Commit Graph

6129 Commits

Author SHA1 Message Date
Matthias Gehre
910638ae7e [PATCH] Replace 0xff.. with correct DMA_xBIT_MASK
Replace all occurences of 0xff..  in calls to function pci_set_dma_mask()
and pci_set_consistant_dma_mask() with the corresponding DMA_xBIT_MASK from
linux/dma-mapping.h.

Signed-off-by: Matthias Gehre <M.Gehre@gmx.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:07 -08:00
Adrian Bunk
f45e4656ac [PATCH] arch/i386/kernel/microcode.c: remove the obsolete microcode_ioctl
Nowadays, even Debian stable ships a microcode_ctl utility recent enough to no
longer use this ioctl.

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Tigran Aivazian <tigran_aivazian@symantec.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:06 -08:00
Arjan van de Ven
4b6f5d20b0 [PATCH] Make most file operations structs in fs/ const
This is a conversion to make the various file_operations structs in fs/
const.  Basically a regexp job, with a few manual fixups

The goal is both to increase correctness (harder to accidentally write to
shared datastructures) and reducing the false sharing of cachelines with
things that get dirty in .data (while .rodata is nicely read only and thus
cache clean)

Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:06 -08:00
Arjan van de Ven
99ac48f54a [PATCH] mark f_ops const in the inode
Mark the f_ops members of inodes as const, as well as fix the
ripple-through this causes by places that copy this f_ops and then "do
stuff" with it.

Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:05 -08:00
KAMEZAWA Hiroyuki
0a94502277 [PATCH] for_each_possible_cpu: fixes for generic part
replaces for_each_cpu with for_each_possible_cpu().

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:05 -08:00
KAMEZAWA Hiroyuki
631d6747e1 [PATCH] for_each_possible_cpu: defines for_each_possible_cpu
for_each_cpu() is a for-loop over cpu_possible_map.  for_each_online_cpu is
for-loop cpu over cpu_online_map.  .....for_each_cpu() is not sufficiently
explicit and can lead to mistakes.

This patch adds for_each_possible_cpu() in preparation for the removal of
for_each_cpu().

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:04 -08:00
Andi Kleen
70674f95c0 [PATCH] Optimize select/poll by putting small data sets on the stack
Optimize select and poll by a using stack space for small fd sets

This brings back an old optimization from Linux 2.0.  Using the stack is
faster than kmalloc.  On a Intel P4 system it speeds up a select of a
single pty fd by about 13% (~4000 cycles -> ~3500)

It also saves memory because a daemon hanging in select or poll will
usually save one or two less pages.  This can add up - e.g.  if you have 10
daemons blocking in poll/select you save 40KB of memory.

I did a patch for this long ago, but it was never applied.  This version is
a reimplementation of the old patch that tries to be less intrusive.  I
only did the minimal changes needed for the stack allocation.

The cut off point before external memory is allocated is currently at
832bytes.  The system calls always allocate this much memory on the stack.

These 832 bytes are divided into 256 bytes frontend data (for the select
bitmaps of the pollfds) and the rest of the space for the wait queues used
by the low level drivers.  There are some extreme cases where this won't
work out for select and it falls back to allocating memory too early -
especially with very sparse large select bitmaps - but the majority of
processes who only have a small number of file descriptors should be ok.
[TBD: 832/256 might not be the best split for select or poll]

I suspect more optimizations might be possible, but they would be more
complicated.  One way would be to cache the select/poll context over
multiple system calls because typically the input values should be similar.
 Problem is when to flush the file descriptors out though.

Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:04 -08:00
Alan Cox
d266ab8893 [PATCH] Small fixes backported to old IDE SiS driver
Some quick backport bits from the libata PATA work to fix things found in
the sis driver.  The piix driver needs some fixes too but those are way to
large and need someone working on old IDE with time to do them.

This patch fixes the case where random bits get loaded into SIS timing
registers according to the description of the correct behaviour from
Vojtech Pavlik.  It also adds the SiS5517 ATA16 chipset which is not
currently supported by the driver.  Thanks to Conrad Harriss for loaning me
the machine with the 5517 chipset.

Signed-off-by: Alan Cox <alan@redhat.com>
Acked-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:04 -08:00
Andrew Morton
e51236092d [PATCH] remove relayfs_fs.h
This is obsolete.

Cc: Tom Zanussi <zanussi@us.ibm.com>
Cc: Jens Axboe <axboe@suse.de>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:03 -08:00
Adrian Bunk
a28af471b8 [PATCH] fs/fat/: proper prototypes for two functions
Add proper prototypes for fat_cache_init() and fat_cache_destroy() in
msdos_fs.h.

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:03 -08:00
Andrew Morton
7a1e524a5f [PATCH] alpha: make poll flags the same as other architectures
Renumber the recently-added POLLREMOVE and POLLRDHUP to line up with the other
architectures.

Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Richard Henderson <rth@twiddle.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:02 -08:00
Brian Rogan
273577165c [PATCH] Add oprofile_add_ext_sample
On ppc64 we look at a profiling register to work out the sample address and
if it was in userspace or kernel.

The backtrace interface oprofile_add_sample does not allow this.  Create
oprofile_add_ext_sample and make oprofile_add_sample use it too.

Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: Philippe Elie <phil.el@wanadoo.fr>
Cc: John Levon <levon@movementarian.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:02 -08:00
Paul Fulghum
0080b7aae8 [PATCH] synclink_gt add gpio feature
Add driver support for general purpose I/O feature of the Synclink GT
adapters.

Signed-off-by: Paul Fulghum <paulkf@micrgate.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:02 -08:00
Kyle McMartin
f5f5370da4 [PATCH] Decrapify asm-generic/local.h
Now that Christoph Lameter's atomic_long_t support is merged in mainline,
might as well convert asm-generic/local.h to use it, so the same code can
be used for both sizes of 32 and 64-bit unsigned longs.

akpm sayeth:

Q:

  Is there any particular reason why these routines weren't simply
  implemented with local_save/restore_flags, if they are only meant to
  guarantee atomicity to the local cpu?  I'm sure on most platforms this
  would be more efficient than using an atomic...

A:

  The whole _point_ of local_t is to avoid local_irq_disable().  It's
  designed to exploit the fact that many CPUs can do incs and decs in a way
  which is atomic wrt local interrupts, but not atomic wrt SMP.

But this patch makes sense, because asm-generic/local.h is just a fallback
implementation for architectures which either cannot perform these
local-irq-atomic operations, or its maintainers haven't yet got around to
implementing them.

We need more work done on local_t in the 2.6.17 timeframe - they're defined as
unsigned long, but some architectures implement them as signed long.

Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:01 -08:00
Matt Mackall
41623b064f [PATCH] RTC: Fix up some RTC whitespace and style
Fix up some RTC whitespace and style

Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:01 -08:00
Matt Mackall
da2468b6a8 [PATCH] RTC: Remove RTC UIP synchronization on MIPS MC146818
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:00 -08:00
Matt Mackall
63732c2f37 [PATCH] RTC: Remove RTC UIP synchronization on x86
Reading the CMOS clock on x86 and some other arches currently takes up to one
second because it synchronizes with the CMOS second tick-over.  This delay
shows up at boot time as well a resume time.

This is the currently the most substantial boot time delay for machines that
are working towards instant-on capability.  Also, a quick back of the envelope
calculation (.5sec * 2M users * 1 boot a day * 10 years) suggests it has cost
Linux users in the neighborhood of a million man-hours.

An earlier thread on this topic is here:

http://groups.google.com/group/linux.kernel/browse_frm/thread/8a24255215ff6151/2aa97e66a977653d?hl=en&lr=&ie=UTF-8&rnum=1&prev=/groups%3Fhl%3Den%26lr%3D%26ie%3DUTF-8%26selm%3D1To2R-2S7-11%40gated-at.bofh.it#2aa97e66a977653d

..from which the consensus seems to be that it's no longer desirable.

In my view, there are basically four cases to consider:

1) networked, need precise walltime: use NTP
2) networked, don't need precise walltime: use NTP anyway
3) not networked, don't need sub-second precision walltime: don't care
4) not networked, need sub-second precision walltime:
   get a network or a radio time source because RTC isn't good enough anyway

So this patch series simply removes the synchronization in favor of a simple
seqlock-like approach using the seconds value.

Note that for purposes of timer accuracy on wakeup, this patch will cause us
to fire timers up to one second late.  But as the current timer resume code
will already sync once (or more!), it's no worse for short timers.

Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Andi Kleen <ak@muc.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 09:16:00 -08:00
Linus Torvalds
fdccffc6b7 Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
* master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6:
  [NET]: drop duplicate assignment in request_sock
  [IPSEC]: Fix tunnel error handling in ipcomp6
2006-03-27 08:47:29 -08:00
Linus Torvalds
4fa639123d Merge branch 'for-linus' of git://brick.kernel.dk/data/git/linux-2.6-block
* 'for-linus' of git://brick.kernel.dk/data/git/linux-2.6-block:
  [PATCH] Don't make debugfs depend on DEBUG_KERNEL
  [PATCH] Fix blktrace compile with sysfs not defined
  [PATCH] unused label in drivers/block/cciss.
  [BLOCK] increase size of disk stat counters
  [PATCH] blk_execute_rq_nowait-speedup
  [PATCH] ide-cd: quiet down GPCMD_READ_CDVD_CAPACITY failure
  [BLOCK] ll_rw_blk: kmalloc -> kzalloc conversion
  [PATCH] kzalloc() conversion in drivers/block
  [PATCH] update max_sectors documentation
2006-03-27 08:46:49 -08:00
NeilBrown
df5b89b323 [PATCH] md: Convert reconfig_sem to reconfig_mutex
... being careful that mutex_trylock is inverted wrt down_trylock

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:03 -08:00
NeilBrown
e464eafdb4 [PATCH] md: Support suspending of IO to regions of an md array
This allows user-space to access data safely.  This is needed for raid5
reshape as user-space needs to take a backup of the first few stripes before
allowing reshape to commence.

It will also be useful in cluster-aware raid1 configurations so that all
cluster members can leave a section of the array untouched while a
resync/recovery happens.

A 'start' and 'end' of the suspended range are written to 2 sysfs attributes.
Note that only one range can be suspended at a time.

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:02 -08:00
NeilBrown
63c70c4f3a [PATCH] md: Split reshape handler in check_reshape and start_reshape
check_reshape checks validity and does things that can be done instantly -
like adding devices to raid1.  start_reshape initiates a restriping process to
convert the whole array.

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:02 -08:00
NeilBrown
b578d55fdd [PATCH] md: Only checkpoint expansion progress occasionally
Instead of checkpointing at each stripe, only checkpoint when a new write
would overwrite uncheckpointed data.  Block any write to the uncheckpointed
area.  Arbitrarily checkpoint at least every 3Meg.

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:02 -08:00
NeilBrown
f67055780c [PATCH] md: Checkpoint and allow restart of raid5 reshape
We allow the superblock to record an 'old' and a 'new' geometry, and a
position where any conversion is up to.  The geometry allows for changing
chunksize, layout and level as well as number of devices.

When using verion-0.90 superblock, we convert the version to 0.91 while the
conversion is happening so that an old kernel will refuse the assemble the
array.  For version-1, we use a feature bit for the same effect.

When starting an array we check for an incomplete reshape and restart the
reshape process if needed.  If the reshape stopped at an awkward time (like
when updating the first stripe) we refuse to assemble the array, and let
user-space worry about it.

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:01 -08:00
NeilBrown
292695531a [PATCH] md: Final stages of raid5 expand code
This patch adds raid5_reshape and end_reshape which will start and finish the
reshape processes.

raid5_reshape is only enabled in CONFIG_MD_RAID5_RESHAPE is set, to discourage
accidental use.

Read the 'help' for the CONFIG_MD_RAID5_RESHAPE entry.

and Make sure that you have backups, just in case.

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:01 -08:00
NeilBrown
ccfcc3c10b [PATCH] md: Core of raid5 resize process
This patch provides the core of the resize/expand process.

sync_request notices if a 'reshape' is happening and acts accordingly.

It allocated new stripe_heads for the next chunk-wide-stripe in the target
geometry, marking them STRIPE_EXPANDING.

Then it finds which stripe heads in the old geometry can provide data needed
by these and marks them STRIPE_EXPAND_SOURCE.  This causes stripe_handle to
read all blocks on those stripes.

Once all blocks on a STRIPE_EXPAND_SOURCE stripe_head are read, any that are
needed are copied into the corresponding STRIPE_EXPANDING stripe_head.  Once a
STRIPE_EXPANDING stripe_head is full, it is marks STRIPE_EXPAND_READY and then
is written out and released.

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:01 -08:00
NeilBrown
7ecaa1e6a1 [PATCH] md: Infrastructure to allow normal IO to continue while array is expanding
We need to allow that different stripes are of different effective sizes, and
use the appropriate size.  Also, when a stripe is being expanded, we must
block any IO attempts until the stripe is stable again.

Key elements in this change are:
 - each stripe_head gets a 'disk' field which is part of the key,
   thus there can sometimes be two stripe heads of the same area of
   the array, but covering different numbers of devices.  One of these
   will be marked STRIPE_EXPANDING and so won't accept new requests.
 - conf->expand_progress tracks how the expansion is progressing and
   is used to determine whether the target part of the array has been
   expanded yet or not.

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:01 -08:00
NeilBrown
ad01c9e375 [PATCH] md: Allow stripes to be expanded in preparation for expanding an array
Before a RAID-5 can be expanded, we need to be able to expand the stripe-cache
data structure.

This requires allocating new stripes in a new kmem_cache.  If this succeeds,
we copy cache pages over and release the old stripes and kmem_cache.

We then allocate new pages.  If that fails, we leave the stripe cache at it's
new size.  It isn't worth the effort to shrink it back again.

Unfortuanately this means we need two kmem_cache names as we, for a short
period of time, we have two kmem_caches.  So they are raid5/%s and
raid5/%s-alt

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:01 -08:00
NeilBrown
b55e6bfcd2 [PATCH] md: Split disks array out of raid5 conf structure so it is easier to grow
The remainder of this batch implements raid5 reshaping.  Currently the only
shape change that is supported is added a device, but it is envisioned that
changing the chunksize and layout will also be supported, as well as changing
the level (e.g.  1->5, 5->6).

The reshape process naturally has to move all of the data in the array, and so
should be used with caution.  It is believed to work, and some testing does
support this, but wider testing would be great for increasing my confidence.

You will need a version of mdadm newer than 2.3.1 to make use of raid5 growth.
 This is because mdadm need to take a copy of a 'critical section' at the
start of the array incase there is a crash at an awkward moment.  On restart,
mdadm will restore the critical section and allow reshape to continue.

I hope to release a 2.4-pre by early next week - it still needs a little more
polishing.

This patch:

Previously the array of disk information was included in the raid5 'conf'
structure which was allocated to an appropriate size.  This makes it awkward
to change the size of that array.  So we split it off into a separate
kmalloced array which will require a little extra indexing, but is much easier
to grow.

Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:01 -08:00
Jun'ichi Nomura
641dc636b0 [PATCH] dm/md dependency tree in sysfs: bd_claim_by_kobject
Adding bd_claim_by_kobject() function which takes kobject as additional
signature of holder device and creates sysfs symlinks between holder device
and claimed device.  bd_release_from_kobject() is a counterpart of
bd_claim_by_kobject.

Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:45:00 -08:00
Andrew Morton
100873687d [PATCH] dm-md-dependency-tree-in-sysfs-holders-slaves-subdirectory-tidy
Remove all the CONFIG_SYSFS stuff.  That's supposed to all be implemented up
in header files.

Yes, the CONFIG_SYSFS=n data structures will be a little larger than
necessary, but that's a tradeoff we can decide to make.

Cc: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:59 -08:00
Jun'ichi Nomura
6a4d44c1f1 [PATCH] dm/md dependency tree in sysfs: holders/slaves subdirectory
Creating "slaves" and "holders" directories in /sys/block/<disk> and
creating "holders" directory under /sys/block/<disk>/<partition>

Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:59 -08:00
Darrick J. Wong
3ac51e741a [PATCH] dm store geometry
Allow drive geometry to be stored with a new DM_DEV_SET_GEOMETRY ioctl.
Device-mapper will now respond to HDIO_GETGEO.  If the geometry information is
not available, zero will be returned for all of the parameters.

Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:59 -08:00
NeilBrown
969429b504 [PATCH] dm: make sure QUEUE_FLAG_CLUSTER is set properly
This flag should be set for a virtual device iff it is set for all
underlying devices.

Signed-off-by: Neil Brown <neilb@suse.de>
Acked-by: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:59 -08:00
Pavel Roskin
ed49843b89 [PATCH] Add ID for Quadro NVS280
Quadro NVS280 is a dual-head PCIe card with PCI ID 10de:00fd and subsystem ID
10de:0215.

Signed-off-by: Pavel Roskin <proski@gnu.org>
Signed-off-by: Antonino Daplas <adaplas@pol.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:57 -08:00
Alessandro Zummo
1d98af8727 [PATCH] RTC subsystem: M48T86 driver
Add a driver for the ST M48T86 / Dallas DS12887 RTC.

This is a platform driver.  The platform device must provide I/O routines to
access the RTC.

Signed-off-by: Alessandro Zummo <a.zummo@towertech.it>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:52 -08:00
Alessandro Zummo
f7f3682fb2 [PATCH] RTC subsystem: I2C driver ids
This patch adds the I2C driver ids to i2c-id.h in preparation of the I2C
direct probing method.

This is kept separate so that it can be integrated to

Signed-off-by: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:51 -08:00
Alessandro Zummo
6fc7f10cee [PATCH] RTC subsystem: I2C cleanup
This patch, completely optional, removes from drivers/i2c/chips all the
drivers that are implemented in the new RTC subsystem.

It should be noted that none of the current driver is actually integrated,
i.e.  usable without further patches.

Signed-off-by: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:51 -08:00
Alessandro Zummo
0c86edc0d4 [PATCH] RTC subsystem: class
Add the basic RTC subsystem infrastructure to the kernel.

rtc/class.c - registration facilities for RTC drivers
rtc/interface.c - kernel/rtc interface functions
rtc/hctosys.c - snippet of code that copies hw clock to sw clock
		at bootup, if configured to do so.

Signed-off-by: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:51 -08:00
Alessandro Zummo
12b824fb15 [PATCH] RTC subsystem: ARM cleanup
This patch removes from the ARM subsytem some of the rtc-related functions
that have been included in the RTC subsystem.  It also fixes some naming
collisions.

Signed-off-by: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:50 -08:00
Alessandro Zummo
c58411e95d [PATCH] RTC Subsystem: library functions
RTC and date/time related functions.

Signed-off-by: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:50 -08:00
Yoichi Yuasa
d23ee8fe6e [PATCH] mips: fixed collision of rtc function name
Fix the collision of rtc function name.

Signed-off-by: Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:50 -08:00
Alan Stern
e041c68341 [PATCH] Notifier chain update: API changes
The kernel's implementation of notifier chains is unsafe.  There is no
protection against entries being added to or removed from a chain while the
chain is in use.  The issues were discussed in this thread:

    http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2

We noticed that notifier chains in the kernel fall into two basic usage
classes:

	"Blocking" chains are always called from a process context
	and the callout routines are allowed to sleep;

	"Atomic" chains can be called from an atomic context and
	the callout routines are not allowed to sleep.

We decided to codify this distinction and make it part of the API.  Therefore
this set of patches introduces three new, parallel APIs: one for blocking
notifiers, one for atomic notifiers, and one for "raw" notifiers (which is
really just the old API under a new name).  New kinds of data structures are
used for the heads of the chains, and new routines are defined for
registration, unregistration, and calling a chain.  The three APIs are
explained in include/linux/notifier.h and their implementation is in
kernel/sys.c.

With atomic and blocking chains, the implementation guarantees that the chain
links will not be corrupted and that chain callers will not get messed up by
entries being added or removed.  For raw chains the implementation provides no
guarantees at all; users of this API must provide their own protections.  (The
idea was that situations may come up where the assumptions of the atomic and
blocking APIs are not appropriate, so it should be possible for users to
handle these things in their own way.)

There are some limitations, which should not be too hard to live with.  For
atomic/blocking chains, registration and unregistration must always be done in
a process context since the chain is protected by a mutex/rwsem.  Also, a
callout routine for a non-raw chain must not try to register or unregister
entries on its own chain.  (This did happen in a couple of places and the code
had to be changed to avoid it.)

Since atomic chains may be called from within an NMI handler, they cannot use
spinlocks for synchronization.  Instead we use RCU.  The overhead falls almost
entirely in the unregister routine, which is okay since unregistration is much
less frequent that calling a chain.

Here is the list of chains that we adjusted and their classifications.  None
of them use the raw API, so for the moment it is only a placeholder.

  ATOMIC CHAINS
  -------------
arch/i386/kernel/traps.c:		i386die_chain
arch/ia64/kernel/traps.c:		ia64die_chain
arch/powerpc/kernel/traps.c:		powerpc_die_chain
arch/sparc64/kernel/traps.c:		sparc64die_chain
arch/x86_64/kernel/traps.c:		die_chain
drivers/char/ipmi/ipmi_si_intf.c:	xaction_notifier_list
kernel/panic.c:				panic_notifier_list
kernel/profile.c:			task_free_notifier
net/bluetooth/hci_core.c:		hci_notifier
net/ipv4/netfilter/ip_conntrack_core.c:	ip_conntrack_chain
net/ipv4/netfilter/ip_conntrack_core.c:	ip_conntrack_expect_chain
net/ipv6/addrconf.c:			inet6addr_chain
net/netfilter/nf_conntrack_core.c:	nf_conntrack_chain
net/netfilter/nf_conntrack_core.c:	nf_conntrack_expect_chain
net/netlink/af_netlink.c:		netlink_chain

  BLOCKING CHAINS
  ---------------
arch/powerpc/platforms/pseries/reconfig.c:	pSeries_reconfig_chain
arch/s390/kernel/process.c:		idle_chain
arch/x86_64/kernel/process.c		idle_notifier
drivers/base/memory.c:			memory_chain
drivers/cpufreq/cpufreq.c		cpufreq_policy_notifier_list
drivers/cpufreq/cpufreq.c		cpufreq_transition_notifier_list
drivers/macintosh/adb.c:		adb_client_list
drivers/macintosh/via-pmu.c		sleep_notifier_list
drivers/macintosh/via-pmu68k.c		sleep_notifier_list
drivers/macintosh/windfarm_core.c	wf_client_list
drivers/usb/core/notify.c		usb_notifier_list
drivers/video/fbmem.c			fb_notifier_list
kernel/cpu.c				cpu_chain
kernel/module.c				module_notify_list
kernel/profile.c			munmap_notifier
kernel/profile.c			task_exit_notifier
kernel/sys.c				reboot_notifier_list
net/core/dev.c				netdev_chain
net/decnet/dn_dev.c:			dnaddr_chain
net/ipv4/devinet.c:			inetaddr_chain

It's possible that some of these classifications are wrong.  If they are,
please let us know or submit a patch to fix them.  Note that any chain that
gets called very frequently should be atomic, because the rwsem read-locking
used for blocking chains is very likely to incur cache misses on SMP systems.
(However, if the chain's callout routines may sleep then the chain cannot be
atomic.)

The patch set was written by Alan Stern and Chandra Seetharaman, incorporating
material written by Keith Owens and suggestions from Paul McKenney and Andrew
Morton.

[jes@sgi.com: restructure the notifier chain initialization macros]
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:50 -08:00
Ingo Molnar
76b81e2b0e [PATCH] lightweight robust futexes updates 2
futex.h updates:

- get rid of FUTEX_OWNER_PENDING - it's not used
- reduce ROBUST_LIST_LIMIT to a saner value

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:50 -08:00
Ingo Molnar
8f17d3a504 [PATCH] lightweight robust futexes updates
- fix: initialize the robust list(s) to NULL in copy_process.

- doc update

- cleanup: rename _inuser to _inatomic

- __user cleanups and other small cleanups

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:49 -08:00
Ingo Molnar
8fdd6c6df7 [PATCH] lightweight robust futexes: x86_64
x86_64: add the futex_atomic_cmpxchg_inuser() assembly implementation, and
wire up the new syscalls.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Acked-by: Ulrich Drepper <drepper@redhat.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:49 -08:00
Ingo Molnar
dfd4e3ec24 [PATCH] lightweight robust futexes: i386
i386: add the futex_atomic_cmpxchg_inuser() assembly implementation, and wire
up the new syscalls.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Acked-by: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:49 -08:00
Ingo Molnar
34f192c652 [PATCH] lightweight robust futexes: compat
32-bit syscall compatibility support.  (This patch also moves all futex
related compat functionality into kernel/futex_compat.c.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Acked-by: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:49 -08:00
Ingo Molnar
0771dfefc9 [PATCH] lightweight robust futexes: core
Add the core infrastructure for robust futexes: structure definitions, the new
syscalls and the do_exit() based cleanup mechanism.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Acked-by: Ulrich Drepper <drepper@redhat.com>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:49 -08:00
Ingo Molnar
e9056f13bf [PATCH] lightweight robust futexes: arch defaults
This patchset provides a new (written from scratch) implementation of robust
futexes, called "lightweight robust futexes".  We believe this new
implementation is faster and simpler than the vma-based robust futex solutions
presented before, and we'd like this patchset to be adopted in the upstream
kernel.  This is version 1 of the patchset.

  Background
  ----------

What are robust futexes?  To answer that, we first need to understand what
futexes are: normal futexes are special types of locks that in the
noncontended case can be acquired/released from userspace without having to
enter the kernel.

A futex is in essence a user-space address, e.g.  a 32-bit lock variable
field.  If userspace notices contention (the lock is already owned and someone
else wants to grab it too) then the lock is marked with a value that says
"there's a waiter pending", and the sys_futex(FUTEX_WAIT) syscall is used to
wait for the other guy to release it.  The kernel creates a 'futex queue'
internally, so that it can later on match up the waiter with the waker -
without them having to know about each other.  When the owner thread releases
the futex, it notices (via the variable value) that there were waiter(s)
pending, and does the sys_futex(FUTEX_WAKE) syscall to wake them up.  Once all
waiters have taken and released the lock, the futex is again back to
'uncontended' state, and there's no in-kernel state associated with it.  The
kernel completely forgets that there ever was a futex at that address.  This
method makes futexes very lightweight and scalable.

"Robustness" is about dealing with crashes while holding a lock: if a process
exits prematurely while holding a pthread_mutex_t lock that is also shared
with some other process (e.g.  yum segfaults while holding a pthread_mutex_t,
or yum is kill -9-ed), then waiters for that lock need to be notified that the
last owner of the lock exited in some irregular way.

To solve such types of problems, "robust mutex" userspace APIs were created:
pthread_mutex_lock() returns an error value if the owner exits prematurely -
and the new owner can decide whether the data protected by the lock can be
recovered safely.

There is a big conceptual problem with futex based mutexes though: it is the
kernel that destroys the owner task (e.g.  due to a SEGFAULT), but the kernel
cannot help with the cleanup: if there is no 'futex queue' (and in most cases
there is none, futexes being fast lightweight locks) then the kernel has no
information to clean up after the held lock!  Userspace has no chance to clean
up after the lock either - userspace is the one that crashes, so it has no
opportunity to clean up.  Catch-22.

In practice, when e.g.  yum is kill -9-ed (or segfaults), a system reboot is
needed to release that futex based lock.  This is one of the leading
bugreports against yum.

To solve this problem, 'Robust Futex' patches were created and presented on
lkml: the one written by Todd Kneisel and David Singleton is the most advanced
at the moment.  These patches all tried to extend the futex abstraction by
registering futex-based locks in the kernel - and thus give the kernel a
chance to clean up.

E.g.  in David Singleton's robust-futex-6.patch, there are 3 new syscall
variants to sys_futex(): FUTEX_REGISTER, FUTEX_DEREGISTER and FUTEX_RECOVER.
The kernel attaches such robust futexes to vmas (via
vma->vm_file->f_mapping->robust_head), and at do_exit() time, all vmas are
searched to see whether they have a robust_head set.

Lots of work went into the vma-based robust-futex patch, and recently it has
improved significantly, but unfortunately it still has two fundamental
problems left:

 - they have quite complex locking and race scenarios.  The vma-based
   patches had been pending for years, but they are still not completely
   reliable.

 - they have to scan _every_ vma at sys_exit() time, per thread!

The second disadvantage is a real killer: pthread_exit() takes around 1
microsecond on Linux, but with thousands (or tens of thousands) of vmas every
pthread_exit() takes a millisecond or more, also totally destroying the CPU's
L1 and L2 caches!

This is very much noticeable even for normal process sys_exit_group() calls:
the kernel has to do the vma scanning unconditionally!  (this is because the
kernel has no knowledge about how many robust futexes there are to be cleaned
up, because a robust futex might have been registered in another task, and the
futex variable might have been simply mmap()-ed into this process's address
space).

This huge overhead forced the creation of CONFIG_FUTEX_ROBUST, but worse than
that: the overhead makes robust futexes impractical for any type of generic
Linux distribution.

So it became clear to us, something had to be done.  Last week, when Thomas
Gleixner tried to fix up the vma-based robust futex patch in the -rt tree, he
found a handful of new races and we were talking about it and were analyzing
the situation.  At that point a fundamentally different solution occured to
me.  This patchset (written in the past couple of days) implements that new
solution.  Be warned though - the patchset does things we normally dont do in
Linux, so some might find the approach disturbing.  Parental advice
recommended ;-)

  New approach to robust futexes
  ------------------------------

At the heart of this new approach there is a per-thread private list of robust
locks that userspace is holding (maintained by glibc) - which userspace list
is registered with the kernel via a new syscall [this registration happens at
most once per thread lifetime].  At do_exit() time, the kernel checks this
user-space list: are there any robust futex locks to be cleaned up?

In the common case, at do_exit() time, there is no list registered, so the
cost of robust futexes is just a simple current->robust_list != NULL
comparison.  If the thread has registered a list, then normally the list is
empty.  If the thread/process crashed or terminated in some incorrect way then
the list might be non-empty: in this case the kernel carefully walks the list
[not trusting it], and marks all locks that are owned by this thread with the
FUTEX_OWNER_DEAD bit, and wakes up one waiter (if any).

The list is guaranteed to be private and per-thread, so it's lockless.  There
is one race possible though: since adding to and removing from the list is
done after the futex is acquired by glibc, there is a few instructions window
for the thread (or process) to die there, leaving the futex hung.  To protect
against this possibility, userspace (glibc) also maintains a simple per-thread
'list_op_pending' field, to allow the kernel to clean up if the thread dies
after acquiring the lock, but just before it could have added itself to the
list.  Glibc sets this list_op_pending field before it tries to acquire the
futex, and clears it after the list-add (or list-remove) has finished.

That's all that is needed - all the rest of robust-futex cleanup is done in
userspace [just like with the previous patches].

Ulrich Drepper has implemented the necessary glibc support for this new
mechanism, which fully enables robust mutexes.  (Ulrich plans to commit these
changes to glibc-HEAD later today.)

Key differences of this userspace-list based approach, compared to the vma
based method:

 - it's much, much faster: at thread exit time, there's no need to loop
   over every vma (!), which the VM-based method has to do.  Only a very
   simple 'is the list empty' op is done.

 - no VM changes are needed - 'struct address_space' is left alone.

 - no registration of individual locks is needed: robust mutexes dont need
   any extra per-lock syscalls.  Robust mutexes thus become a very lightweight
   primitive - so they dont force the application designer to do a hard choice
   between performance and robustness - robust mutexes are just as fast.

 - no per-lock kernel allocation happens.

 - no resource limits are needed.

 - no kernel-space recovery call (FUTEX_RECOVER) is needed.

 - the implementation and the locking is "obvious", and there are no
   interactions with the VM.

  Performance
  -----------

I have benchmarked the time needed for the kernel to process a list of 1
million (!) held locks, using the new method [on a 2GHz CPU]:

 - with FUTEX_WAIT set [contended mutex]: 130 msecs
 - without FUTEX_WAIT set [uncontended mutex]: 30 msecs

I have also measured an approach where glibc does the lock notification [which
it currently does for !pshared robust mutexes], and that took 256 msecs -
clearly slower, due to the 1 million FUTEX_WAKE syscalls userspace had to do.

(1 million held locks are unheard of - we expect at most a handful of locks to
be held at a time.  Nevertheless it's nice to know that this approach scales
nicely.)

  Implementation details
  ----------------------

The patch adds two new syscalls: one to register the userspace list, and one
to query the registered list pointer:

 asmlinkage long
 sys_set_robust_list(struct robust_list_head __user *head,
                     size_t len);

 asmlinkage long
 sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
                     size_t __user *len_ptr);

List registration is very fast: the pointer is simply stored in
current->robust_list.  [Note that in the future, if robust futexes become
widespread, we could extend sys_clone() to register a robust-list head for new
threads, without the need of another syscall.]

So there is virtually zero overhead for tasks not using robust futexes, and
even for robust futex users, there is only one extra syscall per thread
lifetime, and the cleanup operation, if it happens, is fast and
straightforward.  The kernel doesnt have any internal distinction between
robust and normal futexes.

If a futex is found to be held at exit time, the kernel sets the highest bit
of the futex word:

	#define FUTEX_OWNER_DIED        0x40000000

and wakes up the next futex waiter (if any). User-space does the rest of
the cleanup.

Otherwise, robust futexes are acquired by glibc by putting the TID into the
futex field atomically.  Waiters set the FUTEX_WAITERS bit:

	#define FUTEX_WAITERS           0x80000000

and the remaining bits are for the TID.

  Testing, architecture support
  -----------------------------

I've tested the new syscalls on x86 and x86_64, and have made sure the parsing
of the userspace list is robust [ ;-) ] even if the list is deliberately
corrupted.

i386 and x86_64 syscalls are wired up at the moment, and Ulrich has tested the
new glibc code (on x86_64 and i386), and it works for his robust-mutex
testcases.

All other architectures should build just fine too - but they wont have the
new syscalls yet.

Architectures need to implement the new futex_atomic_cmpxchg_inuser() inline
function before writing up the syscalls (that function returns -ENOSYS right
now).

This patch:

Add placeholder futex_atomic_cmpxchg_inuser() implementations to every
architecture that supports futexes.  It returns -ENOSYS.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Acked-by: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:49 -08:00