke() is running.
The reason for the "supposedly" comment is that it is not entirely clear
that this would be the case if gdb_do_roundup is zero.
Create two wrapper functions, text_poke() and text_poke_kgdb(), which do
or do not run the lockdep assertion respectively.
While we are at it, change the return code of text_poke() to something
meaningful. One day, callers might actually respect it and the existing
BUG_ON() when patching fails could be removed. For kgdb, the return
value can actually be used.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9222f60650 ("x86/alternatives: Lockdep-enforce text_mutex in text_poke*()")
Link: https://lkml.kernel.org/r/20190426001143.4983-2-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are problems with running time_cpufreq_notifier() on SMP
systems.
First off, the rdtsc() called from there runs on the CPU executing
that code and not necessarily on the CPU whose sched_clock() rate is
updated which is questionable at best.
Second, in the cases when the frequencies of all CPUs in an SMP
system are always in sync, it is not sufficient to update just
one of them or the set associated with a given cpufreq policy on
frequency changes - all CPUs in the system should be updated and
that would require more than a simple transition notifier.
Note, however, that the underlying issue (the TSC rate depending on
the CPU frequency) has not been present in hardware shipping for the
last few years and in quite a few relevant cases (acpi-cpufreq in
particular) running time_cpufreq_notifier() will cause the TSC to
be marked as unstable anyway.
For this reason, make time_cpufreq_notifier() simply mark the TSC
as unstable and give up when run on SMP and only try to carry out
any adjustments otherwise.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Local APIC timer clockevent parameters can be calculated based on platform
specific methods. However the code is mostly duplicated with the interrupt
based calibration. The commit which increased the max_delta parameter
updated only one place and made the implementations diverge.
Unify it to prevent further damage.
[ tglx: Rename function to lapic_init_clockevent() and adjust changelog a bit ]
Fixes: 4aed89d6b5 ("x86, lapic-timer: Increase the max_delta to 31 bits")
Reported-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/1556213272-63568-1-git-send-email-jacob.jun.pan@linux.intel.com
When building x86 with Clang LTO and CFI, CFI jump regions are
automatically added to the end of the .text section late in linking. As a
result, the _etext position was being labelled before the appended jump
regions, causing confusion about where the boundaries of the executable
region actually are in the running kernel, and broke at least the fault
injection code. This moves the _etext mark to outside (and immediately
after) the .text area, as it already the case on other architectures
(e.g. arm64, arm).
Reported-and-tested-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190423183827.GA4012@beast
Signed-off-by: Ingo Molnar <mingo@kernel.org>
crashkernel=xM tries to reserve memory for the crash kernel under 4G,
which is enough, usually. But this could fail sometimes, for example
when one tries to reserve a big chunk like 2G, for example.
So let the crashkernel=xM just fall back to use high memory in case it
fails to find a suitable low range. Do not set the ,high as default
because it allocates extra low memory for DMA buffers and swiotlb, and
this is not always necessary for all machines.
Typically, crashkernel=128M usually works with low reservation under 4G,
so keep <4G as default.
[ bp: Massage. ]
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: "Paul E. McKenney" <paulmck@linux.ibm.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thymo van Beers <thymovanbeers@gmail.com>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190422031905.GA8387@dhcp-128-65.nay.redhat.com
The kdump crashkernel low reservation is limited to under 896M even for
X86_64. This obscure and miserable limitation exists for compatibility
with old kexec-tools but the reason is not documented anywhere.
Some more tests/investigations about the background:
a) Previously, old kexec-tools could only load purgatory to memory under
2G. Eric removed that limitation in 2012 in kexec-tools:
b4f9f8599679 ("kexec x86_64: Make purgatory relocatable anywhere
in the 64bit address space.")
b) Back in 2013 Yinghai removed all the limitations in new kexec-tools,
bzImage64 can be loaded anywhere:
82c3dd2280d2 ("kexec, x86_64: Load bzImage64 above 4G")
c) Test results with old kexec-tools with old and latest kernels:
1. Old kexec-tools can not build with modern toolchain anymore,
I built it in a RHEL6 vm.
2. 2.0.0 kexec-tools does not work with the latest kernel even with
memory under 896M and gives an error:
"ELF core (kcore) parse failed"
For that it needs below kexec-tools fix:
ed15ba1b9977 ("build_mem_phdrs(): check if p_paddr is invalid")
3. Even with patched kexec-tools which fixes 2), it still needs some
other fixes to work correctly for KASLR-enabled kernels.
So the situation is:
* Old kexec-tools is already broken with latest kernels.
* We can not keep these limitations forever just for compatibility with very
old kexec-tools.
* If one must use old tools then he/she can choose crashkernel=X@Y.
* People have reported bugs where crashkernel=384M failed because KASLR
makes the 0-896M space sparse.
* Crashkernel can reserve in low or high area, it is natural to understand
low as memory under 4G.
Hence drop the 896M limitation and change crashkernel low reservation to
reserve under 4G by default.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190421035058.943630505@redhat.com
Pull perf fixes from Ingo Molnar:
"Misc fixes:
- various tooling fixes
- kretprobe fixes
- kprobes annotation fixes
- kprobes error checking fix
- fix the default events for AMD Family 17h CPUs
- PEBS fix
- AUX record fix
- address filtering fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kprobes: Avoid kretprobe recursion bug
kprobes: Mark ftrace mcount handler functions nokprobe
x86/kprobes: Verify stack frame on kretprobe
perf/x86/amd: Add event map for AMD Family 17h
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_btf()
perf tools: Fix map reference counting
perf evlist: Fix side band thread draining
perf tools: Check maps for bpf programs
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_bpf_prog_info()
tools include uapi: Sync sound/asound.h copy
perf top: Always sample time to satisfy needs of use of ordered queuing
perf evsel: Use hweight64() instead of hweight_long(attr.sample_regs_user)
tools lib traceevent: Fix missing equality check for strcmp
perf stat: Disable DIR_FORMAT feature for 'perf stat record'
perf scripts python: export-to-sqlite.py: Fix use of parent_id in calls_view
perf header: Fix lock/unlock imbalances when processing BPF/BTF info
perf/x86: Fix incorrect PEBS_REGS
perf/ring_buffer: Fix AUX record suppression
perf/core: Fix the address filtering fix
kprobes: Fix error check when reusing optimized probes
DEBUG_HOTPLUG_CPU0 debug feature offlines a CPU as early as possible
allowing userspace to boot up without that CPU (so that it is possible
to check for unwanted dependencies towards the offlined CPU). After
doing so it emits a "CPU %u is now offline" pr_info, which is not enough
descriptive of why the CPU was offlined (e.g., one might be running with
a config that triggered some problem, not being aware that CONFIG_DEBUG_
HOTPLUG_CPU0 is set).
Add a bit more of informative text to the pr_info, so that it is
immediately obvious why a CPU has been offlined in early boot stages.
Background:
Got to scratch my head a bit while debugging a WARNING splat related to
the offlining of CPU0. Without being aware yet of this debug option it
wasn't immediately obvious why CPU0 was being offlined by the kernel.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Link: http://lkml.kernel.org/r/20181219151647.15073-1-juri.lelli@redhat.com
[ Merge line-broken line. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For new Centaur CPUs the ucode will take care of the preservation of cache coherence
between CPU cores in C-states regardless of how deep the C-states are. So, it is not
necessary to flush the caches in software befor entering C3. This useless operation
will cause performance drop for the cores which share some caches with the idling core.
Signed-off-by: David Wang <davidwang@zhaoxin.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: brucechang@via-alliance.com
Cc: cooperyan@zhaoxin.com
Cc: len.brown@intel.com
Cc: linux-pm@kernel.org
Cc: qiyuanwang@zhaoxin.com
Cc: rjw@rjwysocki.net
Cc: timguo@zhaoxin.com
Link: http://lkml.kernel.org/r/1545900110-2757-1-git-send-email-davidwang@zhaoxin.com
[ Tidy up the comment. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "ENERGY_PERF_BIAS: Set to 'normal', was 'performance'" message triggers
on pretty much every Intel machine. The purpose of log messages with
a warning level is to notify the user of something which potentially is
a problem, or at least somewhat unexpected.
This message clearly does not match those criteria, so lower its log
priority from warning to info.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181230172715.17469-1-hdegoede@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "vide" inline assembler is only needed on 32bit kernels for old
32bit only CPUs.
Guard it with an #ifdef so it's not included in 64bit builds.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-2-andi@firstfloor.org
With gcc toplevel assembler statements that do not mark themselves as .text
may end up in other sections. This causes LTO boot crashes because various
assembler statements ended up in the middle of the initcall section. It's
also a latent problem without LTO, although it's currently not known to
cause any real problems.
According to the gcc team it's expected behavior.
Always mark all the top level assembler statements as text so that they
switch to the right section.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-1-andi@firstfloor.org
Avoid kretprobe recursion loop bg by setting a dummy
kprobes to current_kprobe per-CPU variable.
This bug has been introduced with the asm-coded trampoline
code, since previously it used another kprobe for hooking
the function return placeholder (which only has a nop) and
trampoline handler was called from that kprobe.
This revives the old lost kprobe again.
With this fix, we don't see deadlock anymore.
And you can see that all inner-called kretprobe are skipped.
event_1 235 0
event_2 19375 19612
The 1st column is recorded count and the 2nd is missed count.
Above shows (event_1 rec) + (event_2 rec) ~= (event_2 missed)
(some difference are here because the counter is racy)
Reported-by: Andrea Righi <righi.andrea@gmail.com>
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: c9becf58d9 ("[PATCH] kretprobe: kretprobe-booster")
Link: http://lkml.kernel.org/r/155094064889.6137.972160690963039.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>