Capture the max TDP level during kvm_configure_mmu() instead of using a
kvm_x86_ops hook to do it at every vCPU creation.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calculate the desired TDP level on the fly using the max TDP level and
MAXPHYADDR instead of doing the same when CPUID is updated. This avoids
the hidden dependency on cpuid_maxphyaddr() in vmx_get_tdp_level() and
also standardizes the "use 5-level paging iff MAXPHYADDR > 48" behavior
across x86.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the shadow_root_level from the current MMU as the root level for the
PGD, i.e. for VMX's EPTP. This eliminates the weird dependency between
VMX and the MMU where both must independently calculate the same root
level for things to work correctly. Temporarily keep VMX's calculation
of the level and use it to WARN if the incoming level diverges.
Opportunistically refactor kvm_mmu_load_pgd() to avoid indentation hell,
and rename a 'cr3' param in the load_mmu_pgd prototype that managed to
survive the cr3 purge.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds a new capability KVM_CAP_SMALLER_MAXPHYADDR which
allows userspace to query if the underlying architecture would
support GUEST_MAXPHYADDR < HOST_MAXPHYADDR and hence act accordingly
(e.g. qemu can decide if it should warn for -cpu ..,phys-bits=X)
The complications in this patch are due to unexpected (but documented)
behaviour we see with NPF vmexit handling in AMD processor. If
SVM is modified to add guest physical address checks in the NPF
and guest #PF paths, we see the followning error multiple times in
the 'access' test in kvm-unit-tests:
test pte.p pte.36 pde.p: FAIL: pte 2000021 expected 2000001
Dump mapping: address: 0x123400000000
------L4: 24c3027
------L3: 24c4027
------L2: 24c5021
------L1: 1002000021
This is because the PTE's accessed bit is set by the CPU hardware before
the NPF vmexit. This is handled completely by hardware and cannot be fixed
in software.
Therefore, availability of the new capability depends on a boolean variable
allow_smaller_maxphyaddr which is set individually by VMX and SVM init
routines. On VMX it's always set to true, on SVM it's only set to true
when NPT is not enabled.
CC: Tom Lendacky <thomas.lendacky@amd.com>
CC: Babu Moger <babu.moger@amd.com>
Signed-off-by: Mohammed Gamal <mgamal@redhat.com>
Message-Id: <20200710154811.418214-10-mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We would like to introduce a callback to update the #PF intercept
when CPUID changes. Just reuse update_bp_intercept since VMX is
already using update_exception_bitmap instead of a bespoke function.
While at it, remove an unnecessary assignment in the SVM version,
which is already done in the caller (kvm_arch_vcpu_ioctl_set_guest_debug)
and has nothing to do with the exception bitmap.
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Also no point of it being inline since it's always called through
function pointers. So remove that.
Signed-off-by: Mohammed Gamal <mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200710154811.418214-3-mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move x86's 'struct kvm_mmu_memory_cache' to common code in anticipation
of moving the entire x86 implementation code to common KVM and reusing
it for arm64 and MIPS. Add a new architecture specific asm/kvm_types.h
to control the existence and parameters of the struct. The new header
is needed to avoid a chicken-and-egg problem with asm/kvm_host.h as all
architectures define instances of the struct in their vCPU structs.
Add an asm-generic version of kvm_types.h to avoid having empty files on
PPC and s390 in the long term, and for arm64 and mips in the short term.
Suggested-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-15-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a gfp_zero flag to 'struct kvm_mmu_memory_cache' and use it to
control __GFP_ZERO instead of hardcoding a call to kmem_cache_zalloc().
A future patch needs such a flag for the __get_free_page() path, as
gfn arrays do not need/want the allocator to zero the memory. Convert
the kmem_cache paths to __GFP_ZERO now so as to avoid a weird and
inconsistent API in the future.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-11-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use separate caches for allocating shadow pages versus gfn arrays. This
sets the stage for specifying __GFP_ZERO when allocating shadow pages
without incurring extra cost for gfn arrays.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track the kmem_cache used for non-page KVM MMU memory caches instead of
passing in the associated kmem_cache when filling the cache. This will
allow consolidating code and other cleanups.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the functions which are inside the RCU off region into the
non-instrumentable text section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200708195322.037311579@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The name of callback cpuid_update() is misleading that it's not about
updating CPUID settings of vcpu but updating the configurations of vcpu
based on the CPUIDs. So rename it to vcpu_after_set_cpuid().
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200709043426.92712-5-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of creating the mask for guest CR4 reserved bits in kvm_valid_cr4(),
do it in kvm_update_cpuid() so that it can be reused instead of creating it
each time kvm_valid_cr4() is called.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <1594168797-29444-2-git-send-email-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make 'struct kvm_mmu_page' MMU-only, nothing outside of the MMU should
be poking into the gory details of shadow pages.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both the vcpu_vmx structure and the vcpu_svm structure have a
'last_cpu' field. Move the common field into the kvm_vcpu_arch
structure. For clarity, rename it to 'last_vmentry_cpu.'
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200603235623.245638-6-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move .write_log_dirty() into kvm_x86_nested_ops to help differentiate it
from the non-nested dirty log hooks. And because it's a nested-only
operation.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622215832.22090-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly pass the L2 GPA to kvm_arch_write_log_dirty(), which for all
intents and purposes is vmx_write_pml_buffer(), instead of having the
latter pull the GPA from vmcs.GUEST_PHYSICAL_ADDRESS. If the dirty bit
update is the result of KVM emulation (rare for L2), then the GPA in the
VMCS may be stale and/or hold a completely unrelated GPA.
Fixes: c5f983f6e8 ("nVMX: Implement emulated Page Modification Logging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622215832.22090-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following race can cause lost map update events:
cpu1 cpu2
apic_map_dirty = true
------------------------------------------------------------
kvm_recalculate_apic_map:
pass check
mutex_lock(&kvm->arch.apic_map_lock);
if (!kvm->arch.apic_map_dirty)
and in process of updating map
-------------------------------------------------------------
other calls to
apic_map_dirty = true might be too late for affected cpu
-------------------------------------------------------------
apic_map_dirty = false
-------------------------------------------------------------
kvm_recalculate_apic_map:
bail out on
if (!kvm->arch.apic_map_dirty)
To fix it, record the beginning of an update of the APIC map in
apic_map_dirty. If another APIC map change switches apic_map_dirty
back to DIRTY during the update, kvm_recalculate_apic_map should not
make it CLEAN, and the other caller will go through the slow path.
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'Page not present' event may or may not get injected depending on
guest's state. If the event wasn't injected, there is no need to
inject the corresponding 'page ready' event as the guest may get
confused. E.g. Linux thinks that the corresponding 'page not present'
event wasn't delivered *yet* and allocates a 'dummy entry' for it.
This entry is never freed.
Note, 'wakeup all' events have no corresponding 'page not present'
event and always get injected.
s390 seems to always be able to inject 'page not present', the
change is effectively a nop.
Suggested-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200610175532.779793-2-vkuznets@redhat.com>
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=208081
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make x86_fpu_cache static now that FPU allocation and destruction is
handled entirely by common x86 code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200608180218.20946-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Move the arch-specific code into arch/arm64/kvm
- Start the post-32bit cleanup
- Cherry-pick a few non-invasive pre-NV patches
x86:
- Rework of TLB flushing
- Rework of event injection, especially with respect to nested virtualization
- Nested AMD event injection facelift, building on the rework of generic code
and fixing a lot of corner cases
- Nested AMD live migration support
- Optimization for TSC deadline MSR writes and IPIs
- Various cleanups
- Asynchronous page fault cleanups (from tglx, common topic branch with tip tree)
- Interrupt-based delivery of asynchronous "page ready" events (host side)
- Hyper-V MSRs and hypercalls for guest debugging
- VMX preemption timer fixes
s390:
- Cleanups
Generic:
- switch vCPU thread wakeup from swait to rcuwait
The other architectures, and the guest side of the asynchronous page fault
work, will come next week.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7VJcYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPf6QgAq4wU5wdd1lTGz/i3DIhNVJNJgJlp
ozLzRdMaJbdbn5RpAK6PEBd9+pt3+UlojpFB3gpJh2Nazv2OzV4yLQgXXXyyMEx1
5Hg7b4UCJYDrbkCiegNRv7f/4FWDkQ9dx++RZITIbxeskBBCEI+I7GnmZhGWzuC4
7kj4ytuKAySF2OEJu0VQF6u0CvrNYfYbQIRKBXjtOwuRK4Q6L63FGMJpYo159MBQ
asg3B1jB5TcuGZ9zrjL5LkuzaP4qZZHIRs+4kZsH9I6MODHGUxKonrkablfKxyKy
CFK+iaHCuEXXty5K0VmWM3nrTfvpEjVjbMc7e1QGBQ5oXsDM0pqn84syRg==
=v7Wn
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Move the arch-specific code into arch/arm64/kvm
- Start the post-32bit cleanup
- Cherry-pick a few non-invasive pre-NV patches
x86:
- Rework of TLB flushing
- Rework of event injection, especially with respect to nested
virtualization
- Nested AMD event injection facelift, building on the rework of
generic code and fixing a lot of corner cases
- Nested AMD live migration support
- Optimization for TSC deadline MSR writes and IPIs
- Various cleanups
- Asynchronous page fault cleanups (from tglx, common topic branch
with tip tree)
- Interrupt-based delivery of asynchronous "page ready" events (host
side)
- Hyper-V MSRs and hypercalls for guest debugging
- VMX preemption timer fixes
s390:
- Cleanups
Generic:
- switch vCPU thread wakeup from swait to rcuwait
The other architectures, and the guest side of the asynchronous page
fault work, will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits)
KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test
KVM: check userspace_addr for all memslots
KVM: selftests: update hyperv_cpuid with SynDBG tests
x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls
x86/kvm/hyper-v: enable hypercalls regardless of hypercall page
x86/kvm/hyper-v: Add support for synthetic debugger interface
x86/hyper-v: Add synthetic debugger definitions
KVM: selftests: VMX preemption timer migration test
KVM: nVMX: Fix VMX preemption timer migration
x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit
KVM: x86/pmu: Support full width counting
KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in
KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT
KVM: x86: acknowledgment mechanism for async pf page ready notifications
KVM: x86: interrupt based APF 'page ready' event delivery
KVM: introduce kvm_read_guest_offset_cached()
KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present()
KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info
Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously"
KVM: VMX: Replace zero-length array with flexible-array
...
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAl7WhbkTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXlUnB/0R8dBVSeRfNmyJaadBWKFc/LffwKLD
CQ8PVv22ffkCaEYV2tpnhS6NmkERLNdson4Uo02tVUsjOJ4CrWHTn7aKqYWZyA+O
qv/PiD9TBXJVYMVP2kkyaJlK5KoqeAWBr2kM16tT0cxQmlhE7g0Xo2wU9vhRbU+4
i4F0jffe4lWps65TK392CsPr6UEv1HSel191Py5zLzYqChT+L8WfahmBt3chhsV5
TIUJYQvBwxecFRla7yo+4sUn37ZfcTqD1hCWSr0zs4psW0ge7d80kuaNZS+EqxND
fGm3Bp1BlUuDKsJ/D+AaHLCR47PUZ9t9iMDjZS/ovYglLFwi+h3tAV+W
=LwVR
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyper-v updates from Wei Liu:
- a series from Andrea to support channel reassignment
- a series from Vitaly to clean up Vmbus message handling
- a series from Michael to clean up and augment hyperv-tlfs.h
- patches from Andy to clean up GUID usage in Hyper-V code
- a few other misc patches
* tag 'hyperv-next-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (29 commits)
Drivers: hv: vmbus: Resolve more races involving init_vp_index()
Drivers: hv: vmbus: Resolve race between init_vp_index() and CPU hotplug
vmbus: Replace zero-length array with flexible-array
Driver: hv: vmbus: drop a no long applicable comment
hyper-v: Switch to use UUID types directly
hyper-v: Replace open-coded variant of %*phN specifier
hyper-v: Supply GUID pointer to printf() like functions
hyper-v: Use UUID API for exporting the GUID (part 2)
asm-generic/hyperv: Add definitions for Get/SetVpRegister hypercalls
x86/hyperv: Split hyperv-tlfs.h into arch dependent and independent files
x86/hyperv: Remove HV_PROCESSOR_POWER_STATE #defines
KVM: x86: hyperv: Remove duplicate definitions of Reference TSC Page
drivers: hv: remove redundant assignment to pointer primary_channel
scsi: storvsc: Re-init stor_chns when a channel interrupt is re-assigned
Drivers: hv: vmbus: Introduce the CHANNELMSG_MODIFYCHANNEL message type
Drivers: hv: vmbus: Synchronize init_vp_index() vs. CPU hotplug
Drivers: hv: vmbus: Remove the unused HV_LOCALIZED channel affinity logic
PCI: hv: Prepare hv_compose_msi_msg() for the VMBus-channel-interrupt-to-vCPU reassignment functionality
Drivers: hv: vmbus: Use a spin lock for synchronizing channel scheduling vs. channel removal
hv_utils: Always execute the fcopy and vss callbacks in a tasklet
...
Add support for Hyper-V synthetic debugger (syndbg) interface.
The syndbg interface is using MSRs to emulate a way to send/recv packets
data.
The debug transport dll (kdvm/kdnet) will identify if Hyper-V is enabled
and if it supports the synthetic debugger interface it will attempt to
use it, instead of trying to initialize a network adapter.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Jon Doron <arilou@gmail.com>
Message-Id: <20200529134543.1127440-4-arilou@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel CPUs have a new alternative MSR range (starting from MSR_IA32_PMC0)
for GP counters that allows writing the full counter width. Enable this
range from a new capability bit (IA32_PERF_CAPABILITIES.FW_WRITE[bit 13]).
The guest would query CPUID to get the counter width, and sign extends
the counter values as needed. The traditional MSRs always limit to 32bit,
even though the counter internally is larger (48 or 57 bits).
When the new capability is set, use the alternative range which do not
have these restrictions. This lowers the overhead of perf stat slightly
because it has to do less interrupts to accumulate the counter value.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20200529074347.124619-3-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If two page ready notifications happen back to back the second one is not
delivered and the only mechanism we currently have is
kvm_check_async_pf_completion() check in vcpu_run() loop. The check will
only be performed with the next vmexit when it happens and in some cases
it may take a while. With interrupt based page ready notification delivery
the situation is even worse: unlike exceptions, interrupts are not handled
immediately so we must check if the slot is empty. This is slow and
unnecessary. Introduce dedicated MSR_KVM_ASYNC_PF_ACK MSR to communicate
the fact that the slot is free and host should check its notification
queue. Mandate using it for interrupt based 'page ready' APF event
delivery.
As kvm_check_async_pf_completion() is going away from vcpu_run() we need
a way to communicate the fact that vcpu->async_pf.done queue has
transitioned from empty to non-empty state. Introduce
kvm_arch_async_page_present_queued() and KVM_REQ_APF_READY to do the job.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-7-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Concerns were expressed around APF delivery via synthetic #PF exception as
in some cases such delivery may collide with real page fault. For 'page
ready' notifications we can easily switch to using an interrupt instead.
Introduce new MSR_KVM_ASYNC_PF_INT mechanism and deprecate the legacy one.
One notable difference between the two mechanisms is that interrupt may not
get handled immediately so whenever we would like to deliver next event
(regardless of its type) we must be sure the guest had read and cleared
previous event in the slot.
While on it, get rid on 'type 1/type 2' names for APF events in the
documentation as they are causing confusion. Use 'page not present'
and 'page ready' everywhere instead.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An innocent reader of the following x86 KVM code:
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
return true;
...
may get very confused: if APF mechanism is not enabled, why do we report
that we 'can inject async page present'? In reality, upon injection
kvm_arch_async_page_present() will check the same condition again and,
in case APF is disabled, will just drop the item. This is fine as the
guest which deliberately disabled APF doesn't expect to get any APF
notifications.
Rename kvm_arch_can_inject_async_page_present() to
kvm_arch_can_dequeue_async_page_present() to make it clear what we are
checking: if the item can be dequeued (meaning either injected or just
dropped).
On s390 kvm_arch_can_inject_async_page_present() always returns 'true' so
the rename doesn't matter much.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, APF mechanism relies on the #PF abuse where the token is being
passed through CR2. If we switch to using interrupts to deliver page-ready
notifications we need a different way to pass the data. Extent the existing
'struct kvm_vcpu_pv_apf_data' with token information for page-ready
notifications.
While on it, rename 'reason' to 'flags'. This doesn't change the semantics
as we only have reasons '1' and '2' and these can be treated as bit flags
but KVM_PV_REASON_PAGE_READY is going away with interrupt based delivery
making 'reason' name misleading.
The newly introduced apf_put_user_ready() temporary puts both flags and
token information, this will be changed to put token only when we switch
to interrupt based notifications.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The L1 flags can be found in the save area of svm->nested.hsave, fish
it from there so that there is one fewer thing to migrate.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the int_ctl field is stored in svm->nested.ctl.int_ctl, we can
use it instead of vcpu->arch.hflags to check whether L2 is running
in V_INTR_MASKING mode.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows exceptions injected by the emulator to be properly delivered
as vmexits. The code also becomes simpler, because we can just let all
L0-intercepted exceptions go through the usual path. In particular, our
emulation of the VMX #DB exit qualification is very much simplified,
because the vmexit injection path can use kvm_deliver_exception_payload
to update DR6.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case an interrupt arrives after nested.check_events but before the
call to kvm_cpu_has_injectable_intr, we could end up enabling the interrupt
window even if the interrupt is actually going to be a vmexit. This is
useless rather than harmful, but it really complicates reasoning about
SVM's handling of the VINTR intercept. We'd like to never bother with
the VINTR intercept if V_INTR_MASKING=1 && INTERCEPT_INTR=1, because in
that case there is no interrupt window and we can just exit the nested
guest whenever we want.
This patch moves the opening of the interrupt window inside
inject_pending_event. This consolidates the check for pending
interrupt/NMI/SMI in one place, and makes KVM's usage of immediate
exits more consistent, extending it beyond just nested virtualization.
There are two functional changes here. They only affect corner cases,
but overall they simplify the inject_pending_event.
- re-injection of still-pending events will also use req_immediate_exit
instead of using interrupt-window intercepts. This should have no impact
on performance on Intel since it simply replaces an interrupt-window
or NMI-window exit for a preemption-timer exit. On AMD, which has no
equivalent of the preemption time, it may incur some overhead but an
actual effect on performance should only be visible in pathological cases.
- kvm_arch_interrupt_allowed and kvm_vcpu_has_events will return true
if an interrupt, NMI or SMI is blocked by nested_run_pending. This
makes sense because entering the VM will allow it to make progress
and deliver the event.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Take a u32 for the index in has_emulated_msr() to match hardware, which
treats MSR indices as unsigned 32-bit values. Functionally, taking a
signed int doesn't cause problems with the current code base, but could
theoretically cause problems with 32-bit KVM, e.g. if the index were
checked via a less-than statement, which would evaluate incorrectly for
MSR indices with bit 31 set.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200218234012.7110-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Hyper-V Reference TSC Page structure is defined twice. struct
ms_hyperv_tsc_page has padding out to a full 4 Kbyte page size. But
the padding is not needed because the declaration includes a union
with HV_HYP_PAGE_SIZE. KVM uses the second definition, which is
struct _HV_REFERENCE_TSC_PAGE, because it does not have the padding.
Fix the duplication by removing the padding from ms_hyperv_tsc_page.
Fix up the KVM code to use it. Remove the no longer used struct
_HV_REFERENCE_TSC_PAGE.
There is no functional change.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20200422195737.10223-2-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Two new stats for exposing halt-polling cpu usage:
halt_poll_success_ns
halt_poll_fail_ns
Thus sum of these 2 stats is the total cpu time spent polling. "success"
means the VCPU polled until a virtual interrupt was delivered. "fail"
means the VCPU had to schedule out (either because the maximum poll time
was reached or it needed to yield the CPU).
To avoid touching every arch's kvm_vcpu_stat struct, only update and
export halt-polling cpu usage stats if we're on x86.
Exporting cpu usage as a u64 and in nanoseconds means we will overflow at
~500 years, which seems reasonably large.
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Jon Cargille <jcargill@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200508182240.68440-1-jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hrtimer used to emulate the VMX-preemption timer must be pinned to
the same logical processor as the vCPU thread to be interrupted if we
want to have any hope of adhering to the architectural specification
of the VMX-preemption timer. Even with this change, the emulated
VMX-preemption timer VM-exit occasionally arrives too late.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200508203643.85477-4-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds a fastpath_t typedef since enum lines are a bit long, and replace
EXIT_FASTPATH_SKIP_EMUL_INS with two new exit_fastpath_completion enum values.
- EXIT_FASTPATH_EXIT_HANDLED kvm will still go through it's full run loop,
but it would skip invoking the exit handler.
- EXIT_FASTPATH_REENTER_GUEST complete fastpath, guest can be re-entered
without invoking the exit handler or going
back to vcpu_run
Tested-by: Haiwei Li <lihaiwei@tencent.com>
Cc: Haiwei Li <lihaiwei@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1588055009-12677-4-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Forcing the ASYNC_PF_PER_VCPU to be power of two is much easier to be
used rather than calling roundup_pow_of_two() from time to time. Do
this by adding a BUILD_BUG_ON() inside the hash function.
Another point is that generally async pf does not allow concurrency
over ASYNC_PF_PER_VCPU after all (see kvm_setup_async_pf()), so it
does not make much sense either to have it not a power of two or some
of the entries will definitely be wasted.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20200416155859.267366-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace KVM's PT_PAGE_TABLE_LEVEL, PT_DIRECTORY_LEVEL and PT_PDPE_LEVEL
with the kernel's PG_LEVEL_4K, PG_LEVEL_2M and PG_LEVEL_1G. KVM's
enums are borderline impossible to remember and result in code that is
visually difficult to audit, e.g.
if (!enable_ept)
ept_lpage_level = 0;
else if (cpu_has_vmx_ept_1g_page())
ept_lpage_level = PT_PDPE_LEVEL;
else if (cpu_has_vmx_ept_2m_page())
ept_lpage_level = PT_DIRECTORY_LEVEL;
else
ept_lpage_level = PT_PAGE_TABLE_LEVEL;
versus
if (!enable_ept)
ept_lpage_level = 0;
else if (cpu_has_vmx_ept_1g_page())
ept_lpage_level = PG_LEVEL_1G;
else if (cpu_has_vmx_ept_2m_page())
ept_lpage_level = PG_LEVEL_2M;
else
ept_lpage_level = PG_LEVEL_4K;
No functional change intended.
Suggested-by: Barret Rhoden <brho@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428005422.4235-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename PT_MAX_HUGEPAGE_LEVEL to KVM_MAX_HUGEPAGE_LEVEL and make it a
separate define in anticipation of dropping KVM's PT_*_LEVEL enums in
favor of the kernel's PG_LEVEL_* enums.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428005422.4235-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vcpu->arch.guest_xstate_size lost its only user since commit df1daba7d1
("KVM: x86: support XSAVES usage in the host"), so clean it up.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200429154312.1411-1-xiaoyao.li@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Snapshot the TDP level now that it's invariant (SVM) or dependent only
on host capabilities and guest CPUID (VMX). This avoids having to call
kvm_x86_ops.get_tdp_level() when initializing a TDP MMU and/or
calculating the page role, and thus avoids the associated retpoline.
Drop the WARN in vmx_get_tdp_level() as updating CPUID while L2 is
active is legal, if dodgy.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-11-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move CR0 caching into the standard register caching mechanism in order
to take advantage of the availability checks provided by regs_avail.
This avoids multiple VMREADs in the (uncommon) case where kvm_read_cr0()
is called multiple times in a single VM-Exit, and more importantly
eliminates a kvm_x86_ops hook, saves a retpoline on SVM when reading
CR0, and squashes the confusing naming discrepancy of "cache_reg" vs.
"decache_cr0_guest_bits".
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move CR4 caching into the standard register caching mechanism in order
to take advantage of the availability checks provided by regs_avail.
This avoids multiple VMREADs and retpolines (when configured) during
nested VMX transitions as kvm_read_cr4_bits() is invoked multiple times
on each transition, e.g. when stuffing CR0 and CR3.
As an added bonus, this eliminates a kvm_x86_ops hook, saves a retpoline
on SVM when reading CR4, and squashes the confusing naming discrepancy
of "cache_reg" vs. "decache_cr4_guest_bits".
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-7-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Save L1's TSC offset in 'struct kvm_vcpu_arch' and drop the kvm_x86_ops
hook read_l1_tsc_offset(). This avoids a retpoline (when configured)
when reading L1's effective TSC, which is done at least once on every
VM-Exit.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an argument to interrupt_allowed and nmi_allowed, to checking if
interrupt injection is blocked. Use the hook to handle the case where
an interrupt arrives between check_nested_events() and the injection
logic. Drop the retry of check_nested_events() that hack-a-fixed the
same condition.
Blocking injection is also a bit of a hack, e.g. KVM should do exiting
and non-exiting interrupt processing in a single pass, but it's a more
precise hack. The old comment is also misleading, e.g. KVM_REQ_EVENT is
purely an optimization, setting it on every run loop (which KVM doesn't
do) should not affect functionality, only performance.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-13-sean.j.christopherson@intel.com>
[Extend to SVM, add SMI and NMI. Even though NMI and SMI cannot come
asynchronously right now, making the fix generic is easy and removes a
special case. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return an actual bool for kvm_x86_ops' {interrupt_nmi}_allowed() hook to
better reflect the return semantics, and to avoid creating an even
bigger mess when the related VMX code is refactored in upcoming patches.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a kvm_x86_ops hook to detect a nested pending "hypervisor timer" and
use it to effectively open a window for servicing the expired timer.
Like pending SMIs on VMX, opening a window simply means requesting an
immediate exit.
This fixes a bug where an expired VMX preemption timer (for L2) will be
delayed and/or lost if a pending exception is injected into L2. The
pending exception is rightly prioritized by vmx_check_nested_events()
and injected into L2, with the preemption timer left pending. Because
no window opened, L2 is free to run uninterrupted.
Fixes: f4124500c2 ("KVM: nVMX: Fully emulate preemption timer")
Reported-by: Jim Mattson <jmattson@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Peter Shier <pshier@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-3-sean.j.christopherson@intel.com>
[Check it in kvm_vcpu_has_events too, to ensure that the preemption
timer is serviced promptly even if the vCPU is halted and L1 is not
intercepting HLT. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>