Commit Graph

8518 Commits

Author SHA1 Message Date
Omar Sandoval
db72e47f79 btrfs: get rid of at_offset parameter to btrfs_lookup_bio_sums()
We can encode this in the offset parameter: -1 means use the page
offsets, anything else is a valid offset.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:54 +01:00
Omar Sandoval
e62958fce9 btrfs: get rid of trivial __btrfs_lookup_bio_sums() wrappers
Currently, we have two wrappers for __btrfs_lookup_bio_sums():
btrfs_lookup_bio_sums_dio(), which is used for direct I/O, and
btrfs_lookup_bio_sums(), which is used everywhere else. The only
difference is that the _dio variant looks up csums starting at the given
offset instead of using the page index, which isn't actually direct
I/O-specific. Let's clean up the signature and return value of
__btrfs_lookup_bio_sums(), rename it to btrfs_lookup_bio_sums(), and get
rid of the trivial helpers.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:53 +01:00
Johannes Thumshirn
321f69f86a btrfs: reset device back to allocation state when removing
When closing a device, btrfs_close_one_device() first allocates a new
device, copies the device to close's name, replaces it in the dev_list
with the copy and then finally frees it.

This involves two memory allocation, which can potentially fail. As this
code path is tricky to unwind, the allocation failures where handled by
BUG_ON()s.

But this copying isn't strictly needed, all that is needed is resetting
the device in question to it's state it had after the allocation.

Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:53 +01:00
Johannes Thumshirn
3fff3975a7 btrfs: decrement number of open devices after closing the device not before
In btrfs_close_one_device we're decrementing the number of open devices
before we're calling btrfs_close_bdev().

As there is no intermediate exit between these points in this function it
is technically OK to do so, but it makes the code a bit harder to understand.

Move both operations closer together and move the decrement step after
btrfs_close_bdev().

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:53 +01:00
Omar Sandoval
6bb6b51447 btrfs: use simple_dir_inode_operations for placeholder subvolume directory
When you snapshot a subvolume containing a subvolume, you get a
placeholder directory where the subvolume would be. These directories
have their own btrfs_dir_ro_inode_operations.

Al pointed out [1] that these directories can use simple_lookup()
instead of btrfs_lookup(), as they are always empty. Furthermore, they
can use the default generic_permission() instead of btrfs_permission();
the additional checks in the latter don't matter because we can't write
to the directory anyways. Finally, they can use the default
generic_update_time() instead of btrfs_update_time(), as the inode
doesn't exist on disk and doesn't need any special handling.

All together, this means that we can get rid of
btrfs_dir_ro_inode_operations and use simple_dir_inode_operations
instead.

1: https://lore.kernel.org/linux-btrfs/20190929052934.GY26530@ZenIV.linux.org.uk/

Cc: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:53 +01:00
Johannes Thumshirn
b38f4cbd65 btrfs: remove impossible WARN_ON in btrfs_destroy_dev_replace_tgtdev()
We have a user report, that cppcheck is complaining about a possible
NULL-pointer dereference in btrfs_destroy_dev_replace_tgtdev().

We're first dereferencing the 'tgtdev' variable and the later check for
the validity of the pointer with a WARN_ON(!tgtdev);

But all callers of btrfs_destroy_dev_replace_tgtdev() either explicitly
check if 'tgtdev' is non-NULL or directly allocate 'tgtdev', so the
WARN_ON() is impossible to hit. Just remove it to silence the checker's
complains.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=205003
Signed-off-by: Johannes Thumshirn <jth@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:53 +01:00
Johannes Thumshirn
1296995225 btrfs: remove superfluous BUG_ON() in integrity checks
btrfsic_process_superblock() BUG_ON()s if 'state' is NULL. But this can
never happen as the only caller from btrfsic_process_superblock() is
btrfsic_mount() which allocates 'state' some lines above calling
btrfsic_process_superblock() and checks for the allocation to succeed.

Let's just remove the impossible to hit BUG_ON().

Signed-off-by: Johannes Thumshirn <jth@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:52 +01:00
Johannes Thumshirn
3dbd351df4 btrfs: fix possible NULL-pointer dereference in integrity checks
A user reports a possible NULL-pointer dereference in
btrfsic_process_superblock(). We are assigning state->fs_info to a local
fs_info variable and afterwards checking for the presence of state.

While we would BUG_ON() a NULL state anyways, we can also just remove
the local fs_info copy, as fs_info is only used once as the first
argument for btrfs_num_copies(). There we can just pass in
state->fs_info as well.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=205003
Signed-off-by: Johannes Thumshirn <jth@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:52 +01:00
Josef Bacik
f893556637 btrfs: kill min_allocable_bytes in inc_block_group_ro
This is a relic from a time before we had a proper reservation mechanism
and you could end up with really full chunks at chunk allocation time.
This doesn't make sense anymore, so just kill it.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:52 +01:00
Josef Bacik
9f246926b4 btrfs: don't pass system_chunk into can_overcommit
We have the space_info, we can just check its flags to see if it's the
system chunk space info.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:52 +01:00
Nikolay Borisov
511a32b549 btrfs: Opencode ordered_data_tree_panic
It's a simple wrapper over btrfs_panic and is called only once. Just
open code it.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:52 +01:00
Qu Wenruo
430640e316 btrfs: relocation: Output current relocation stage at btrfs_relocate_block_group()
There are two relocation stages but both print the same message. Add the
description of the stage. This can help debugging or provides
informative message to users.

  BTRFS info (device dm-5): balance: start -d -m -s
  BTRFS info (device dm-5): relocating block group 30408704 flags metadata|dup
  BTRFS info (device dm-5): found 2 extents, stage: move data extents
  BTRFS info (device dm-5): relocating block group 22020096 flags system|dup
  BTRFS info (device dm-5): found 1 extents, stage: move data extents
  BTRFS info (device dm-5): relocating block group 13631488 flags data
  BTRFS info (device dm-5): found 1 extents, stage: move data extents
  BTRFS info (device dm-5): found 1 extents, stage: update data pointers
  BTRFS info (device dm-5): balance: ended with status: 0

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:51 +01:00
Yunfeng Ye
76de60ed04 btrfs: remove unused condition check in btrfs_page_mkwrite()
The condition '!ret2' is always true. commit 717beb96d9 ("Btrfs: fix
regression in btrfs_page_mkwrite() from vm_fault_t conversion") left
behind the check after moving this code out of the goto, so remove the
unused condition check.

Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:51 +01:00
Nikolay Borisov
36ee0b44ad btrfs: Remove redundant WARN_ON in walk_down_log_tree
level <0 and level >= BTRFS_MAX_LEVEL are already performed upon
extent buffer read by tree checker in btrfs_check_node.
go. As far as 'level <= 0'  we are guaranteed that level is '> 0'
because the value of level _before_ reading 'next' is larger than 1
(otherwise we wouldn't have executed that code at all) this in turn
guarantees that 'level' after btrfs_read_buffer is 'level - 1' since
we verify this invariant in:

    btrfs_read_buffer
     btree_read_extent_buffer_pages
      btrfs_verify_level_key

This guarantees that level can never be '<= 0' so the warn on is
never triggered.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:51 +01:00
Nikolay Borisov
5c4b691eb8 btrfs: Remove WARN_ON in walk_log_tree
The log_root passed to walk_log_tree is guaranteed to have its
root_key.objectid always be BTRFS_TREE_LOG_OBJECTID. This is by
merit that all log roots of an ordinary root are allocated in
alloc_log_tree which hard-codes objectid to be BTRFS_TREE_LOG_OBJECTID.

In case walk_log_tree is called for a log tree found by btrfs_read_fs_root
in btrfs_recover_log_trees, that function already ensures
found_key.objectid is BTRFS_TREE_LOG_OBJECTID.

No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:51 +01:00
Nikolay Borisov
a0fbf736d3 btrfs: Rename __btrfs_free_reserved_extent to btrfs_pin_reserved_extent
__btrfs_free_reserved_extent now performs the actions of
btrfs_free_and_pin_reserved_extent. But this name is a bit of a
misnomer, since the extent is not really freed but just pinned. Reflect
this in the new name. No semantics changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:51 +01:00
Nikolay Borisov
7ef54d54bf btrfs: Open code __btrfs_free_reserved_extent in btrfs_free_reserved_extent
__btrfs_free_reserved_extent performs 2 entirely different operations
depending on whether its 'pin' argument is true or false. This patch
lifts the 2nd case (pin is false) into it's sole caller
btrfs_free_reserved_extent. No semantics changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:51 +01:00
Nikolay Borisov
4eaaec24c0 btrfs: Don't discard unwritten extents
All callers of btrfs_free_reserved_extent (respectively
__btrfs_free_reserved_extent with in set to 0) pass in extents which
have only been reserved but not yet written to. Namely,

* in cow_file_range that function is called only if create_io_em fails
  or btrfs_add_ordered_extent fail, both of which happen _before_ any IO
  is submitted to the newly reserved range

* in submit_compressed_extents the code flow is similar -
  out_free_reserve can be called only before
  btrfs_submit_compressed_write which is where any writes to the range
  could occur

* btrfs_new_extent_direct also calls btrfs_free_reserved_extent only
  if extent_map fails, before any IO is issued

* __btrfs_prealloc_file_range also calls btrfs_free_reserved_extent
  in case insertion of the metadata fails

* btrfs_alloc_tree_block again can only be called in case in-memory
  operations fail, before any IO is submitted

* btrfs_finish_ordered_io - this is the only caller where discarding
  the extent could have a material effect, since it can be called for
  an extent which was partially written.

With this change the submission of discards is optimised since discards
are now not being created for extents which are known to not have been
touched on disk.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:50 +01:00
Marcos Paulo de Souza
8a36e408d4 btrfs: qgroup: return ENOTCONN instead of EINVAL when quotas are not enabled
[PROBLEM]
qgroup create/remove code is currently returning EINVAL when the user
tries to create a qgroup on a subvolume without quota enabled. EINVAL is
already being used for too many error scenarios so that is hard to
depict what is the problem.

[FIX]
Currently scrub and balance code return -ENOTCONN when the user tries to
cancel/pause and no scrub or balance is currently running for the
desired subvolume. Do the same here by returning -ENOTCONN  when a user
tries to create/delete/assing/list a qgroup on a subvolume without quota
enabled.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:50 +01:00
Marcos Paulo de Souza
e3b0edd297 btrfs: qgroup: remove one-time use variables for quota_root checks
Remove some variables that are set only to be checked later, and never
used.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:50 +01:00
Anand Jain
bc036bb335 btrfs: sysfs, merge btrfs_sysfs_add devices_kobj and fsid
Merge btrfs_sysfs_add_fsid() and btrfs_sysfs_add_devices_kobj() functions
as these two are small and they are called one after the other.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:50 +01:00
Anand Jain
be2cf92e0a btrfs: sysfs, rename btrfs_sysfs_add_device()
btrfs_sysfs_add_device() creates the directory
/sys/fs/btrfs/UUID/devices but its function name is misleading. Rename
it to btrfs_sysfs_add_devices_kobj() instead. No functional changes.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:50 +01:00
Anand Jain
c6761a9ed3 btrfs: sysfs, btrfs_sysfs_add_fsid() drop unused argument parent
Commit 24bd69cb ("Btrfs: sysfs: add support to add parent for fsid")
added parent argument in preparation to show the seed fsid under the
sprout fsid as in the patch [1] in the mailing list.

 [1] Btrfs: sysfs: support seed devices in the sysfs layout

But later this idea was superseded by another idea to rename the fsid as
in the commit f93c39970b ("btrfs: factor out sysfs code for updating
sprout fsid").

So we don't need parent argument anymore.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:49 +01:00
Anand Jain
b5501504cb btrfs: sysfs, rename devices kobject holder to devices_kobj
The struct member btrfs_device::device_dir_kobj holds the kobj of the
sysfs directory /sys/fs/btrfs/UUID/devices, so rename it from
device_dir_kobj to devices_kobj. No functional changes.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:49 +01:00
David Sterba
db26a02449 btrfs: fill ncopies for all raid table entries
Make the number of copies explicit even for entries that use the default
0 value for consistency.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:49 +01:00
David Sterba
e4f6c6be81 btrfs: use raid_attr table in calc_stripe_length for nparity
The table is already used for ncopies, replace open coding of stripes
with the raid_attr value.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:49 +01:00
Filipe Manana
0e56315ca1 Btrfs: fix missing hole after hole punching and fsync when using NO_HOLES
When using the NO_HOLES feature, if we punch a hole into a file and then
fsync it, there are cases where a subsequent fsync will miss the fact that
a hole was punched, resulting in the holes not existing after replaying
the log tree.

Essentially these cases all imply that, tree-log.c:copy_items(), is not
invoked for the leafs that delimit holes, because nothing changed those
leafs in the current transaction. And it's precisely copy_items() where
we currenly detect and log holes, which works as long as the holes are
between file extent items in the input leaf or between the beginning of
input leaf and the previous leaf or between the last item in the leaf
and the next leaf.

First example where we miss a hole:

  *) The extent items of the inode span multiple leafs;

  *) The punched hole covers a range that affects only the extent items of
     the first leaf;

  *) The fsync operation is done in full mode (BTRFS_INODE_NEEDS_FULL_SYNC
     is set in the inode's runtime flags).

  That results in the hole not existing after replaying the log tree.

  For example, if the fs/subvolume tree has the following layout for a
  particular inode:

      Leaf N, generation 10:

      [ ... INODE_ITEM INODE_REF EXTENT_ITEM (0 64K) EXTENT_ITEM (64K 128K) ]

      Leaf N + 1, generation 10:

      [ EXTENT_ITEM (128K 64K) ... ]

  If at transaction 11 we punch a hole coverting the range [0, 128K[, we end
  up dropping the two extent items from leaf N, but we don't touch the other
  leaf, so we end up in the following state:

      Leaf N, generation 11:

      [ ... INODE_ITEM INODE_REF ]

      Leaf N + 1, generation 10:

      [ EXTENT_ITEM (128K 64K) ... ]

  A full fsync after punching the hole will only process leaf N because it
  was modified in the current transaction, but not leaf N + 1, since it
  was not modified in the current transaction (generation 10 and not 11).
  As a result the fsync will not log any holes, because it didn't process
  any leaf with extent items.

Second example where we will miss a hole:

  *) An inode as its items spanning 5 (or more) leafs;

  *) A hole is punched and it covers only the extents items of the 3rd
     leaf. This resulsts in deleting the entire leaf and not touching any
     of the other leafs.

  So the only leaf that is modified in the current transaction, when
  punching the hole, is the first leaf, which contains the inode item.
  During the full fsync, the only leaf that is passed to copy_items()
  is that first leaf, and that's not enough for the hole detection
  code in copy_items() to determine there's a hole between the last
  file extent item in the 2nd leaf and the first file extent item in
  the 3rd leaf (which was the 4th leaf before punching the hole).

Fix this by scanning all leafs and punch holes as necessary when doing a
full fsync (less common than a non-full fsync) when the NO_HOLES feature
is enabled. The lack of explicit file extent items to mark holes makes it
necessary to scan existing extents to determine if holes exist.

A test case for fstests follows soon.

Fixes: 16e7549f04 ("Btrfs: incompatible format change to remove hole extents")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-20 16:40:49 +01:00
Linus Torvalds
effaf90137 for-5.5-rc6-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl4h7wwACgkQxWXV+ddt
 WDtFgxAAqanZ3wqq8xNqybfWmmFNrKtdkakErRuQFWe/+kZH59HuBifTbYeVMD4Z
 hFgveFJpBIqo7uMUxUItSTtHcr3qx7TP9ejGYOaQO997oNPxPQXuEY8Lq5ebDBVB
 89Gn+Eg/Q+uPvCJSctxx4dblSiGZKb3iOEh+lJuWJV4bj8beekcTrqsg01ZchPRO
 Ygk1ltW7Vpf0wVkdts4FKiKiwX02M2C9zxh9NQjpNwH1DMow4XtBPsbqHbiHzRym
 SoD4+0dbhfdnKkNnBTFEJBbjbZcYwM9EQnfiyVL+/hDMHX4XTetqeFN1G8usfXXX
 2kxvwttPUtluJqlQXQnUU4mQEA4p5ORTgGgw1WBF3h+Aezumkql+27Bd6aiDKGZz
 SPc9sveft60R23TxorlrYVqfADgyZKEaZ+2wEM99Xoz4OdvP7jkqDentJW9us1Xh
 Xmfovq5xcRY17f9tdhiwqH5vgwxrLgmjBvTm/kcGX3ImhU8Yxk8xKw1JoV0P9cjW
 7awK4l8pyPbOUhekdT8hYqWXlL/DXhAMHraV1zfBKIbu1omlGByeg23jNM2iS/0B
 YtRkEEen0tRHpuKLB08twTKCak94wObBamKNFE6Snt1cDudLwGDpUosazM9l4uPR
 2D3SHs7UWNgtvTRCfq2LVoRMRSR2BA1b19EkylUig4ay7khmZ2k=
 =2e9q
 -----END PGP SIGNATURE-----

Merge tag 'for-5.5-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "A few more fixes that have been in the works during last twp weeks.
  All have a user visible effect and are stable material:

   - scrub: properly update progress after calling cancel ioctl, calling
     'resume' would start from the beginning otherwise

   - fix subvolume reference removal, after moving out of the original
     path the reference is not recognized and will lead to transaction
     abort

   - fix reloc root lifetime checks, could lead to crashes when there's
     subvolume cleaning running in parallel

   - fix memory leak when quotas get disabled in the middle of extent
     accounting

   - fix transaction abort in case of balance being started on degraded
     mount on eg. RAID1"

* tag 'for-5.5-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: check rw_devices, not num_devices for balance
  Btrfs: always copy scrub arguments back to user space
  btrfs: relocation: fix reloc_root lifespan and access
  btrfs: fix memory leak in qgroup accounting
  btrfs: do not delete mismatched root refs
  btrfs: fix invalid removal of root ref
  btrfs: rework arguments of btrfs_unlink_subvol
2020-01-17 11:21:05 -08:00
Josef Bacik
b35cf1f0bf btrfs: check rw_devices, not num_devices for balance
The fstest btrfs/154 reports

  [ 8675.381709] BTRFS: Transaction aborted (error -28)
  [ 8675.383302] WARNING: CPU: 1 PID: 31900 at fs/btrfs/block-group.c:2038 btrfs_create_pending_block_groups+0x1e0/0x1f0 [btrfs]
  [ 8675.390925] CPU: 1 PID: 31900 Comm: btrfs Not tainted 5.5.0-rc6-default+ #935
  [ 8675.392780] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
  [ 8675.395452] RIP: 0010:btrfs_create_pending_block_groups+0x1e0/0x1f0 [btrfs]
  [ 8675.402672] RSP: 0018:ffffb2090888fb00 EFLAGS: 00010286
  [ 8675.404413] RAX: 0000000000000000 RBX: ffff92026dfa91c8 RCX: 0000000000000001
  [ 8675.406609] RDX: 0000000000000000 RSI: ffffffff8e100899 RDI: ffffffff8e100971
  [ 8675.408775] RBP: ffff920247c61660 R08: 0000000000000000 R09: 0000000000000000
  [ 8675.410978] R10: 0000000000000000 R11: 0000000000000000 R12: 00000000ffffffe4
  [ 8675.412647] R13: ffff92026db74000 R14: ffff920247c616b8 R15: ffff92026dfbc000
  [ 8675.413994] FS:  00007fd5e57248c0(0000) GS:ffff92027d800000(0000) knlGS:0000000000000000
  [ 8675.416146] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [ 8675.417833] CR2: 0000564aa51682d8 CR3: 000000006dcbc004 CR4: 0000000000160ee0
  [ 8675.419801] Call Trace:
  [ 8675.420742]  btrfs_start_dirty_block_groups+0x355/0x480 [btrfs]
  [ 8675.422600]  btrfs_commit_transaction+0xc8/0xaf0 [btrfs]
  [ 8675.424335]  reset_balance_state+0x14a/0x190 [btrfs]
  [ 8675.425824]  btrfs_balance.cold+0xe7/0x154 [btrfs]
  [ 8675.427313]  ? kmem_cache_alloc_trace+0x235/0x2c0
  [ 8675.428663]  btrfs_ioctl_balance+0x298/0x350 [btrfs]
  [ 8675.430285]  btrfs_ioctl+0x466/0x2550 [btrfs]
  [ 8675.431788]  ? mem_cgroup_charge_statistics+0x51/0xf0
  [ 8675.433487]  ? mem_cgroup_commit_charge+0x56/0x400
  [ 8675.435122]  ? do_raw_spin_unlock+0x4b/0xc0
  [ 8675.436618]  ? _raw_spin_unlock+0x1f/0x30
  [ 8675.438093]  ? __handle_mm_fault+0x499/0x740
  [ 8675.439619]  ? do_vfs_ioctl+0x56e/0x770
  [ 8675.441034]  do_vfs_ioctl+0x56e/0x770
  [ 8675.442411]  ksys_ioctl+0x3a/0x70
  [ 8675.443718]  ? trace_hardirqs_off_thunk+0x1a/0x1c
  [ 8675.445333]  __x64_sys_ioctl+0x16/0x20
  [ 8675.446705]  do_syscall_64+0x50/0x210
  [ 8675.448059]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [ 8675.479187] BTRFS: error (device vdb) in btrfs_create_pending_block_groups:2038: errno=-28 No space left

We now use btrfs_can_overcommit() to see if we can flip a block group
read only.  Before this would fail because we weren't taking into
account the usable un-allocated space for allocating chunks.  With my
patches we were allowed to do the balance, which is technically correct.

The test is trying to start balance on degraded mount.  So now we're
trying to allocate a chunk and cannot because we want to allocate a
RAID1 chunk, but there's only 1 device that's available for usage.  This
results in an ENOSPC.

But we shouldn't even be making it this far, we don't have enough
devices to restripe.  The problem is we're using btrfs_num_devices(),
that also includes missing devices. That's not actually what we want, we
need to use rw_devices.

The chunk_mutex is not needed here, rw_devices changes only in device
add, remove or replace, all are excluded by EXCL_OP mechanism.

Fixes: e4d8ec0f65 ("Btrfs: implement online profile changing")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add stacktrace, update changelog, drop chunk_mutex ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-17 15:40:54 +01:00
Filipe Manana
5afe6ce748 Btrfs: always copy scrub arguments back to user space
If scrub returns an error we are not copying back the scrub arguments
structure to user space. This prevents user space to know how much
progress scrub has done if an error happened - this includes -ECANCELED
which is returned when users ask for scrub to stop. A particular use
case, which is used in btrfs-progs, is to resume scrub after it is
canceled, in that case it relies on checking the progress from the scrub
arguments structure and then use that progress in a call to resume
scrub.

So fix this by always copying the scrub arguments structure to user
space, overwriting the value returned to user space with -EFAULT only if
copying the structure failed to let user space know that either that
copying did not happen, and therefore the structure is stale, or it
happened partially and the structure is probably not valid and corrupt
due to the partial copy.

Reported-by: Graham Cobb <g.btrfs@cobb.uk.net>
Link: https://lore.kernel.org/linux-btrfs/d0a97688-78be-08de-ca7d-bcb4c7fb397e@cobb.uk.net/
Fixes: 06fe39ab15 ("Btrfs: do not overwrite scrub error with fault error in scrub ioctl")
CC: stable@vger.kernel.org # 5.1+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Tested-by: Graham Cobb <g.btrfs@cobb.uk.net>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-17 15:28:52 +01:00
Qu Wenruo
6282675e67 btrfs: relocation: fix reloc_root lifespan and access
[BUG]
There are several different KASAN reports for balance + snapshot
workloads.  Involved call paths include:

   should_ignore_root+0x54/0xb0 [btrfs]
   build_backref_tree+0x11af/0x2280 [btrfs]
   relocate_tree_blocks+0x391/0xb80 [btrfs]
   relocate_block_group+0x3e5/0xa00 [btrfs]
   btrfs_relocate_block_group+0x240/0x4d0 [btrfs]
   btrfs_relocate_chunk+0x53/0xf0 [btrfs]
   btrfs_balance+0xc91/0x1840 [btrfs]
   btrfs_ioctl_balance+0x416/0x4e0 [btrfs]
   btrfs_ioctl+0x8af/0x3e60 [btrfs]
   do_vfs_ioctl+0x831/0xb10

   create_reloc_root+0x9f/0x460 [btrfs]
   btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs]
   create_pending_snapshot+0xa9b/0x15f0 [btrfs]
   create_pending_snapshots+0x111/0x140 [btrfs]
   btrfs_commit_transaction+0x7a6/0x1360 [btrfs]
   btrfs_mksubvol+0x915/0x960 [btrfs]
   btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs]
   btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs]
   btrfs_ioctl+0x241b/0x3e60 [btrfs]
   do_vfs_ioctl+0x831/0xb10

   btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs]
   create_pending_snapshot+0x209/0x15f0 [btrfs]
   create_pending_snapshots+0x111/0x140 [btrfs]
   btrfs_commit_transaction+0x7a6/0x1360 [btrfs]
   btrfs_mksubvol+0x915/0x960 [btrfs]
   btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs]
   btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs]
   btrfs_ioctl+0x241b/0x3e60 [btrfs]
   do_vfs_ioctl+0x831/0xb10

[CAUSE]
All these call sites are only relying on root->reloc_root, which can
undergo btrfs_drop_snapshot(), and since we don't have real refcount
based protection to reloc roots, we can reach already dropped reloc
root, triggering KASAN.

[FIX]
To avoid such access to unstable root->reloc_root, we should check
BTRFS_ROOT_DEAD_RELOC_TREE bit first.

This patch introduces wrappers that provide the correct way to check the
bit with memory barriers protection.

Most callers don't distinguish merged reloc tree and no reloc tree.  The
only exception is should_ignore_root(), as merged reloc tree can be
ignored, while no reloc tree shouldn't.

[CRITICAL SECTION ANALYSIS]
Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the
DEAD_RELOC_TREE bit has extra help from transaction as a higher level
barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are:

	NULL: reloc_root is NULL	PTR: reloc_root is not NULL
	0: DEAD_RELOC_ROOT bit not set	DEAD: DEAD_RELOC_ROOT bit set

	(NULL, 0)    Initial state		 __
	  |					 /\ Section A
        btrfs_init_reloc_root()			 \/
	  |				 	 __
	(PTR, 0)     reloc_root initialized      /\
          |					 |
	btrfs_update_reloc_root()		 |  Section B
          |					 |
	(PTR, DEAD)  reloc_root has been merged  \/
          |					 __
	=== btrfs_commit_transaction() ====================
	  |					 /\
	clean_dirty_subvols()			 |
	  |					 |  Section C
	(NULL, DEAD) reloc_root cleanup starts   \/
          |					 __
	btrfs_drop_snapshot()			 /\
	  |					 |  Section D
	(NULL, 0)    Back to initial state	 \/

Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds
transaction handle, so none of such caller can cross transaction boundary.

In Section A, every caller just found no DEAD bit, and grab reloc_root.

In the cross section A-B, caller may get no DEAD bit, but since reloc_root
is still completely valid thus accessing reloc_root is completely safe.

No test_bit() caller can cross the boundary of Section B and Section C.

In Section C, every caller found the DEAD bit, so no one will access
reloc_root.

In the cross section C-D, either caller gets the DEAD bit set, avoiding
access reloc_root no matter if it's safe or not.  Or caller get the DEAD
bit cleared, then access reloc_root, which is already NULL, nothing will
be wrong.

The memory write barriers are between the reloc_root updates and bit
set/clear, the pairing read side is before test_bit.

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Fixes: d2311e6985 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ barriers ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-13 23:10:56 +01:00
Johannes Thumshirn
26ef8493e1 btrfs: fix memory leak in qgroup accounting
When running xfstests on the current btrfs I get the following splat from
kmemleak:

unreferenced object 0xffff88821b2404e0 (size 32):
  comm "kworker/u4:7", pid 26663, jiffies 4295283698 (age 8.776s)
  hex dump (first 32 bytes):
    01 00 00 00 00 00 00 00 10 ff fd 26 82 88 ff ff  ...........&....
    10 ff fd 26 82 88 ff ff 20 ff fd 26 82 88 ff ff  ...&.... ..&....
  backtrace:
    [<00000000f94fd43f>] ulist_alloc+0x25/0x60 [btrfs]
    [<00000000fd023d99>] btrfs_find_all_roots_safe+0x41/0x100 [btrfs]
    [<000000008f17bd32>] btrfs_find_all_roots+0x52/0x70 [btrfs]
    [<00000000b7660afb>] btrfs_qgroup_rescan_worker+0x343/0x680 [btrfs]
    [<0000000058e66778>] btrfs_work_helper+0xac/0x1e0 [btrfs]
    [<00000000f0188930>] process_one_work+0x1cf/0x350
    [<00000000af5f2f8e>] worker_thread+0x28/0x3c0
    [<00000000b55a1add>] kthread+0x109/0x120
    [<00000000f88cbd17>] ret_from_fork+0x35/0x40

This corresponds to:

  (gdb) l *(btrfs_find_all_roots_safe+0x41)
  0x8d7e1 is in btrfs_find_all_roots_safe (fs/btrfs/backref.c:1413).
  1408
  1409            tmp = ulist_alloc(GFP_NOFS);
  1410            if (!tmp)
  1411                    return -ENOMEM;
  1412            *roots = ulist_alloc(GFP_NOFS);
  1413            if (!*roots) {
  1414                    ulist_free(tmp);
  1415                    return -ENOMEM;
  1416            }
  1417

Following the lifetime of the allocated 'roots' ulist, it gets freed
again in btrfs_qgroup_account_extent().

But this does not happen if the function is called with the
'BTRFS_FS_QUOTA_ENABLED' flag cleared, then btrfs_qgroup_account_extent()
does a short leave and directly returns.

Instead of directly returning we should jump to the 'out_free' in order to
free all resources as expected.

CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 17:56:17 +01:00
Josef Bacik
423a716cd7 btrfs: do not delete mismatched root refs
btrfs_del_root_ref() will simply WARN_ON() if the ref doesn't match in
any way, and then continue to delete the reference.  This shouldn't
happen, we have these values because there's more to the reference than
the original root and the sub root.  If any of these checks fail, return
-ENOENT.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 14:44:24 +01:00
Josef Bacik
d49d3287e7 btrfs: fix invalid removal of root ref
If we have the following sequence of events

  btrfs sub create A
  btrfs sub create A/B
  btrfs sub snap A C
  mkdir C/foo
  mv A/B C/foo
  rm -rf *

We will end up with a transaction abort.

The reason for this is because we create a root ref for B pointing to A.
When we create a snapshot of C we still have B in our tree, but because
the root ref points to A and not C we will make it appear to be empty.

The problem happens when we move B into C.  This removes the root ref
for B pointing to A and adds a ref of B pointing to C.  When we rmdir C
we'll see that we have a ref to our root and remove the root ref,
despite not actually matching our reference name.

Now btrfs_del_root_ref() allowing this to work is a bug as well, however
we know that this inode does not actually point to a root ref in the
first place, so we shouldn't be calling btrfs_del_root_ref() in the
first place and instead simply look up our dir index for this item and
do the rest of the removal.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 14:44:23 +01:00
Josef Bacik
045d3967b6 btrfs: rework arguments of btrfs_unlink_subvol
btrfs_unlink_subvol takes the name of the dentry and the root objectid
based on what kind of inode this is, either a real subvolume link or a
empty one that we inherited as a snapshot.  We need to fix how we unlink
in the case for BTRFS_EMPTY_SUBVOL_DIR_OBJECTID in the future, so rework
btrfs_unlink_subvol to just take the dentry and handle getting the right
objectid given the type of inode this is.  There is no functional change
here, simply pushing the work into btrfs_unlink_subvol() proper.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 14:43:34 +01:00
Linus Torvalds
3a562aee72 for-5.5-rc4-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl4PenMACgkQxWXV+ddt
 WDtsyg/6A86Da1zpLQKHiQtfhH629oeL/lFI0Cz+52xcgKSAUX8pHrWzKawSVpTT
 OTgksskHREPDjyDQytxAUKJnuplFEF7sCFNhzhsjQ7cvhC0lLDmW0VQr1Wob1/c4
 miW18YXN2DrYFQqdCeypvq1FItglxuBmsa9eITYzytRZcATY+3b506FhT/d8NIiH
 f3nnChUiNuyfAiez1SC4FavDpVma1O6SpPMk29wUN/+/Dnd4aBrfvhuygy7xyIOK
 rzotRR5xagQDpei+99lT2hys4Pv0yEOajoGmgbgpaZNP0vgQcBLaF5UTeMv/Ib2j
 i+muu1rWi4R6lS3hh30kRSifKmPF7I9JB1dbd5gPfZiERlDQk+qZWrPFv9l0lf7M
 R3jn04EaPVNr0dtftRFF2VvpIlUQYgIvwZHx4Td6Oy9XO0X4n5vlKxYg9aHmybJ2
 Vni13ad2oWNLo2Dd1eUYrEJ/QwGc1pq7JU9HiOST7yEJv1FN++AF4qTYTyvc7Yl4
 HrN349/2k2J9vU88BIlXIxYG73AL9lIpGF2ROiEw+xn4oOevDP/5HCP8ZvELoNVM
 NqhJGoURu+AhZ7Rm3RYAYySShjQPF+qw/Dnz8sowQsEFUQ990E1wUxWZwTOP6+JQ
 cdwzYiXYIExTghfQdUDdwNlpCXUbSuJxFOGjKmhBuzA7HHwGf1Q=
 =jGvW
 -----END PGP SIGNATURE-----

Merge tag 'for-5.5-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "A few fixes for btrfs:

   - blkcg accounting problem with compression that could stall writes

   - setting up blkcg bio for compression crashes due to NULL bdev
     pointer

   - fix possible infinite loop in writeback for nocow files (here
     possible means almost impossible, 13 things that need to happen to
     trigger it)"

* tag 'for-5.5-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  Btrfs: fix infinite loop during nocow writeback due to race
  btrfs: fix compressed write bio blkcg attribution
  btrfs: punt all bios created in btrfs_submit_compressed_write()
2020-01-03 12:20:21 -08:00
Filipe Manana
de7999afed Btrfs: fix infinite loop during nocow writeback due to race
When starting writeback for a range that covers part of a preallocated
extent, due to a race with writeback for another range that also covers
another part of the same preallocated extent, we can end up in an infinite
loop.

Consider the following example where for inode 280 we have two dirty
ranges:

  range A, from 294912 to 303103, 8192 bytes
  range B, from 348160 to 438271, 90112 bytes

and we have the following file extent item layout for our inode:

  leaf 38895616 gen 24544 total ptrs 29 free space 13820 owner 5
      (...)
      item 27 key (280 108 200704) itemoff 14598 itemsize 53
          extent data disk bytenr 0 nr 0 type 1 (regular)
          extent data offset 0 nr 94208 ram 94208
      item 28 key (280 108 294912) itemoff 14545 itemsize 53
          extent data disk bytenr 10433052672 nr 81920 type 2 (prealloc)
          extent data offset 0 nr 81920 ram 81920

Then the following happens:

1) Writeback starts for range B (from 348160 to 438271), execution of
   run_delalloc_nocow() starts;

2) The first iteration of run_delalloc_nocow()'s whil loop leaves us at
   the extent item at slot 28, pointing to the prealloc extent item
   covering the range from 294912 to 376831. This extent covers part of
   our range;

3) An ordered extent is created against that extent, covering the file
   range from 348160 to 376831 (28672 bytes);

4) We adjust 'cur_offset' to 376832 and move on to the next iteration of
   the while loop;

5) The call to btrfs_lookup_file_extent() leaves us at the same leaf,
   pointing to slot 29, 1 slot after the last item (the extent item
   we processed in the previous iteration);

6) Because we are a slot beyond the last item, we call btrfs_next_leaf(),
   which releases the search path before doing a another search for the
   last key of the leaf (280 108 294912);

7) Right after btrfs_next_leaf() released the path, and before it did
   another search for the last key of the leaf, writeback for the range
   A (from 294912 to 303103) completes (it was previously started at
   some point);

8) Upon completion of the ordered extent for range A, the prealloc extent
   we previously found got split into two extent items, one covering the
   range from 294912 to 303103 (8192 bytes), with a type of regular extent
   (and no longer prealloc) and another covering the range from 303104 to
   376831 (73728 bytes), with a type of prealloc and an offset of 8192
   bytes. So our leaf now has the following layout:

     leaf 38895616 gen 24544 total ptrs 31 free space 13664 owner 5
         (...)
         item 27 key (280 108 200704) itemoff 14598 itemsize 53
             extent data disk bytenr 0 nr 0 type 1
             extent data offset 0 nr 8192 ram 94208
         item 28 key (280 108 208896) itemoff 14545 itemsize 53
             extent data disk bytenr 10433142784 nr 86016 type 1
             extent data offset 0 nr 86016 ram 86016
         item 29 key (280 108 294912) itemoff 14492 itemsize 53
             extent data disk bytenr 10433052672 nr 81920 type 1
             extent data offset 0 nr 8192 ram 81920
         item 30 key (280 108 303104) itemoff 14439 itemsize 53
             extent data disk bytenr 10433052672 nr 81920 type 2
             extent data offset 8192 nr 73728 ram 81920

9) After btrfs_next_leaf() returns, we have our path pointing to that same
   leaf and at slot 30, since it has a key we didn't have before and it's
   the first key greater then the key that was previously the last key of
   the leaf (key (280 108 294912));

10) The extent item at slot 30 covers the range from 303104 to 376831
    which is in our target range, so we process it, despite having already
    created an ordered extent against this extent for the file range from
    348160 to 376831. This is because we skip to the next extent item only
    if its end is less than or equals to the start of our delalloc range,
    and not less than or equals to the current offset ('cur_offset');

11) As a result we compute 'num_bytes' as:

    num_bytes = min(end + 1, extent_end) - cur_offset;
              = min(438271 + 1, 376832) - 376832 = 0

12) We then call create_io_em() for a 0 bytes range starting at offset
    376832;

13) Then create_io_em() enters an infinite loop because its calls to
    btrfs_drop_extent_cache() do nothing due to the 0 length range
    passed to it. So no existing extent maps that cover the offset
    376832 get removed, and therefore calls to add_extent_mapping()
    return -EEXIST, resulting in an infinite loop. This loop from
    create_io_em() is the following:

    do {
        btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
                                em->start + em->len - 1, 0);
        write_lock(&em_tree->lock);
        ret = add_extent_mapping(em_tree, em, 1);
        write_unlock(&em_tree->lock);
        /*
         * The caller has taken lock_extent(), who could race with us
         * to add em?
         */
    } while (ret == -EEXIST);

Also, each call to btrfs_drop_extent_cache() triggers a warning because
the start offset passed to it (376832) is smaller then the end offset
(376832 - 1) passed to it by -1, due to the 0 length:

  [258532.052621] ------------[ cut here ]------------
  [258532.052643] WARNING: CPU: 0 PID: 9987 at fs/btrfs/file.c:602 btrfs_drop_extent_cache+0x3f4/0x590 [btrfs]
  (...)
  [258532.052672] CPU: 0 PID: 9987 Comm: fsx Tainted: G        W         5.4.0-rc7-btrfs-next-64 #1
  [258532.052673] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
  [258532.052691] RIP: 0010:btrfs_drop_extent_cache+0x3f4/0x590 [btrfs]
  (...)
  [258532.052695] RSP: 0018:ffffb4be0153f860 EFLAGS: 00010287
  [258532.052700] RAX: ffff975b445ee360 RBX: ffff975b44eb3e08 RCX: 0000000000000000
  [258532.052700] RDX: 0000000000038fff RSI: 0000000000039000 RDI: ffff975b445ee308
  [258532.052700] RBP: 0000000000038fff R08: 0000000000000000 R09: 0000000000000001
  [258532.052701] R10: ffff975b513c5c10 R11: 00000000e3c0cfa9 R12: 0000000000039000
  [258532.052703] R13: ffff975b445ee360 R14: 00000000ffffffef R15: ffff975b445ee308
  [258532.052705] FS:  00007f86a821de80(0000) GS:ffff975b76a00000(0000) knlGS:0000000000000000
  [258532.052707] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [258532.052708] CR2: 00007fdacf0f3ab4 CR3: 00000001f9d26002 CR4: 00000000003606f0
  [258532.052712] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [258532.052717] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [258532.052717] Call Trace:
  [258532.052718]  ? preempt_schedule_common+0x32/0x70
  [258532.052722]  ? ___preempt_schedule+0x16/0x20
  [258532.052741]  create_io_em+0xff/0x180 [btrfs]
  [258532.052767]  run_delalloc_nocow+0x942/0xb10 [btrfs]
  [258532.052791]  btrfs_run_delalloc_range+0x30b/0x520 [btrfs]
  [258532.052812]  ? find_lock_delalloc_range+0x221/0x250 [btrfs]
  [258532.052834]  writepage_delalloc+0xe4/0x140 [btrfs]
  [258532.052855]  __extent_writepage+0x110/0x4e0 [btrfs]
  [258532.052876]  extent_write_cache_pages+0x21c/0x480 [btrfs]
  [258532.052906]  extent_writepages+0x52/0xb0 [btrfs]
  [258532.052911]  do_writepages+0x23/0x80
  [258532.052915]  __filemap_fdatawrite_range+0xd2/0x110
  [258532.052938]  btrfs_fdatawrite_range+0x1b/0x50 [btrfs]
  [258532.052954]  start_ordered_ops+0x57/0xa0 [btrfs]
  [258532.052973]  ? btrfs_sync_file+0x225/0x490 [btrfs]
  [258532.052988]  btrfs_sync_file+0x225/0x490 [btrfs]
  [258532.052997]  __x64_sys_msync+0x199/0x200
  [258532.053004]  do_syscall_64+0x5c/0x250
  [258532.053007]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [258532.053010] RIP: 0033:0x7f86a7dfd760
  (...)
  [258532.053014] RSP: 002b:00007ffd99af0368 EFLAGS: 00000246 ORIG_RAX: 000000000000001a
  [258532.053016] RAX: ffffffffffffffda RBX: 0000000000000ec9 RCX: 00007f86a7dfd760
  [258532.053017] RDX: 0000000000000004 RSI: 000000000000836c RDI: 00007f86a8221000
  [258532.053019] RBP: 0000000000021ec9 R08: 0000000000000003 R09: 00007f86a812037c
  [258532.053020] R10: 0000000000000001 R11: 0000000000000246 R12: 00000000000074a3
  [258532.053021] R13: 00007f86a8221000 R14: 000000000000836c R15: 0000000000000001
  [258532.053032] irq event stamp: 1653450494
  [258532.053035] hardirqs last  enabled at (1653450493): [<ffffffff9dec69f9>] _raw_spin_unlock_irq+0x29/0x50
  [258532.053037] hardirqs last disabled at (1653450494): [<ffffffff9d4048ea>] trace_hardirqs_off_thunk+0x1a/0x20
  [258532.053039] softirqs last  enabled at (1653449852): [<ffffffff9e200466>] __do_softirq+0x466/0x6bd
  [258532.053042] softirqs last disabled at (1653449845): [<ffffffff9d4c8a0c>] irq_exit+0xec/0x120
  [258532.053043] ---[ end trace 8476fce13d9ce20a ]---

Which results in flooding dmesg/syslog since btrfs_drop_extent_cache()
uses WARN_ON() and not WARN_ON_ONCE().

So fix this issue by changing run_delalloc_nocow()'s loop to move to the
next extent item when the current extent item ends at at offset less than
or equals to the current offset instead of the start offset.

Fixes: 80ff385665 ("Btrfs: update nodatacow code v2")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-30 16:13:20 +01:00
Dennis Zhou
46bcff2bfc btrfs: fix compressed write bio blkcg attribution
Bio attribution is handled at bio_set_dev() as once we have a device, we
have a corresponding request_queue and then can derive the current css.
In special cases, we want to attribute to bio to someone else. This can
be done by calling bio_associate_blkg_from_css() or
kthread_associate_blkcg() depending on the scenario. Btrfs does this for
compressed writeback as they are handled by kworkers, so the latter can
be done here.

Commit 1a41802701 ("btrfs: drop bio_set_dev where not needed") removes
early bio_set_dev() calls prior to submit_stripe_bio(). This breaks the
above assumption that we'll have a request_queue when we are doing
association. To fix this, switch to using kthread_associate_blkcg().

Without this, we crash in btrfs/024:

  [ 3052.093088] BUG: kernel NULL pointer dereference, address: 0000000000000510
  [ 3052.107013] #PF: supervisor read access in kernel mode
  [ 3052.107014] #PF: error_code(0x0000) - not-present page
  [ 3052.107015] PGD 0 P4D 0
  [ 3052.107021] Oops: 0000 [#1] SMP
  [ 3052.138904] CPU: 42 PID: 201270 Comm: kworker/u161:0 Kdump: loaded Not tainted 5.5.0-rc1-00062-g4852d8ac90a9 #712
  [ 3052.138905] Hardware name: Quanta Tioga Pass Single Side 01-0032211004/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018
  [ 3052.138912] Workqueue: btrfs-delalloc btrfs_work_helper
  [ 3052.191375] RIP: 0010:bio_associate_blkg_from_css+0x1e/0x3c0
  [ 3052.191379] RSP: 0018:ffffc900210cfc90 EFLAGS: 00010282
  [ 3052.191380] RAX: 0000000000000000 RBX: ffff88bfe5573c00 RCX: 0000000000000000
  [ 3052.191382] RDX: ffff889db48ec2f0 RSI: ffff88bfe5573c00 RDI: ffff889db48ec2f0
  [ 3052.191386] RBP: 0000000000000800 R08: 0000000000203bb0 R09: ffff889db16b2400
  [ 3052.293364] R10: 0000000000000000 R11: ffff88a07fffde80 R12: ffff889db48ec2f0
  [ 3052.293365] R13: 0000000000001000 R14: ffff889de82bc000 R15: ffff889e2b7bdcc8
  [ 3052.293367] FS:  0000000000000000(0000) GS:ffff889ffba00000(0000) knlGS:0000000000000000
  [ 3052.293368] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [ 3052.293369] CR2: 0000000000000510 CR3: 0000000002611001 CR4: 00000000007606e0
  [ 3052.293370] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [ 3052.293371] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [ 3052.293372] PKRU: 55555554
  [ 3052.293376] Call Trace:
  [ 3052.402552]  btrfs_submit_compressed_write+0x137/0x390
  [ 3052.402558]  submit_compressed_extents+0x40f/0x4c0
  [ 3052.422401]  btrfs_work_helper+0x246/0x5a0
  [ 3052.422408]  process_one_work+0x200/0x570
  [ 3052.438601]  ? process_one_work+0x180/0x570
  [ 3052.438605]  worker_thread+0x4c/0x3e0
  [ 3052.438614]  kthread+0x103/0x140
  [ 3052.460735]  ? process_one_work+0x570/0x570
  [ 3052.460737]  ? kthread_mod_delayed_work+0xc0/0xc0
  [ 3052.460744]  ret_from_fork+0x24/0x30

Fixes: 1a41802701 ("btrfs: drop bio_set_dev where not needed")
Reported-by: Chris Murphy <chris@colorremedies.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-30 16:07:19 +01:00
Dennis Zhou
7b62e66cbb btrfs: punt all bios created in btrfs_submit_compressed_write()
Compressed writes happen in the background via kworkers. However, this
causes bios to be attributed to root bypassing any cgroup limits from
the actual writer. We tag the first bio with REQ_CGROUP_PUNT, which will
punt the bio to an appropriate cgroup specific workqueue and attribute
the IO properly. However, if btrfs_submit_compressed_write() creates a
new bio, we don't tag it the same way. Add the appropriate tagging for
subsequent bios.

Fixes: ec39f7696c ("Btrfs: use REQ_CGROUP_PUNT for worker thread submitted bios")
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-30 16:07:16 +01:00
Linus Torvalds
2187f215eb for-5.5-rc2-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl35CAYACgkQxWXV+ddt
 WDur/w//S98RvSZYMW5y2u+bPGe8sCpXwu5Sr87hTd14We8cBWj8684npUmSk7Dz
 rTRSjcf9EQe5dGoiHOzpKU0HcsLKy9DVTPigvVbmsWZfT9mqS6Y8wAKMw/7UUvyy
 n7aZk/yQGRow3gZ/Z/aF23JypRoDJK7DPbSMKUW164BnD5rCCyr+VdA8V+CwHgVh
 UN6UG0KMDbDKS4501DsX8418pcJN+a+Jo4oBGwN/guKRjK1oNcrhj34DNhvXlaOV
 Rlu7HcVtfHNDS/xD3DZS9mDIiycJ6qHkvC3hUsEmlKRoPEm1leVxTDLDf78oEy9H
 TrvH71hbvYjxaOU4YQbJG8ky+VwFfiV0Vrj73GgdEeRRDuMbYwUyFI5gYQOji8fS
 DuYdJGyslOqQovpii+jrPiT1TPG+97R4+qKH2DfOW1xUChYsbQHt7FOfzUbLe0JE
 dev9zV6MRqZ1qf70+Wt2LuWYFefpg9KVnsn8mcjoBwz9s9uImzLgpI90+DMPKOaU
 TizwJK3W5K3YLhqPHwPLvqVxKwVOzu00v01xl/bjTuyp982oPSCj3fj+FprGV1la
 OkqOYbKe2ZqEkQpINDu8I58oydTKywZGVsUl4ldJlcSY1hEDFCyeoAFmixaJbRbQ
 IdBcQnjD7qgvu9E4cA0kL8Ma1op2+1zw8sUOdXKFIDiNEqL5FPs=
 =AnHL
 -----END PGP SIGNATURE-----

Merge tag 'for-5.5-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "A mix of regression fixes and regular fixes for stable trees:

   - fix swapped error messages for qgroup enable/rescan

   - fixes for NO_HOLES feature with clone range

   - fix deadlock between iget/srcu lock/synchronize srcu while freeing
     an inode

   - fix double lock on subvolume cross-rename

   - tree log fixes
      * fix missing data checksums after replaying a log tree
      * also teach tree-checker about this problem
      * skip log replay on orphaned roots

   - fix maximum devices constraints for RAID1C -3 and -4

   - send: don't print warning on read-only mount regarding orphan
     cleanup

   - error handling fixes"

* tag 'for-5.5-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: send: remove WARN_ON for readonly mount
  btrfs: do not leak reloc root if we fail to read the fs root
  btrfs: skip log replay on orphaned roots
  btrfs: handle ENOENT in btrfs_uuid_tree_iterate
  btrfs: abort transaction after failed inode updates in create_subvol
  Btrfs: fix hole extent items with a zero size after range cloning
  Btrfs: fix removal logic of the tree mod log that leads to use-after-free issues
  Btrfs: make tree checker detect checksum items with overlapping ranges
  Btrfs: fix missing data checksums after replaying a log tree
  btrfs: return error pointer from alloc_test_extent_buffer
  btrfs: fix devs_max constraints for raid1c3 and raid1c4
  btrfs: tree-checker: Fix error format string for size_t
  btrfs: don't double lock the subvol_sem for rename exchange
  btrfs: handle error in btrfs_cache_block_group
  btrfs: do not call synchronize_srcu() in inode_tree_del
  Btrfs: fix cloning range with a hole when using the NO_HOLES feature
  btrfs: Fix error messages in qgroup_rescan_init
2019-12-17 13:27:02 -08:00
Anand Jain
fbd542971a btrfs: send: remove WARN_ON for readonly mount
We log warning if root::orphan_cleanup_state is not set to
ORPHAN_CLEANUP_DONE in btrfs_ioctl_send(). However if the filesystem is
mounted as readonly we skip the orphan item cleanup during the lookup
and root::orphan_cleanup_state remains at the init state 0 instead of
ORPHAN_CLEANUP_DONE (2). So during send in btrfs_ioctl_send() we hit the
warning as below.

  WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);

WARNING: CPU: 0 PID: 2616 at /Volumes/ws/btrfs-devel/fs/btrfs/send.c:7090 btrfs_ioctl_send+0xb2f/0x18c0 [btrfs]
::
RIP: 0010:btrfs_ioctl_send+0xb2f/0x18c0 [btrfs]
::
Call Trace:
::
_btrfs_ioctl_send+0x7b/0x110 [btrfs]
btrfs_ioctl+0x150a/0x2b00 [btrfs]
::
do_vfs_ioctl+0xa9/0x620
? __fget+0xac/0xe0
ksys_ioctl+0x60/0x90
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x49/0x130
entry_SYSCALL_64_after_hwframe+0x44/0xa9

Reproducer:
  mkfs.btrfs -fq /dev/sdb
  mount /dev/sdb /btrfs
  btrfs subvolume create /btrfs/sv1
  btrfs subvolume snapshot -r /btrfs/sv1 /btrfs/ss1
  umount /btrfs
  mount -o ro /dev/sdb /btrfs
  btrfs send /btrfs/ss1 -f /tmp/f

The warning exists because having orphan inodes could confuse send and
cause it to fail or produce incorrect streams.  The two cases that would
cause such send failures, which are already fixed are:

1) Inodes that were unlinked - these are orphanized and remain with a
   link count of 0. These caused send operations to fail because it
   expected to always find at least one path for an inode. However this
   is no longer a problem since send is now able to deal with such
   inodes since commit 46b2f4590a ("Btrfs: fix send failure when root
   has deleted files still open") and treats them as having been
   completely removed (the state after an orphan cleanup is performed).

2) Inodes that were in the process of being truncated. These resulted in
   send not knowing about the truncation and potentially issue write
   operations full of zeroes for the range from the new file size to the
   old file size. This is no longer a problem because we no longer
   create orphan items for truncation since commit f7e9e8fc79 ("Btrfs:
   stop creating orphan items for truncate").

As such before these commits, the WARN_ON here provided a clue in case
something went wrong. Instead of being a warning against the
root::orphan_cleanup_state value, it could have been more accurate by
checking if there were actually any orphan items, and then issue a
warning only if any exists, but that would be more expensive to check.
Since orphanized inodes no longer cause problems for send, just remove
the warning.

Reported-by: Christoph Anton Mitterer <calestyo@scientia.net>
Link: https://lore.kernel.org/linux-btrfs/21cb5e8d059f6e1496a903fa7bfc0a297e2f5370.camel@scientia.net/
CC: stable@vger.kernel.org # 4.19+
Suggested-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:10:46 +01:00
Josef Bacik
ca1aa2818a btrfs: do not leak reloc root if we fail to read the fs root
If we fail to read the fs root corresponding with a reloc root we'll
just break out and free the reloc roots.  But we remove our current
reloc_root from this list higher up, which means we'll leak this
reloc_root.  Fix this by adding ourselves back to the reloc_roots list
so we are properly cleaned up.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:10:45 +01:00
Josef Bacik
9bc574de59 btrfs: skip log replay on orphaned roots
My fsstress modifications coupled with generic/475 uncovered a failure
to mount and replay the log if we hit a orphaned root.  We do not want
to replay the log for an orphan root, but it's completely legitimate to
have an orphaned root with a log attached.  Fix this by simply skipping
replaying the log.  We still need to pin it's root node so that we do
not overwrite it while replaying other logs, as we re-read the log root
at every stage of the replay.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:10:45 +01:00
Josef Bacik
714cd3e8cb btrfs: handle ENOENT in btrfs_uuid_tree_iterate
If we get an -ENOENT back from btrfs_uuid_iter_rem when iterating the
uuid tree we'll just continue and do btrfs_next_item().  However we've
done a btrfs_release_path() at this point and no longer have a valid
path.  So increment the key and go back and do a normal search.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:10:45 +01:00
Josef Bacik
c7e54b5102 btrfs: abort transaction after failed inode updates in create_subvol
We can just abort the transaction here, and in fact do that for every
other failure in this function except these two cases.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:10:44 +01:00
Filipe Manana
147271e35b Btrfs: fix hole extent items with a zero size after range cloning
Normally when cloning a file range if we find an implicit hole at the end
of the range we assume it is because the NO_HOLES feature is enabled.
However that is not always the case. One well known case [1] is when we
have a power failure after mixing buffered and direct IO writes against
the same file.

In such cases we need to punch a hole in the destination file, and if
the NO_HOLES feature is not enabled, we need to insert explicit file
extent items to represent the hole. After commit 690a5dbfc5
("Btrfs: fix ENOSPC errors, leading to transaction aborts, when cloning
extents"), we started to insert file extent items representing the hole
with an item size of 0, which is invalid and should be 53 bytes (the size
of a btrfs_file_extent_item structure), resulting in all sorts of
corruptions and invalid memory accesses. This is detected by the tree
checker when we attempt to write a leaf to disk.

The problem can be sporadically triggered by test case generic/561 from
fstests. That test case does not exercise power failure and creates a new
filesystem when it starts, so it does not use a filesystem created by any
previous test that tests power failure. However the test does both
buffered and direct IO writes (through fsstress) and it's precisely that
which is creating the implicit holes in files. That happens even before
the commit mentioned earlier. I need to investigate why we get those
implicit holes to check if there is a real problem or not. For now this
change fixes the regression of introducing file extent items with an item
size of 0 bytes.

Fix the issue by calling btrfs_punch_hole_range() without passing a
btrfs_clone_extent_info structure, which ensures file extent items are
inserted to represent the hole with a correct item size. We were passing
a btrfs_clone_extent_info with a value of 0 for its 'item_size' field,
which was causing the insertion of file extent items with an item size
of 0.

[1] https://www.spinics.net/lists/linux-btrfs/msg75350.html

Reported-by: David Sterba <dsterba@suse.com>
Fixes: 690a5dbfc5 ("Btrfs: fix ENOSPC errors, leading to transaction aborts, when cloning extents")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:10:28 +01:00
Filipe Manana
6609fee889 Btrfs: fix removal logic of the tree mod log that leads to use-after-free issues
When a tree mod log user no longer needs to use the tree it calls
btrfs_put_tree_mod_seq() to remove itself from the list of users and
delete all no longer used elements of the tree's red black tree, which
should be all elements with a sequence number less then our equals to
the caller's sequence number. However the logic is broken because it
can delete and free elements from the red black tree that have a
sequence number greater then the caller's sequence number:

1) At a point in time we have sequence numbers 1, 2, 3 and 4 in the
   tree mod log;

2) The task which got assigned the sequence number 1 calls
   btrfs_put_tree_mod_seq();

3) Sequence number 1 is deleted from the list of sequence numbers;

4) The current minimum sequence number is computed to be the sequence
   number 2;

5) A task using sequence number 2 is at tree_mod_log_rewind() and gets
   a pointer to one of its elements from the red black tree through
   a call to tree_mod_log_search();

6) The task with sequence number 1 iterates the red black tree of tree
   modification elements and deletes (and frees) all elements with a
   sequence number less then or equals to 2 (the computed minimum sequence
   number) - it ends up only leaving elements with sequence numbers of 3
   and 4;

7) The task with sequence number 2 now uses the pointer to its element,
   already freed by the other task, at __tree_mod_log_rewind(), resulting
   in a use-after-free issue. When CONFIG_DEBUG_PAGEALLOC=y it produces
   a trace like the following:

  [16804.546854] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
  [16804.547451] CPU: 0 PID: 28257 Comm: pool Tainted: G        W         5.4.0-rc8-btrfs-next-51 #1
  [16804.548059] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
  [16804.548666] RIP: 0010:rb_next+0x16/0x50
  (...)
  [16804.550581] RSP: 0018:ffffb948418ef9b0 EFLAGS: 00010202
  [16804.551227] RAX: 6b6b6b6b6b6b6b6b RBX: ffff90e0247f6600 RCX: 6b6b6b6b6b6b6b6b
  [16804.551873] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff90e0247f6600
  [16804.552504] RBP: ffff90dffe0d4688 R08: 0000000000000001 R09: 0000000000000000
  [16804.553136] R10: ffff90dffa4a0040 R11: 0000000000000000 R12: 000000000000002e
  [16804.553768] R13: ffff90e0247f6600 R14: 0000000000001663 R15: ffff90dff77862b8
  [16804.554399] FS:  00007f4b197ae700(0000) GS:ffff90e036a00000(0000) knlGS:0000000000000000
  [16804.555039] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [16804.555683] CR2: 00007f4b10022000 CR3: 00000002060e2004 CR4: 00000000003606f0
  [16804.556336] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [16804.556968] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [16804.557583] Call Trace:
  [16804.558207]  __tree_mod_log_rewind+0xbf/0x280 [btrfs]
  [16804.558835]  btrfs_search_old_slot+0x105/0xd00 [btrfs]
  [16804.559468]  resolve_indirect_refs+0x1eb/0xc70 [btrfs]
  [16804.560087]  ? free_extent_buffer.part.19+0x5a/0xc0 [btrfs]
  [16804.560700]  find_parent_nodes+0x388/0x1120 [btrfs]
  [16804.561310]  btrfs_check_shared+0x115/0x1c0 [btrfs]
  [16804.561916]  ? extent_fiemap+0x59d/0x6d0 [btrfs]
  [16804.562518]  extent_fiemap+0x59d/0x6d0 [btrfs]
  [16804.563112]  ? __might_fault+0x11/0x90
  [16804.563706]  do_vfs_ioctl+0x45a/0x700
  [16804.564299]  ksys_ioctl+0x70/0x80
  [16804.564885]  ? trace_hardirqs_off_thunk+0x1a/0x20
  [16804.565461]  __x64_sys_ioctl+0x16/0x20
  [16804.566020]  do_syscall_64+0x5c/0x250
  [16804.566580]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [16804.567153] RIP: 0033:0x7f4b1ba2add7
  (...)
  [16804.568907] RSP: 002b:00007f4b197adc88 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  [16804.569513] RAX: ffffffffffffffda RBX: 00007f4b100210d8 RCX: 00007f4b1ba2add7
  [16804.570133] RDX: 00007f4b100210d8 RSI: 00000000c020660b RDI: 0000000000000003
  [16804.570726] RBP: 000055de05a6cfe0 R08: 0000000000000000 R09: 00007f4b197add44
  [16804.571314] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f4b197add48
  [16804.571905] R13: 00007f4b197add40 R14: 00007f4b100210d0 R15: 00007f4b197add50
  (...)
  [16804.575623] ---[ end trace 87317359aad4ba50 ]---

Fix this by making btrfs_put_tree_mod_seq() skip deletion of elements that
have a sequence number equals to the computed minimum sequence number, and
not just elements with a sequence number greater then that minimum.

Fixes: bd989ba359 ("Btrfs: add tree modification log functions")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:09:25 +01:00
Filipe Manana
ad1d8c4399 Btrfs: make tree checker detect checksum items with overlapping ranges
Having checksum items, either on the checksums tree or in a log tree, that
represent ranges that overlap each other is a sign of a corruption. Such
case confuses the checksum lookup code and can result in not being able to
find checksums or find stale checksums.

So add a check for such case.

This is motivated by a recent fix for a case where a log tree had checksum
items covering ranges that overlap each other due to extent cloning, and
resulted in missing checksums after replaying the log tree. It also helps
detect past issues such as stale and outdated checksums due to overlapping,
commit 27b9a8122f ("Btrfs: fix csum tree corruption, duplicate and
outdated checksums").

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:09:25 +01:00
Filipe Manana
40e046acbd Btrfs: fix missing data checksums after replaying a log tree
When logging a file that has shared extents (reflinked with other files or
with itself), we can end up logging multiple checksum items that cover
overlapping ranges. This confuses the search for checksums at log replay
time causing some checksums to never be added to the fs/subvolume tree.

Consider the following example of a file that shares the same extent at
offsets 0 and 256Kb:

   [ bytenr 13893632, offset 64Kb, len 64Kb  ]
   0                                         64Kb

   [ bytenr 13631488, offset 64Kb, len 192Kb ]
   64Kb                                      256Kb

   [ bytenr 13893632, offset 0, len 256Kb    ]
   256Kb                                     512Kb

When logging the inode, at tree-log.c:copy_items(), when processing the
file extent item at offset 0, we log a checksum item covering the range
13959168 to 14024704, which corresponds to 13893632 + 64Kb and 13893632 +
64Kb + 64Kb, respectively.

Later when processing the extent item at offset 256K, we log the checksums
for the range from 13893632 to 14155776 (which corresponds to 13893632 +
256Kb). These checksums get merged with the checksum item for the range
from 13631488 to 13893632 (13631488 + 256Kb), logged by a previous fsync.
So after this we get the two following checksum items in the log tree:

   (...)
   item 6 key (EXTENT_CSUM EXTENT_CSUM 13631488) itemoff 3095 itemsize 512
           range start 13631488 end 14155776 length 524288
   item 7 key (EXTENT_CSUM EXTENT_CSUM 13959168) itemoff 3031 itemsize 64
           range start 13959168 end 14024704 length 65536

The first one covers the range from the second one, they overlap.

So far this does not cause a problem after replaying the log, because
when replaying the file extent item for offset 256K, we copy all the
checksums for the extent 13893632 from the log tree to the fs/subvolume
tree, since searching for an checksum item for bytenr 13893632 leaves us
at the first checksum item, which covers the whole range of the extent.

However if we write 64Kb to file offset 256Kb for example, we will
not be able to find and copy the checksums for the last 128Kb of the
extent at bytenr 13893632, referenced by the file range 384Kb to 512Kb.

After writing 64Kb into file offset 256Kb we get the following extent
layout for our file:

   [ bytenr 13893632, offset 64K, len 64Kb   ]
   0                                         64Kb

   [ bytenr 13631488, offset 64Kb, len 192Kb ]
   64Kb                                      256Kb

   [ bytenr 14155776, offset 0, len 64Kb     ]
   256Kb                                     320Kb

   [ bytenr 13893632, offset 64Kb, len 192Kb ]
   320Kb                                     512Kb

After fsync'ing the file, if we have a power failure and then mount
the filesystem to replay the log, the following happens:

1) When replaying the file extent item for file offset 320Kb, we
   lookup for the checksums for the extent range from 13959168
   (13893632 + 64Kb) to 14155776 (13893632 + 256Kb), through a call
   to btrfs_lookup_csums_range();

2) btrfs_lookup_csums_range() finds the checksum item that starts
   precisely at offset 13959168 (item 7 in the log tree, shown before);

3) However that checksum item only covers 64Kb of data, and not 192Kb
   of data;

4) As a result only the checksums for the first 64Kb of data referenced
   by the file extent item are found and copied to the fs/subvolume tree.
   The remaining 128Kb of data, file range 384Kb to 512Kb, doesn't get
   the corresponding data checksums found and copied to the fs/subvolume
   tree.

5) After replaying the log userspace will not be able to read the file
   range from 384Kb to 512Kb, because the checksums are missing and
   resulting in an -EIO error.

The following steps reproduce this scenario:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt/sdc

  $ xfs_io -f -c "pwrite -S 0xa3 0 256K" /mnt/sdc/foobar
  $ xfs_io -c "fsync" /mnt/sdc/foobar
  $ xfs_io -c "pwrite -S 0xc7 256K 256K" /mnt/sdc/foobar

  $ xfs_io -c "reflink /mnt/sdc/foobar 320K 0 64K" /mnt/sdc/foobar
  $ xfs_io -c "fsync" /mnt/sdc/foobar

  $ xfs_io -c "pwrite -S 0xe5 256K 64K" /mnt/sdc/foobar
  $ xfs_io -c "fsync" /mnt/sdc/foobar

  <power failure>

  $ mount /dev/sdc /mnt/sdc
  $ md5sum /mnt/sdc/foobar
  md5sum: /mnt/sdc/foobar: Input/output error

  $ dmesg | tail
  [165305.003464] BTRFS info (device sdc): no csum found for inode 257 start 401408
  [165305.004014] BTRFS info (device sdc): no csum found for inode 257 start 405504
  [165305.004559] BTRFS info (device sdc): no csum found for inode 257 start 409600
  [165305.005101] BTRFS info (device sdc): no csum found for inode 257 start 413696
  [165305.005627] BTRFS info (device sdc): no csum found for inode 257 start 417792
  [165305.006134] BTRFS info (device sdc): no csum found for inode 257 start 421888
  [165305.006625] BTRFS info (device sdc): no csum found for inode 257 start 425984
  [165305.007278] BTRFS info (device sdc): no csum found for inode 257 start 430080
  [165305.008248] BTRFS warning (device sdc): csum failed root 5 ino 257 off 393216 csum 0x1337385e expected csum 0x00000000 mirror 1
  [165305.009550] BTRFS warning (device sdc): csum failed root 5 ino 257 off 393216 csum 0x1337385e expected csum 0x00000000 mirror 1

Fix this simply by deleting first any checksums, from the log tree, for the
range of the extent we are logging at copy_items(). This ensures we do not
get checksum items in the log tree that have overlapping ranges.

This is a long time issue that has been present since we have the clone
(and deduplication) ioctl, and can happen both when an extent is shared
between different files and within the same file.

A test case for fstests follows soon.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:09:24 +01:00
Dan Carpenter
b6293c821e btrfs: return error pointer from alloc_test_extent_buffer
Callers of alloc_test_extent_buffer have not correctly interpreted the
return value as error pointer, as alloc_test_extent_buffer should behave
as alloc_extent_buffer. The self-tests were unaffected but
btrfs_find_create_tree_block could call both functions and that would
cause problems up in the call chain.

Fixes: faa2dbf004 ("Btrfs: add sanity tests for new qgroup accounting code")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:09:24 +01:00