Commit Graph

11 Commits

Author SHA1 Message Date
Vladimir Murzin
046835b4aa ARM: 8757/1: NOMMU: Support PMSAv8 MPU
ARMv8R/M architecture defines new memory protection scheme - PMSAv8
which is not compatible with PMSAv7.

Key differences to PMSAv7 are:
 - Region geometry is defined by base and limit addresses
 - Addresses need to be either 32 or 64 byte aligned
 - No region priority due to overlapping regions are not allowed
 - It is unified, i.e. no distinction between data/instruction regions
 - Memory attributes are controlled via MAIR

This patch implements support for PMSAv8 MPU defined by ARMv8R/M
architecture.

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2018-05-19 11:53:46 +01:00
Vladimir Murzin
9cfb541a4a ARM: 8754/1: NOMMU: Move PMSAv7 MPU under it's own namespace
We are going to support different MPU which programming model is not
compatible to PMSAv7, so move PMSAv7 MPU under it's own namespace.

Tested-by: Szemz? András <sza@esh.hu>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2018-05-19 11:53:46 +01:00
Linus Torvalds
441692aafc Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
Pull ARM updates from Russell King:

 - add support for ELF fdpic binaries on both MMU and noMMU platforms

 - linker script cleanups

 - support for compressed .data section for XIP images

 - discard memblock arrays when possible

 - various cleanups

 - atomic DMA pool updates

 - better diagnostics of missing/corrupt device tree

 - export information to allow userspace kexec tool to place images more
   inteligently, so that the device tree isn't overwritten by the
   booting kernel

 - make early_printk more efficient on semihosted systems

 - noMMU cleanups

 - SA1111 PCMCIA update in preparation for further cleanups

* 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm: (38 commits)
  ARM: 8719/1: NOMMU: work around maybe-uninitialized warning
  ARM: 8717/2: debug printch/printascii: translate '\n' to "\r\n" not "\n\r"
  ARM: 8713/1: NOMMU: Support MPU in XIP configuration
  ARM: 8712/1: NOMMU: Use more MPU regions to cover memory
  ARM: 8711/1: V7M: Add support for MPU to M-class
  ARM: 8710/1: Kconfig: Kill CONFIG_VECTORS_BASE
  ARM: 8709/1: NOMMU: Disallow MPU for XIP
  ARM: 8708/1: NOMMU: Rework MPU to be mostly done in C
  ARM: 8707/1: NOMMU: Update MPU accessors to use cp15 helpers
  ARM: 8706/1: NOMMU: Move out MPU setup in separate module
  ARM: 8702/1: head-common.S: Clear lr before jumping to start_kernel()
  ARM: 8705/1: early_printk: use printascii() rather than printch()
  ARM: 8703/1: debug.S: move hexbuf to a writable section
  ARM: add additional table to compressed kernel
  ARM: decompressor: fix BSS size calculation
  pcmcia: sa1111: remove special sa1111 mmio accessors
  pcmcia: sa1111: use sa1111_get_irq() to obtain IRQ resources
  ARM: better diagnostics with missing/corrupt dtb
  ARM: 8699/1: dma-mapping: Remove init_dma_coherent_pool_size()
  ARM: 8698/1: dma-mapping: Mark atomic_pool as __ro_after_init
  ..
2017-11-16 12:50:35 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Vladimir Murzin
216218308c ARM: 8713/1: NOMMU: Support MPU in XIP configuration
Currently, there is assumption in early MPU setup code that kernel
image is located in RAM, which is obviously not true for XIP. To run
code from ROM we need to make sure that it is covered by MPU. However,
due to we allocate regions (semi-)dynamically we can run into issue of
trimming region we are running from in case ROM spawns several MPU
regions. To help deal with that we enforce minimum alignments for start
end end of XIP address space as 1MB and 128Kb correspondingly.

Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2017-10-23 16:59:31 +01:00
Vladimir Murzin
5c9d9a1b3a ARM: 8712/1: NOMMU: Use more MPU regions to cover memory
PMSAv7 defines curious alignment requirements to the regions:
- size must be power of 2, and
- region start must be aligned to the region size

Because of that we currently adjust lowmem bounds plus we assign
only one MPU region to cover memory all these lead to significant amount of
memory could be wasted. As an example, consider 64Mb of memory at
0x70000000 - it fits alignment requirements nicely; now, imagine that
2Mb of memory is reserved for coherent DMA allocation, so now Linux is
expected to see 62Mb of memory... and here annoying thing happens -
memory gets truncated to 32Mb (we've lost 30Mb!), i.e. MPU layout
looks like:

0: base 0x70000000, size 0x2000000

This patch tries to allocate as much as possible MPU slots to minimise
amount of truncated memory. Moreover, with this patch MPU subregions
starting to get used. MPU subregions allow us reduce the number of MPU
slots used. For example given above, MPU layout looks like:

0: base 0x70000000, size 0x2000000
1: base 0x72000000, size 0x1000000
2: base 0x73000000, size 0x1000000, disable subreg 7 (0x73e00000 - 0x73ffffff)

Where without subregions we'd get:

0: base 0x70000000, size 0x2000000
1: base 0x72000000, size 0x1000000
2: base 0x73000000, size 0x800000
3: base 0x73800000, size 0x400000
4: base 0x73c00000, size 0x200000

To achieve better layout we fist try to cover specified memory as is
(maybe with help of subregions) and if we failed, we truncate memory
to fit alignment requirements (so it occupies one MPU slot) and
perform one more attempt with the reminder, and so on till we either
cover all memory or run out of MPU slots.

Tested-by: Szemző András <sza@esh.hu>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2017-10-23 16:59:23 +01:00
Vladimir Murzin
a0995c0805 ARM: 8708/1: NOMMU: Rework MPU to be mostly done in C
Currently, there are several issues with how MPU is setup:

 1. We won't boot if MPU is missing
 2. We won't boot if use XIP
 3. Further extension of MPU setup requires asm skills

The 1st point can be relaxed, so we can continue with boot CPU even if
MPU is missed and fail boot for secondaries only. To address the 2nd
point we could create region covering CONFIG_XIP_PHYS_ADDR - _end and
that might work for the first stage of MPU enable, but due to MPU's
alignment requirement we could cover too much, IOW we need more
flexibility in how we're partitioning memory regions... and it'd be
hardly possible to archive because of the 3rd point.

This patch is trying to address 1st and 3rd issues and paves the path
for 2nd and further improvements.

The most visible change introduced with this patch is that we start
using mpu_rgn_info array (as it was supposed?), so change in MPU setup
done by boot CPU is recorded there and feed to secondaries. It
allows us to keep minimal region setup for boot CPU and do the rest in
C. Since we start programming MPU regions in C evaluation of MPU
constrains (number of regions supported and minimal region order) can
be done once, which in turn open possibility to free-up "probe"
region early.

Tested-by: Szemző András <sza@esh.hu>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2017-10-23 16:58:59 +01:00
Vladimir Murzin
877ec119db ARM: 8706/1: NOMMU: Move out MPU setup in separate module
Having MPU handling code in dedicated module makes it easier to
enhance/maintain it.

Tested-by: Szemző András <sza@esh.hu>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2017-10-23 16:58:31 +01:00
Jonathan Austin
9dfc28b630 ARM: mpu: protect the vectors page with an MPU region
Without an MMU it is possible for userspace programs to start executing code
in places that they have no business executing. The MPU allows some level of
protection against this.

This patch protects the vectors page from access by userspace processes.
Userspace tasks that dereference a null pointer are already protected by an
svc at 0x0 that kills them. However when tasks use an offset from a null
pointer (eg a function in a null struct) they miss this carefully placed svc
and enter the exception vectors in user mode, ending up in the kernel.

This patch causes programs that do this to receive a SEGV instead of happily
entering the kernel in user-mode, and hence avoid a 'Bad Mode' panic.

As part of this change it is necessary to make sigreturn happen via the
stack when there is not an sa_restorer function. This change is invisible to
userspace, and irrelevant to code compiled using a uClibc toolchain, which
always uses an sa_restorer function.

Because we don't get to remap the vectors in !MMU kuser_helpers are not
in a defined location, and hence aren't usable. This means we don't need to
worry about keeping them accessible from PL0

Signed-off-by: Jonathan Austin <jonathan.austin@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
CC: Nicolas Pitre <nico@linaro.org>
CC: Catalin Marinas <catalin.marinas@arm.com>
2013-06-17 15:13:18 +01:00
Jonathan Austin
67c9845bea ARM: mpu: add early bring-up code for the ARMv7 PMSA-compliant MPU
This patch adds initial support for using the MPU, which is necessary for
SMP operation on PMSAv7 processors because it is the only way to ensure
memory is shared. This is an initial patch and full SMP support is added
later in this series.

The setup of the MPU is performed in a way analagous to that for the MMU:
Very early initialisation before the C environment is brought up, followed
by a sanity check and more complete initialisation in C.

This patch provides the simplest possible memory region configuration:
MPU_PROBE_REGION: Reserved for probing MPU details, not enabled
MPU_BG_REGION: A 'background' region that specifies all memory strongly ordered
MPU_RAM_REGION: A single shared, cacheable, normal region for the valid RAM.

In this early initialisation code we simply map the whole of the address
space with the BG_REGION and (at least) the kernel with the RAM_REGION. The
MPU has region alignment constraints that require us to round past the end
of the kernel.

As region 2 has a higher priority than region 1, it overrides the strongly-
ordered behaviour for RAM only.

Subsequent patches will add more complete initialisation from the C-world
and support for bringing up secondary CPUs.

Signed-off-by: Jonathan Austin <jonathan.austin@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
CC: Hyok S. Choi <hyok.choi@samsung.com>
2013-06-07 17:02:51 +01:00
Jonathan Austin
a2b45b0da8 ARM: mpu: add header for MPU register layouts and region data
This commit adds definitions relevant to the ARM v7 PMSA compliant MPU.

The register layouts and region configuration data is made accessible to asm
as well as C-code so that it can be used in early bring-up of the MPU.

The mpu region information structs assume that the properties for the I/D side
are the same, though the implementation could be trivially extended for future
platforms where this is no-longer true.

The MPU_*_REGION defines are used for the basic, static MPU region setup.

Signed-off-by: Jonathan Austin <jonathan.austin@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
2013-06-07 17:02:50 +01:00