Currently, PREEMPT_RCU readers are enqueued upon entry to the scheduler.
This is inefficient because enqueuing is required only if there is a
context switch, and entry to the scheduler does not guarantee a context
switch.
The commit therefore moves the enqueuing to immediately precede the
call to switch_to() from the scheduler.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge in latest upstream (and the latest perf development tree),
to prepare for tooling changes, and also to pick up v3.4 MM
changes that the uprobes code needs to take care of.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replaces the seccomp_t typedef with struct seccomp to match modern
kernel style.
Signed-off-by: Will Drewry <wad@chromium.org>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Acked-by: Eric Paris <eparis@redhat.com>
v18: rebase
...
v14: rebase/nochanges
v13: rebase on to 88ebdda615
v12: rebase on to linux-next
v8-v11: no changes
v7: struct seccomp_struct -> struct seccomp
v6: original inclusion in this series.
Signed-off-by: James Morris <james.l.morris@oracle.com>
With this change, calling
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)
disables privilege granting operations at execve-time. For example, a
process will not be able to execute a setuid binary to change their uid
or gid if this bit is set. The same is true for file capabilities.
Additionally, LSM_UNSAFE_NO_NEW_PRIVS is defined to ensure that
LSMs respect the requested behavior.
To determine if the NO_NEW_PRIVS bit is set, a task may call
prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0);
It returns 1 if set and 0 if it is not set. If any of the arguments are
non-zero, it will return -1 and set errno to -EINVAL.
(PR_SET_NO_NEW_PRIVS behaves similarly.)
This functionality is desired for the proposed seccomp filter patch
series. By using PR_SET_NO_NEW_PRIVS, it allows a task to modify the
system call behavior for itself and its child tasks without being
able to impact the behavior of a more privileged task.
Another potential use is making certain privileged operations
unprivileged. For example, chroot may be considered "safe" if it cannot
affect privileged tasks.
Note, this patch causes execve to fail when PR_SET_NO_NEW_PRIVS is
set and AppArmor is in use. It is fixed in a subsequent patch.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Will Drewry <wad@chromium.org>
Acked-by: Eric Paris <eparis@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
v18: updated change desc
v17: using new define values as per 3.4
Signed-off-by: James Morris <james.l.morris@oracle.com>
Modify alloc_uid to take a kuid and make the user hash table global.
Stop holding a reference to the user namespace in struct user_struct.
This simplifies the code and makes the per user accounting not
care about which user namespace a uid happens to appear in.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
With a user_ns reference in struct cred the only user of the user namespace
reference in struct user_struct is to keep the uid hash table alive.
The user_namespace reference in struct user_struct will be going away soon, and
I have removed all of the references. Rename the field from user_ns to _user_ns
so that the compiler can verify nothing follows the user struct to the user
namespace anymore.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
There is no release_uids function remove the declaration from sched.h
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIVAwUAT3NKzROxKuMESys7AQKElw/+JyDxJSlj+g+nymkx8IVVuU8CsEwNLgRk
8KEnRfLhGtkXFLSJYWO6jzGo16F8Uqli1PdMFte/wagSv0285/HZaKlkkBVHdJ/m
u40oSjgT013bBh6MQ0Oaf8pFezFUiQB5zPOA9QGaLVGDLXCmgqUgd7exaD5wRIwB
ZmyItjZeAVnDfk1R+ZiNYytHAi8A5wSB+eFDCIQYgyulA1Igd1UnRtx+dRKbvc/m
rWQ6KWbZHIdvP1ksd8wHHkrlUD2pEeJ8glJLsZUhMm/5oMf/8RmOCvmo8rvE/qwl
eDQ1h4cGYlfjobxXZMHqAN9m7Jg2bI946HZjdb7/7oCeO6VW3FwPZ/Ic75p+wp45
HXJTItufERYk6QxShiOKvA+QexnYwY0IT5oRP4DrhdVB/X9cl2MoaZHC+RbYLQy+
/5VNZKi38iK4F9AbFamS7kd0i5QszA/ZzEzKZ6VMuOp3W/fagpn4ZJT1LIA3m4A9
Q0cj24mqeyCfjysu0TMbPtaN+Yjeu1o1OFRvM8XffbZsp5bNzuTDEvviJ2NXw4vK
4qUHulhYSEWcu9YgAZXvEWDEM78FXCkg2v/CrZXH5tyc95kUkMPcgG+QZBB5wElR
FaOKpiC/BuNIGEf02IZQ4nfDxE90QwnDeoYeV+FvNj9UEOopJ5z5bMPoTHxm4cCD
NypQthI85pc=
=G9mT
-----END PGP SIGNATURE-----
Merge tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system
Pull "Disintegrate and delete asm/system.h" from David Howells:
"Here are a bunch of patches to disintegrate asm/system.h into a set of
separate bits to relieve the problem of circular inclusion
dependencies.
I've built all the working defconfigs from all the arches that I can
and made sure that they don't break.
The reason for these patches is that I recently encountered a circular
dependency problem that came about when I produced some patches to
optimise get_order() by rewriting it to use ilog2().
This uses bitops - and on the SH arch asm/bitops.h drags in
asm-generic/get_order.h by a circuituous route involving asm/system.h.
The main difficulty seems to be asm/system.h. It holds a number of
low level bits with no/few dependencies that are commonly used (eg.
memory barriers) and a number of bits with more dependencies that
aren't used in many places (eg. switch_to()).
These patches break asm/system.h up into the following core pieces:
(1) asm/barrier.h
Move memory barriers here. This already done for MIPS and Alpha.
(2) asm/switch_to.h
Move switch_to() and related stuff here.
(3) asm/exec.h
Move arch_align_stack() here. Other process execution related bits
could perhaps go here from asm/processor.h.
(4) asm/cmpxchg.h
Move xchg() and cmpxchg() here as they're full word atomic ops and
frequently used by atomic_xchg() and atomic_cmpxchg().
(5) asm/bug.h
Move die() and related bits.
(6) asm/auxvec.h
Move AT_VECTOR_SIZE_ARCH here.
Other arch headers are created as needed on a per-arch basis."
Fixed up some conflicts from other header file cleanups and moving code
around that has happened in the meantime, so David's testing is somewhat
weakened by that. We'll find out anything that got broken and fix it..
* tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system: (38 commits)
Delete all instances of asm/system.h
Remove all #inclusions of asm/system.h
Add #includes needed to permit the removal of asm/system.h
Move all declarations of free_initmem() to linux/mm.h
Disintegrate asm/system.h for OpenRISC
Split arch_align_stack() out from asm-generic/system.h
Split the switch_to() wrapper out of asm-generic/system.h
Move the asm-generic/system.h xchg() implementation to asm-generic/cmpxchg.h
Create asm-generic/barrier.h
Make asm-generic/cmpxchg.h #include asm-generic/cmpxchg-local.h
Disintegrate asm/system.h for Xtensa
Disintegrate asm/system.h for Unicore32 [based on ver #3, changed by gxt]
Disintegrate asm/system.h for Tile
Disintegrate asm/system.h for Sparc
Disintegrate asm/system.h for SH
Disintegrate asm/system.h for Score
Disintegrate asm/system.h for S390
Disintegrate asm/system.h for PowerPC
Disintegrate asm/system.h for PA-RISC
Disintegrate asm/system.h for MN10300
...
Remove all #inclusions of asm/system.h preparatory to splitting and killing
it. Performed with the following command:
perl -p -i -e 's!^#\s*include\s*<asm/system[.]h>.*\n!!' `grep -Irl '^#\s*include\s*<asm/system[.]h>' *`
Signed-off-by: David Howells <dhowells@redhat.com>
Userspace service managers/supervisors need to track their started
services. Many services daemonize by double-forking and get implicitly
re-parented to PID 1. The service manager will no longer be able to
receive the SIGCHLD signals for them, and is no longer in charge of
reaping the children with wait(). All information about the children is
lost at the moment PID 1 cleans up the re-parented processes.
With this prctl, a service manager process can mark itself as a sort of
'sub-init', able to stay as the parent for all orphaned processes
created by the started services. All SIGCHLD signals will be delivered
to the service manager.
Receiving SIGCHLD and doing wait() is in cases of a service-manager much
preferred over any possible asynchronous notification about specific
PIDs, because the service manager has full access to the child process
data in /proc and the PID can not be re-used until the wait(), the
service-manager itself is in charge of, has happened.
As a side effect, the relevant parent PID information does not get lost
by a double-fork, which results in a more elaborate process tree and
'ps' output:
before:
# ps afx
253 ? Ss 0:00 /bin/dbus-daemon --system --nofork
294 ? Sl 0:00 /usr/libexec/polkit-1/polkitd
328 ? S 0:00 /usr/sbin/modem-manager
608 ? Sl 0:00 /usr/libexec/colord
658 ? Sl 0:00 /usr/libexec/upowerd
819 ? Sl 0:00 /usr/libexec/imsettings-daemon
916 ? Sl 0:00 /usr/libexec/udisks-daemon
917 ? S 0:00 \_ udisks-daemon: not polling any devices
after:
# ps afx
294 ? Ss 0:00 /bin/dbus-daemon --system --nofork
426 ? Sl 0:00 \_ /usr/libexec/polkit-1/polkitd
449 ? S 0:00 \_ /usr/sbin/modem-manager
635 ? Sl 0:00 \_ /usr/libexec/colord
705 ? Sl 0:00 \_ /usr/libexec/upowerd
959 ? Sl 0:00 \_ /usr/libexec/udisks-daemon
960 ? S 0:00 | \_ udisks-daemon: not polling any devices
977 ? Sl 0:00 \_ /usr/libexec/packagekitd
This prctl is orthogonal to PID namespaces. PID namespaces are isolated
from each other, while a service management process usually requires the
services to live in the same namespace, to be able to talk to each
other.
Users of this will be the systemd per-user instance, which provides
init-like functionality for the user's login session and D-Bus, which
activates bus services on-demand. Both need init-like capabilities to
be able to properly keep track of the services they start.
Many thanks to Oleg for several rounds of review and insights.
[akpm@linux-foundation.org: fix comment layout and spelling]
[akpm@linux-foundation.org: add lengthy code comment from Oleg]
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Lennart Poettering <lennart@poettering.net>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Acked-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler changes for v3.4 from Ingo Molnar
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
printk: Make it compile with !CONFIG_PRINTK
sched/x86: Fix overflow in cyc2ns_offset
sched: Fix nohz load accounting -- again!
sched: Update yield() docs
printk/sched: Introduce special printk_sched() for those awkward moments
sched/nohz: Correctly initialize 'next_balance' in 'nohz' idle balancer
sched: Cleanup cpu_active madness
sched: Fix load-balance wreckage
sched: Clean up parameter passing of proc_sched_autogroup_set_nice()
sched: Ditch per cgroup task lists for load-balancing
sched: Rename load-balancing fields
sched: Move load-balancing arguments into helper struct
sched/rt: Do not submit new work when PI-blocked
sched/rt: Prevent idle task boosting
sched/wait: Add __wake_up_all_locked() API
sched/rt: Document scheduler related skip-resched-check sites
sched/rt: Use schedule_preempt_disabled()
sched/rt: Add schedule_preempt_disabled()
sched/rt: Do not throttle when PI boosting
sched/rt: Keep period timer ticking when rt throttling is active
...
Pull irq/core changes for v3.4 from Ingo Molnar
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
genirq: Remove paranoid warnons and bogus fixups
genirq: Flush the irq thread on synchronization
genirq: Get rid of unnecessary IRQTF_DIED flag
genirq: No need to check IRQTF_DIED before stopping a thread handler
genirq: Get rid of unnecessary irqaction field in task_struct
genirq: Fix incorrect check for forced IRQ thread handler
softirq: Reduce invoke_softirq() code duplication
genirq: Fix long-term regression in genirq irq_set_irq_type() handling
x86-32/irq: Don't switch to irq stack for a user-mode irq
Pull RCU changes for v3.4 from Ingo Molnar. The major features of this
series are:
- making RCU more aggressive about entering dyntick-idle mode in order
to improve energy efficiency
- converting a few more call_rcu()s to kfree_rcu()s
- applying a number of rcutree fixes and cleanups to rcutiny
- removing CONFIG_SMP #ifdefs from treercu
- allowing RCU CPU stall times to be set via sysfs
- adding CPU-stall capability to rcutorture
- adding more RCU-abuse diagnostics
- updating documentation
- fixing yet more issues located by the still-ongoing top-to-bottom
inspection of RCU, this time with a special focus on the CPU-hotplug
code path.
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
rcu: Stop spurious warnings from synchronize_sched_expedited
rcu: Hold off RCU_FAST_NO_HZ after timer posted
rcu: Eliminate softirq-mediated RCU_FAST_NO_HZ idle-entry loop
rcu: Add RCU_NONIDLE() for idle-loop RCU read-side critical sections
rcu: Allow nesting of rcu_idle_enter() and rcu_idle_exit()
rcu: Remove redundant check for rcu_head misalignment
PTR_ERR should be called before its argument is cleared.
rcu: Convert WARN_ON_ONCE() in rcu_lock_acquire() to lockdep
rcu: Trace only after NULL-pointer check
rcu: Call out dangers of expedited RCU primitives
rcu: Rework detection of use of RCU by offline CPUs
lockdep: Add CPU-idle/offline warning to lockdep-RCU splat
rcu: No interrupt disabling for rcu_prepare_for_idle()
rcu: Move synchronize_sched_expedited() to rcutree.c
rcu: Check for illegal use of RCU from offlined CPUs
rcu: Update stall-warning documentation
rcu: Add CPU-stall capability to rcutorture
rcu: Make documentation give more realistic rcutorture duration
rcutorture: Permit holding off CPU-hotplug operations during boot
rcu: Print scheduling-clock information on RCU CPU stall-warning messages
...
Uprobes uses exception notifiers to get to know if a thread hit
a breakpoint or a singlestep exception.
When a thread hits a uprobe or is singlestepping post a uprobe
hit, the uprobe exception notifier sets its TIF_UPROBE bit,
which will then be checked on its return to userspace path
(do_notify_resume() ->uprobe_notify_resume()), where the
consumers handlers are run (in task context) based on the
defined filters.
Uprobe hits are thread specific and hence we need to maintain
information about if a task hit a uprobe, what uprobe was hit,
the slot where the original instruction was copied for xol so
that it can be singlestepped with appropriate fixups.
In some cases, special care is needed for instructions that are
executed out of line (xol). These are architecture specific
artefacts, such as handling RIP relative instructions on x86_64.
Since the instruction at which the uprobe was inserted is
executed out of line, architecture specific fixups are added so
that the thread continues normal execution in the presence of a
uprobe.
Postpone the signals until we execute the probed insn.
post_xol() path does a recalc_sigpending() before return to
user-mode, this ensures the signal can't be lost.
Uprobes relies on DIE_DEBUG notification to notify if a
singlestep is complete.
Adds x86 specific uprobe exception notifiers and appropriate
hooks needed to determine a uprobe hit and subsequent post
processing.
Add requisite x86 fixups for xol for uprobes. Specific cases
needing fixups include relative jumps (x86_64), calls, etc.
Where possible, we check and skip singlestepping the
breakpointed instructions. For now we skip single byte as well
as few multibyte nop instructions. However this can be extended
to other instructions too.
Credits to Oleg Nesterov for suggestions/patches related to
signal, breakpoint, singlestep handling code.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Cc: Linux-mm <linux-mm@kvack.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120313180011.29771.89027.sendpatchset@srdronam.in.ibm.com
[ Performed various cleanliness edits ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a new thread handler is created, an irqaction is passed to it as
data. Not only that irqaction is stored in task_struct by the handler
for later use, but also a structure associated with the kernel thread
keeps this value as long as the thread exists.
This fix kicks irqaction out off task_struct. Yes, I introduce new bit
field. But it allows not only to eliminate the duplicate, but also
shortens size of task_struct.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Link: http://lkml.kernel.org/r/20120309135925.GB2114@dhcp-26-207.brq.redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Previously it was (ab)used by utrace. Then it was wrongly used by the
scheduler code.
Currently it is not used, kill it before it finds the new erroneous user.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that CLONE_VFORK is killable, coredump_wait() no longer needs
complete_vfork_done(). zap_threads() should find and kill all tasks with
the same ->mm, this includes our parent if ->vfork_done is set.
mm_release() becomes the only caller, unexport complete_vfork_done().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make vfork() killable.
Change do_fork(CLONE_VFORK) to do wait_for_completion_killable(). If it
fails we do not return to the user-mode and never touch the memory shared
with our child.
However, in this case we should clear child->vfork_done before return, we
use task_lock() in do_fork()->wait_for_vfork_done() and
complete_vfork_done() to serialize with each other.
Note: now that we use task_lock() we don't really need completion, we
could turn task->vfork_done into "task_struct *wake_up_me" but this needs
some complications.
NOTE: this and the next patches do not affect in-kernel users of
CLONE_VFORK, kernel threads run with all signals ignored including
SIGKILL/SIGSTOP.
However this is obviously the user-visible change. Not only a fatal
signal can kill the vforking parent, a sub-thread can do execve or
exit_group() and kill the thread sleeping in vfork().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No functional changes.
Move the clear-and-complete-vfork_done code into the new trivial helper,
complete_vfork_done().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pass nice as a value to proc_sched_autogroup_set_nice().
No side effect is expected, and the variable err will be overwritten with
the return value.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4F45FBB7.5090607@ct.jp.nec.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When we are PI-blocked then we want to get things done ASAP.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-vw8et3445km5b8mpihf4trae@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add helper to get rid of the ever repeating:
preempt_enable_no_resched();
schedule();
preempt_disable();
patterns.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-wxx7btox7coby6ifv5vzhzgp@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Current the initial SCHED_RR timeslice of init_task is HZ, which means
1s, and is not same as the default SCHED_RR timeslice DEF_TIMESLICE.
Change that initial timeslice to the DEF_TIMESLICE.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
[ s/DEF_TIMESLICE/RR_TIMESLICE/g ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4F3C9995.3010800@ct.jp.nec.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is a port of commit #82e78d80 from TREE_PREEMPT_RCU to
TINY_PREEMPT_RCU.
This commit uses the fact that current->rcu_boost_mutex is set
any time that the RCU_READ_UNLOCK_BOOSTED flag is set in the
current->rcu_read_unlock_special bitmask. This allows tests of
the bit to be changed to tests of the pointer, which in turn allows
the RCU_READ_UNLOCK_BOOSTED flag to be eliminated.
Please note that the check of current->rcu_read_unlock_special need not
change because any time that RCU_READ_UNLOCK_BOOSTED was set, so was
RCU_READ_UNLOCK_BLOCKED. Therefore, __rcu_read_unlock() can continue
testing current->rcu_read_unlock_special for non-zero, as before.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
It appears that sparse tool understands static inline functions
for context balance checking, so let's turn the macros into an
inline func.
This makes the code a little bit more robust.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Arve <arve@android.com>
Cc: San Mehat <san@google.com>
Cc: Colin Cross <ccross@android.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: kernel-team@android.com
Cc: linaro-kernel@lists.linaro.org
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120209164519.GA10266@oksana.dev.rtsoft.ru
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This fixes the race in process_vm_core found by Oleg (see
http://article.gmane.org/gmane.linux.kernel/1235667/
for details).
This has been updated since I last sent it as the creation of the new
mm_access() function did almost exactly the same thing as parts of the
previous version of this patch did.
In order to use mm_access() even when /proc isn't enabled, we move it to
kernel/fork.c where other related process mm access functions already
are.
Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With a lot of small tasks, the softirq sched is nearly never called
when no_hz is enabled. In this case load_balance() is mainly called
with the newly_idle mode which doesn't update the cpu_power.
Add a next_update field which ensure a maximum update period when
there is short activity.
Having stale cpu_power information can skew the load-balancing
decisions, this is cured by the guaranteed update.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1323717668-2143-1-git-send-email-vincent.guittot@linaro.org
The block layer has some code trying to determine if two CPUs share a
cache, the scheduler has a similar function. Expose the function used
by the scheduler and make the block layer use it, thereby removing the
block layers usage of CONFIG_SCHED* and topology bits.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Jens Axboe <axboe@kernel.dk>
Link: http://lkml.kernel.org/r/1327579450.2446.95.camel@twins
Fix new kernel-doc notation warnings:
Warning(include/linux/sched.h:2094): No description found for parameter 'p'
Warning(include/linux/sched.h:2094): Excess function parameter 'tsk' description in 'is_idle_task'
Warning(kernel/sched/cpupri.c:139): No description found for parameter 'newpri'
Warning(kernel/sched/cpupri.c:139): Excess function parameter 'pri' description in 'cpupri_set'
Warning(kernel/sched/cpupri.c:208): Excess function parameter 'bootmem' description in 'cpupri_init'
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes a build warning in -next due to a const pointer being
passed to is_idle_task(). Because is_idle_task() does not modify anything,
this commit adds the "const" to is_idle_task()'s argument declaration.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
cgroup: fix to allow mounting a hierarchy by name
cgroup: move assignement out of condition in cgroup_attach_proc()
cgroup: Remove task_lock() from cgroup_post_fork()
cgroup: add sparse annotation to cgroup_iter_start() and cgroup_iter_end()
cgroup: mark cgroup_rmdir_waitq and cgroup_attach_proc() as static
cgroup: only need to check oldcgrp==newgrp once
cgroup: remove redundant get/put of task struct
cgroup: remove redundant get/put of old css_set from migrate
cgroup: Remove unnecessary task_lock before fetching css_set on migration
cgroup: Drop task_lock(parent) on cgroup_fork()
cgroups: remove redundant get/put of css_set from css_set_check_fetched()
resource cgroups: remove bogus cast
cgroup: kill subsys->can_attach_task(), pre_attach() and attach_task()
cgroup, cpuset: don't use ss->pre_attach()
cgroup: don't use subsys->can_attach_task() or ->attach_task()
cgroup: introduce cgroup_taskset and use it in subsys->can_attach(), cancel_attach() and attach()
cgroup: improve old cgroup handling in cgroup_attach_proc()
cgroup: always lock threadgroup during migration
threadgroup: extend threadgroup_lock() to cover exit and exec
threadgroup: rename signal->threadgroup_fork_lock to ->group_rwsem
...
Fix up conflict in kernel/cgroup.c due to commit e0197aae59: "cgroups:
fix a css_set not found bug in cgroup_attach_proc" that already
mentioned that the bug is fixed (differently) in Tejun's cgroup
patchset. This one, in other words.
* 'pm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (76 commits)
PM / Hibernate: Implement compat_ioctl for /dev/snapshot
PM / Freezer: fix return value of freezable_schedule_timeout_killable()
PM / shmobile: Allow the A4R domain to be turned off at run time
PM / input / touchscreen: Make st1232 use device PM QoS constraints
PM / QoS: Introduce dev_pm_qos_add_ancestor_request()
PM / shmobile: Remove the stay_on flag from SH7372's PM domains
PM / shmobile: Don't include SH7372's INTCS in syscore suspend/resume
PM / shmobile: Add support for the sh7372 A4S power domain / sleep mode
PM: Drop generic_subsys_pm_ops
PM / Sleep: Remove forward-only callbacks from AMBA bus type
PM / Sleep: Remove forward-only callbacks from platform bus type
PM: Run the driver callback directly if the subsystem one is not there
PM / Sleep: Make pm_op() and pm_noirq_op() return callback pointers
PM/Devfreq: Add Exynos4-bus device DVFS driver for Exynos4210/4212/4412.
PM / Sleep: Merge internal functions in generic_ops.c
PM / Sleep: Simplify generic system suspend callbacks
PM / Hibernate: Remove deprecated hibernation snapshot ioctls
PM / Sleep: Fix freezer failures due to racy usermodehelper_is_disabled()
ARM: S3C64XX: Implement basic power domain support
PM / shmobile: Use common always on power domain governor
...
Fix up trivial conflict in fs/xfs/xfs_buf.c due to removal of unused
XBT_FORCE_SLEEP bit
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
sched/tracing: Add a new tracepoint for sleeptime
sched: Disable scheduler warnings during oopses
sched: Fix cgroup movement of waking process
sched: Fix cgroup movement of newly created process
sched: Fix cgroup movement of forking process
sched: Remove cfs bandwidth period check in tg_set_cfs_period()
sched: Fix load-balance lock-breaking
sched: Replace all_pinned with a generic flags field
sched: Only queue remote wakeups when crossing cache boundaries
sched: Add missing rcu_dereference() around ->real_parent usage
[S390] fix cputime overflow in uptime_proc_show
[S390] cputime: add sparse checking and cleanup
sched: Mark parent and real_parent as __rcu
sched, nohz: Fix missing RCU read lock
sched, nohz: Set the NOHZ_BALANCE_KICK flag for idle load balancer
sched, nohz: Fix the idle cpu check in nohz_idle_balance
sched: Use jump_labels for sched_feat
sched/accounting: Fix parameter passing in task_group_account_field
sched/accounting: Fix user/system tick double accounting
sched/accounting: Re-use scheduler statistics for the root cgroup
...
Fix up conflicts in
- arch/ia64/include/asm/cputime.h, include/asm-generic/cputime.h
usecs_to_cputime64() vs the sparse cleanups
- kernel/sched/fair.c, kernel/time/tick-sched.c
scheduler changes in multiple branches
Compensate the task's think time when computing the final pause time,
so that ->dirty_ratelimit can be executed accurately.
think time := time spend outside of balance_dirty_pages()
In the rare case that the task slept longer than the 200ms period time
(result in negative pause time), the sleep time will be compensated in
the following periods, too, if it's less than 1 second.
Accumulated errors are carefully avoided as long as the max pause area
is not hitted.
Pseudo code:
period = pages_dirtied / task_ratelimit;
think = jiffies - dirty_paused_when;
pause = period - think;
1) normal case: period > think
pause = period - think
dirty_paused_when = jiffies + pause
nr_dirtied = 0
period time
|===============================>|
think time pause time
|===============>|==============>|
------|----------------|---------------|------------------------
dirty_paused_when jiffies
2) no pause case: period <= think
don't pause; reduce future pause time by:
dirty_paused_when += period
nr_dirtied = 0
period time
|===============================>|
think time
|===================================================>|
------|--------------------------------+-------------------|----
dirty_paused_when jiffies
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Make cputime_t and cputime64_t nocast to enable sparse checking to
detect incorrect use of cputime. Drop the cputime macros for simple
scalar operations. The conversion macros are still needed.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The parent and real_parent pointers should be considered __rcu,
since they should be held under either tasklist_lock or
rcu_read_lock.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: http://lkml.kernel.org/r/20111214223925.GA27578@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
threadgroup_lock() protected only protected against new addition to
the threadgroup, which was inherently somewhat incomplete and
problematic for its only user cgroup. On-going migration could race
against exec and exit leading to interesting problems - the symmetry
between various attach methods, task exiting during method execution,
->exit() racing against attach methods, migrating task switching basic
properties during exec and so on.
This patch extends threadgroup_lock() such that it protects against
all three threadgroup altering operations - fork, exit and exec. For
exit, threadgroup_change_begin/end() calls are added to exit_signals
around assertion of PF_EXITING. For exec, threadgroup_[un]lock() are
updated to also grab and release cred_guard_mutex.
With this change, threadgroup_lock() guarantees that the target
threadgroup will remain stable - no new task will be added, no new
PF_EXITING will be set and exec won't happen.
The next patch will update cgroup so that it can take full advantage
of this change.
-v2: beefed up comment as suggested by Frederic.
-v3: narrowed scope of protection in exit path as suggested by
Frederic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Make the following renames to prepare for extension of threadgroup
locking.
* s/signal->threadgroup_fork_lock/signal->group_rwsem/
* s/threadgroup_fork_read_lock()/threadgroup_change_begin()/
* s/threadgroup_fork_read_unlock()/threadgroup_change_end()/
* s/threadgroup_fork_write_lock()/threadgroup_lock()/
* s/threadgroup_fork_write_unlock()/threadgroup_unlock()/
This patch doesn't cause any behavior change.
-v2: Rename threadgroup_change_done() to threadgroup_change_end() per
KAMEZAWA's suggestion.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Menage <paul@paulmenage.org>
Commit 908a3283 (Fix idle_cpu()) invalidated some uses of idle_cpu(),
which used to say whether or not the CPU was running the idle task,
but now instead says whether or not the CPU is running the idle task
in the absence of pending wakeups. Although this new implementation
gives a better answer to the question "is this CPU idle?", it also
invalidates other uses that were made of idle_cpu().
This commit therefore introduces a new is_idle_task() API member
that determines whether or not the specified task is one of the
idle tasks, allowing open-coded "->pid == 0" sequences to be replaced
by something more meaningful.
Suggested-by: Josh Triplett <josh@joshtriplett.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit 69e1e811 ("sched, nohz: Track nr_busy_cpus in the
sched_group_power") messed up the static inline function definition.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/n/tip-abjah8ctq5qrjjtdiabe8lph@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce nr_busy_cpus in the struct sched_group_power [Not in sched_group
because sched groups are duplicated for the SD_OVERLAP scheduler domain]
and for each cpu that enters and exits idle, this parameter will
be updated in each scheduler group of the scheduler domain that this cpu
belongs to.
To avoid the frequent update of this state as the cpu enters
and exits idle, the update of the stat during idle exit is
delayed to the first timer tick that happens after the cpu becomes busy.
This is done using NOHZ_IDLE flag in the struct rq's nohz_flags.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.555984323@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'pm-freezer' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc: (24 commits)
freezer: fix wait_event_freezable/__thaw_task races
freezer: kill unused set_freezable_with_signal()
dmatest: don't use set_freezable_with_signal()
usb_storage: don't use set_freezable_with_signal()
freezer: remove unused @sig_only from freeze_task()
freezer: use lock_task_sighand() in fake_signal_wake_up()
freezer: restructure __refrigerator()
freezer: fix set_freezable[_with_signal]() race
freezer: remove should_send_signal() and update frozen()
freezer: remove now unused TIF_FREEZE
freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE
cgroup_freezer: prepare for removal of TIF_FREEZE
freezer: clean up freeze_processes() failure path
freezer: kill PF_FREEZING
freezer: test freezable conditions while holding freezer_lock
freezer: make freezing indicate freeze condition in effect
freezer: use dedicated lock instead of task_lock() + memory barrier
freezer: don't distinguish nosig tasks on thaw
freezer: remove racy clear_freeze_flag() and set PF_NOFREEZE on dead tasks
freezer: rename thaw_process() to __thaw_task() and simplify the implementation
...
There's no in-kernel user of set_freezable_with_signal() left. Mixing
TIF_SIGPENDING with kernel threads can lead to nasty corner cases as
kernel threads never travel signal delivery path on their own.
e.g. the current implementation is buggy in the cancelation path of
__thaw_task(). It calls recalc_sigpending_and_wake() in an attempt to
clear TIF_SIGPENDING but the function never clears it regardless of
sigpending state. This means that signallable freezable kthreads may
continue executing with !freezing() && stuck TIF_SIGPENDING, which can
be troublesome.
This patch removes set_freezable_with_signal() along with
PF_FREEZER_NOSIG and recalc_sigpending*() calls in freezer. User
tasks get TIF_SIGPENDING, kernel tasks get woken up and the spurious
sigpending is dealt with in the usual signal delivery path.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
With the previous changes, there's no meaningful difference between
PF_FREEZING and PF_FROZEN. Remove PF_FREEZING and use PF_FROZEN
instead in task_contributes_to_load().
Signed-off-by: Tejun Heo <tj@kernel.org>
Since once needs to do something at conferences and fixing compile
warnings doesn't actually require much if any attention I decided
to break up the sched.c #include "*.c" fest.
This further modularizes the scheduler code.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-x0fcd3mnp8f9c99grcpewmhi@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux:
writeback: Add a 'reason' to wb_writeback_work
writeback: send work item to queue_io, move_expired_inodes
writeback: trace event balance_dirty_pages
writeback: trace event bdi_dirty_ratelimit
writeback: fix ppc compile warnings on do_div(long long, unsigned long)
writeback: per-bdi background threshold
writeback: dirty position control - bdi reserve area
writeback: control dirty pause time
writeback: limit max dirty pause time
writeback: IO-less balance_dirty_pages()
writeback: per task dirty rate limit
writeback: stabilize bdi->dirty_ratelimit
writeback: dirty rate control
writeback: add bg_threshold parameter to __bdi_update_bandwidth()
writeback: dirty position control
writeback: account per-bdi accumulated dirtied pages
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
llist: Add back llist_add_batch() and llist_del_first() prototypes
sched: Don't use tasklist_lock for debug prints
sched: Warn on rt throttling
sched: Unify the ->cpus_allowed mask copy
sched: Wrap scheduler p->cpus_allowed access
sched: Request for idle balance during nohz idle load balance
sched: Use resched IPI to kick off the nohz idle balance
sched: Fix idle_cpu()
llist: Remove cpu_relax() usage in cmpxchg loops
sched: Convert to struct llist
llist: Add llist_next()
irq_work: Use llist in the struct irq_work logic
llist: Return whether list is empty before adding in llist_add()
llist: Move cpu_relax() to after the cmpxchg()
llist: Remove the platform-dependent NMI checks
llist: Make some llist functions inline
sched, tracing: Show PREEMPT_ACTIVE state in trace_sched_switch
sched: Remove redundant test in check_preempt_tick()
sched: Add documentation for bandwidth control
sched: Return unused runtime on group dequeue
...
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
rcu: Move propagation of ->completed from rcu_start_gp() to rcu_report_qs_rsp()
rcu: Remove rcu_needs_cpu_flush() to avoid false quiescent states
rcu: Wire up RCU_BOOST_PRIO for rcutree
rcu: Make rcu_torture_boost() exit loops at end of test
rcu: Make rcu_torture_fqs() exit loops at end of test
rcu: Permit rt_mutex_unlock() with irqs disabled
rcu: Avoid having just-onlined CPU resched itself when RCU is idle
rcu: Suppress NMI backtraces when stall ends before dump
rcu: Prohibit grace periods during early boot
rcu: Simplify unboosting checks
rcu: Prevent early boot set_need_resched() from __rcu_pending()
rcu: Dump local stack if cannot dump all CPUs' stacks
rcu: Move __rcu_read_unlock()'s barrier() within if-statement
rcu: Improve rcu_assign_pointer() and RCU_INIT_POINTER() documentation
rcu: Make rcu_assign_pointer() unconditionally insert a memory barrier
rcu: Make rcu_implicit_dynticks_qs() locals be correct size
rcu: Eliminate in_irq() checks in rcu_enter_nohz()
nohz: Remove nohz_cpu_mask
rcu: Document interpretation of RCU-lockdep splats
rcu: Allow rcutorture's stat_interval parameter to be changed at runtime
...
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
rtmutex: Add missing rcu_read_unlock() in debug_rt_mutex_print_deadlock()
lockdep: Comment all warnings
lib: atomic64: Change the type of local lock to raw_spinlock_t
locking, lib/atomic64: Annotate atomic64_lock::lock as raw
locking, x86, iommu: Annotate qi->q_lock as raw
locking, x86, iommu: Annotate irq_2_ir_lock as raw
locking, x86, iommu: Annotate iommu->register_lock as raw
locking, dma, ipu: Annotate bank_lock as raw
locking, ARM: Annotate low level hw locks as raw
locking, drivers/dca: Annotate dca_lock as raw
locking, powerpc: Annotate uic->lock as raw
locking, x86: mce: Annotate cmci_discover_lock as raw
locking, ACPI: Annotate c3_lock as raw
locking, oprofile: Annotate oprofilefs lock as raw
locking, video: Annotate vga console lock as raw
locking, latencytop: Annotate latency_lock as raw
locking, timer_stats: Annotate table_lock as raw
locking, rwsem: Annotate inner lock as raw
locking, semaphores: Annotate inner lock as raw
locking, sched: Annotate thread_group_cputimer as raw
...
Fix up conflicts in kernel/posix-cpu-timers.c manually: making
cputimer->cputime a raw lock conflicted with the ABBA fix in commit
bcd5cff721 ("cputimer: Cure lock inversion").
* 'usb-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb: (260 commits)
usb: renesas_usbhs: fixup inconsistent return from usbhs_pkt_push()
usb/isp1760: Allow to optionally trigger low-level chip reset via GPIOLIB.
USB: gadget: midi: memory leak in f_midi_bind_config()
USB: gadget: midi: fix range check in f_midi_out_open()
QE/FHCI: fixed the CONTROL bug
usb: renesas_usbhs: tidyup for smatch warnings
USB: Fix USB Kconfig dependency problem on 85xx/QoirQ platforms
EHCI: workaround for MosChip controller bug
usb: gadget: file_storage: fix race on unloading
USB: ftdi_sio.c: Use ftdi async_icount structure for TIOCMIWAIT, as in other drivers
USB: ftdi_sio.c:Fill MSR fields of the ftdi async_icount structure
USB: ftdi_sio.c: Fill LSR fields of the ftdi async_icount structure
USB: ftdi_sio.c:Fill TX field of the ftdi async_icount structure
USB: ftdi_sio.c: Fill the RX field of the ftdi async_icount structure
USB: ftdi_sio.c: Basic icount infrastructure for ftdi_sio
usb/isp1760: Let OF bindings depend on general CONFIG_OF instead of PPC_OF .
USB: ftdi_sio: Support TI/Luminary Micro Stellaris BD-ICDI Board
USB: Fix runtime wakeup on OHCI
xHCI/USB: Make xHCI driver have a BOS descriptor.
usb: gadget: add new usb gadget for ACM and mass storage
...
Use the generic llist primitives.
We had a private lockless list implementation in the scheduler in the wake-list
code, now that we have a generic llist implementation that provides all required
operations, switch to it.
This patch is not expected to change any behavior.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1315836353.26517.42.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add two fields to task_struct.
1) account dirtied pages in the individual tasks, for accuracy
2) per-task balance_dirty_pages() call intervals, for flexibility
The balance_dirty_pages() call interval (ie. nr_dirtied_pause) will
scale near-sqrt to the safety gap between dirty pages and threshold.
The main problem of per-task nr_dirtied is, if 1k+ tasks start dirtying
pages at exactly the same time, each task will be assigned a large
initial nr_dirtied_pause, so that the dirty threshold will be exceeded
long before each task reached its nr_dirtied_pause and hence call
balance_dirty_pages().
The solution is to watch for the number of pages dirtied on each CPU in
between the calls into balance_dirty_pages(). If it exceeds ratelimit_pages
(3% dirty threshold), force call balance_dirty_pages() for a chance to
set bdi->dirty_exceeded. In normal situations, this safeguarding
condition is not expected to trigger at all.
On the sqrt in dirty_poll_interval():
It will serve as an initial guess when dirty pages are still in the
freerun area.
When dirty pages are floating inside the dirty control scope [freerun,
limit], a followup patch will use some refined dirty poll interval to
get the desired pause time.
thresh-dirty (MB) sqrt
1 16
2 22
4 32
8 45
16 64
32 90
64 128
128 181
256 256
512 362
1024 512
The above table means, given 1MB (or 1GB) gap and the dd tasks polling
balance_dirty_pages() on every 16 (or 512) pages, the dirty limit won't
be exceeded as long as there are less than 16 (or 512) concurrent dd's.
So sqrt naturally leads to less overheads and more safe concurrent tasks
for large memory servers, which have large (thresh-freerun) gaps.
peter: keep the per-CPU ratelimit for safeguarding the 1k+ tasks case
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Andrea Righi <andrea@betterlinux.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
David reported:
Attached below is a watered-down version of rt/tst-cpuclock2.c from
GLIBC. Just build it with "gcc -o test test.c -lpthread -lrt" or
similar.
Run it several times, and you will see cases where the main thread
will measure a process clock difference before and after the nanosleep
which is smaller than the cpu-burner thread's individual thread clock
difference. This doesn't make any sense since the cpu-burner thread
is part of the top-level process's thread group.
I've reproduced this on both x86-64 and sparc64 (using both 32-bit and
64-bit binaries).
For example:
[davem@boricha build-x86_64-linux]$ ./test
process: before(0.001221967) after(0.498624371) diff(497402404)
thread: before(0.000081692) after(0.498316431) diff(498234739)
self: before(0.001223521) after(0.001240219) diff(16698)
[davem@boricha build-x86_64-linux]$
The diff of 'process' should always be >= the diff of 'thread'.
I make sure to wrap the 'thread' clock measurements the most tightly
around the nanosleep() call, and that the 'process' clock measurements
are the outer-most ones.
---
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
static pthread_barrier_t barrier;
static void *chew_cpu(void *arg)
{
pthread_barrier_wait(&barrier);
while (1)
__asm__ __volatile__("" : : : "memory");
return NULL;
}
int main(void)
{
clockid_t process_clock, my_thread_clock, th_clock;
struct timespec process_before, process_after;
struct timespec me_before, me_after;
struct timespec th_before, th_after;
struct timespec sleeptime;
unsigned long diff;
pthread_t th;
int err;
err = clock_getcpuclockid(0, &process_clock);
if (err)
return 1;
err = pthread_getcpuclockid(pthread_self(), &my_thread_clock);
if (err)
return 1;
pthread_barrier_init(&barrier, NULL, 2);
err = pthread_create(&th, NULL, chew_cpu, NULL);
if (err)
return 1;
err = pthread_getcpuclockid(th, &th_clock);
if (err)
return 1;
pthread_barrier_wait(&barrier);
err = clock_gettime(process_clock, &process_before);
if (err)
return 1;
err = clock_gettime(my_thread_clock, &me_before);
if (err)
return 1;
err = clock_gettime(th_clock, &th_before);
if (err)
return 1;
sleeptime.tv_sec = 0;
sleeptime.tv_nsec = 500000000;
nanosleep(&sleeptime, NULL);
err = clock_gettime(th_clock, &th_after);
if (err)
return 1;
err = clock_gettime(my_thread_clock, &me_after);
if (err)
return 1;
err = clock_gettime(process_clock, &process_after);
if (err)
return 1;
diff = process_after.tv_nsec - process_before.tv_nsec;
printf("process: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n",
process_before.tv_sec, process_before.tv_nsec,
process_after.tv_sec, process_after.tv_nsec, diff);
diff = th_after.tv_nsec - th_before.tv_nsec;
printf("thread: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n",
th_before.tv_sec, th_before.tv_nsec,
th_after.tv_sec, th_after.tv_nsec, diff);
diff = me_after.tv_nsec - me_before.tv_nsec;
printf("self: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n",
me_before.tv_sec, me_before.tv_nsec,
me_after.tv_sec, me_after.tv_nsec, diff);
return 0;
}
This is due to us using p->se.sum_exec_runtime in
thread_group_cputime() where we iterate the thread group and sum all
data. This does not take time since the last schedule operation (tick
or otherwise) into account. We can cure this by using
task_sched_runtime() at the cost of having to take locks.
This also means we can (and must) do away with
thread_group_sched_runtime() since the modified thread_group_cputime()
is now more accurate and would deadlock when called from
thread_group_sched_runtime().
Aside of that it makes the function safe on 32 bit systems. The old
code added t->se.sum_exec_runtime unprotected. sum_exec_runtime is a
64bit value and could be changed on another cpu at the same time.
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1314874459.7945.22.camel@twins
Tested-by: David Miller <davem@davemloft.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add to the dev_state and alloc_async structures the user namespace
corresponding to the uid and euid. Pass these to kill_pid_info_as_uid(),
which can then implement a proper, user-namespace-aware uid check.
Changelog:
Sep 20: Per Oleg's suggestion: Instead of caching and passing user namespace,
uid, and euid each separately, pass a struct cred.
Sep 26: Address Alan Stern's comments: don't define a struct cred at
usbdev_open(), and take and put a cred at async_completed() to
ensure it lasts for the duration of kill_pid_info_as_cred().
Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Commit 7765be (Fix RCU_BOOST race handling current->rcu_read_unlock_special)
introduced a new ->rcu_boosted field in the task structure. This is
redundant because the existing ->rcu_boost_mutex will be non-NULL at
any time that ->rcu_boosted is nonzero. Therefore, this commit removes
->rcu_boosted and tests ->rcu_boost_mutex instead.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
RCU no longer uses this global variable, nor does anyone else. This
commit therefore removes this variable. This reduces memory footprint
and also removes some atomic instructions and memory barriers from
the dyntick-idle path.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The thread_group_cputimer lock can be taken in atomic context and therefore
cannot be preempted on -rt - annotate it.
In mainline this change documents the low level nature of
the lock - otherwise there's no functional difference. Lockdep
and Sparse checking will work as usual.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Account bandwidth usage on the cfs_rq level versus the task_groups to which
they belong. Whether we are tracking bandwidth on a given cfs_rq is maintained
under cfs_rq->runtime_enabled.
cfs_rq's which belong to a bandwidth constrained task_group have their runtime
accounted via the update_curr() path, which withdraws bandwidth from the global
pool as desired. Updates involving the global pool are currently protected
under cfs_bandwidth->lock, local runtime is protected by rq->lock.
This patch only assigns and tracks quota, no action is taken in the case that
cfs_rq->runtime_used exceeds cfs_rq->runtime_assigned.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.179386821@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The patch http://lkml.org/lkml/2003/7/13/226 introduced an RLIMIT_NPROC
check in set_user() to check for NPROC exceeding via setuid() and
similar functions.
Before the check there was a possibility to greatly exceed the allowed
number of processes by an unprivileged user if the program relied on
rlimit only. But the check created new security threat: many poorly
written programs simply don't check setuid() return code and believe it
cannot fail if executed with root privileges. So, the check is removed
in this patch because of too often privilege escalations related to
buggy programs.
The NPROC can still be enforced in the common code flow of daemons
spawning user processes. Most of daemons do fork()+setuid()+execve().
The check introduced in execve() (1) enforces the same limit as in
setuid() and (2) doesn't create similar security issues.
Neil Brown suggested to track what specific process has exceeded the
limit by setting PF_NPROC_EXCEEDED process flag. With the change only
this process would fail on execve(), and other processes' execve()
behaviour is not changed.
Solar Designer suggested to re-check whether NPROC limit is still
exceeded at the moment of execve(). If the process was sleeping for
days between set*uid() and execve(), and the NPROC counter step down
under the limit, the defered execve() failure because NPROC limit was
exceeded days ago would be unexpected. If the limit is not exceeded
anymore, we clear the flag on successful calls to execve() and fork().
The flag is also cleared on successful calls to set_user() as the limit
was exceeded for the previous user, not the current one.
Similar check was introduced in -ow patches (without the process flag).
v3 - clear PF_NPROC_EXCEEDED on successful calls to set_user().
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Acked-by: NeilBrown <neilb@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-3.1/core' of git://git.kernel.dk/linux-block: (24 commits)
block: strict rq_affinity
backing-dev: use synchronize_rcu_expedited instead of synchronize_rcu
block: fix patch import error in max_discard_sectors check
block: reorder request_queue to remove 64 bit alignment padding
CFQ: add think time check for group
CFQ: add think time check for service tree
CFQ: move think time check variables to a separate struct
fixlet: Remove fs_excl from struct task.
cfq: Remove special treatment for metadata rqs.
block: document blk_plug list access
block: avoid building too big plug list
compat_ioctl: fix make headers_check regression
block: eliminate potential for infinite loop in blkdev_issue_discard
compat_ioctl: fix warning caused by qemu
block: flush MEDIA_CHANGE from drivers on close(2)
blk-throttle: Make total_nr_queued unsigned
block: Add __attribute__((format(printf...) and fix fallout
fs/partitions/check.c: make local symbols static
block:remove some spare spaces in genhd.c
block:fix the comment error in blkdev.h
...
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (24 commits)
sched: Cleanup duplicate local variable in [enqueue|dequeue]_task_fair
sched: Replace use of entity_key()
sched: Separate group-scheduling code more clearly
sched: Reorder root_domain to remove 64 bit alignment padding
sched: Do not attempt to destroy uninitialized rt_bandwidth
sched: Remove unused function cpu_cfs_rq()
sched: Fix (harmless) typo 'CONFG_FAIR_GROUP_SCHED'
sched, cgroup: Optimize load_balance_fair()
sched: Don't update shares twice on on_rq parent
sched: update correct entity's runtime in check_preempt_wakeup()
xtensa: Use generic config PREEMPT definition
h8300: Use generic config PREEMPT definition
m32r: Use generic PREEMPT config
sched: Skip autogroup when looking for all rt sched groups
sched: Simplify mutex_spin_on_owner()
sched: Remove rcu_read_lock() from wake_affine()
sched: Generalize sleep inside spinlock detection
sched: Make sleeping inside spinlock detection working in !CONFIG_PREEMPT
sched: Isolate preempt counting in its own config option
sched: Remove pointless in_atomic() definition check
...
* 'ptrace' of git://git.kernel.org/pub/scm/linux/kernel/git/oleg/misc: (39 commits)
ptrace: do_wait(traced_leader_killed_by_mt_exec) can block forever
ptrace: fix ptrace_signal() && STOP_DEQUEUED interaction
connector: add an event for monitoring process tracers
ptrace: dont send SIGSTOP on auto-attach if PT_SEIZED
ptrace: mv send-SIGSTOP from do_fork() to ptrace_init_task()
ptrace_init_task: initialize child->jobctl explicitly
has_stopped_jobs: s/task_is_stopped/SIGNAL_STOP_STOPPED/
ptrace: make former thread ID available via PTRACE_GETEVENTMSG after PTRACE_EVENT_EXEC stop
ptrace: wait_consider_task: s/same_thread_group/ptrace_reparented/
ptrace: kill real_parent_is_ptracer() in in favor of ptrace_reparented()
ptrace: ptrace_reparented() should check same_thread_group()
redefine thread_group_leader() as exit_signal >= 0
do not change dead_task->exit_signal
kill task_detached()
reparent_leader: check EXIT_DEAD instead of task_detached()
make do_notify_parent() __must_check, update the callers
__ptrace_detach: avoid task_detached(), check do_notify_parent()
kill tracehook_notify_death()
make do_notify_parent() return bool
ptrace: s/tracehook_tracer_task()/ptrace_parent()/
...
Allow for sched_domain spans that overlap by giving such domains their
own sched_group list instead of sharing the sched_groups amongst
each-other.
This is needed for machines with more than 16 nodes, because
sched_domain_node_span() will generate a node mask from the
16 nearest nodes without regard if these masks have any overlap.
Currently sched_domains have a sched_group that maps to their child
sched_domain span, and since there is no overlap we share the
sched_group between the sched_domains of the various CPUs. If however
there is overlap, we would need to link the sched_group list in
different ways for each cpu, and hence sharing isn't possible.
In order to solve this, allocate private sched_groups for each CPU's
sched_domain but have the sched_groups share a sched_group_power
structure such that we can uniquely track the power.
Reported-and-tested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-08bxqw9wis3qti9u5inifh3y@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to prepare for non-unique sched_groups per domain, we need to
carry the cpu_power elsewhere, so put a level of indirection in.
Reported-and-tested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-qkho2byuhe4482fuknss40ad@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The RCU_BOOST commits for TREE_PREEMPT_RCU introduced an other-task
write to a new RCU_READ_UNLOCK_BOOSTED bit in the task_struct structure's
->rcu_read_unlock_special field, but, as noted by Steven Rostedt, without
correctly synchronizing all accesses to ->rcu_read_unlock_special.
This could result in bits in ->rcu_read_unlock_special being spuriously
set and cleared due to conflicting accesses, which in turn could result
in deadlocks between the rcu_node structure's ->lock and the scheduler's
rq and pi locks. These deadlocks would result from RCU incorrectly
believing that the just-ended RCU read-side critical section had been
preempted and/or boosted. If that RCU read-side critical section was
executed with either rq or pi locks held, RCU's ensuing (incorrect)
calls to the scheduler would cause the scheduler to attempt to once
again acquire the rq and pi locks, resulting in deadlock. More complex
deadlock cycles are also possible, involving multiple rq and pi locks
as well as locks from multiple rcu_node structures.
This commit fixes synchronization by creating ->rcu_boosted field in
task_struct that is accessed and modified only when holding the ->lock
in the rcu_node structure on which the task is queued (on that rcu_node
structure's ->blkd_tasks list). This results in tasks accessing only
their own current->rcu_read_unlock_special fields, making unsynchronized
access once again legal, and keeping the rcu_read_unlock() fastpath free
of atomic instructions and memory barriers.
The reason that the rcu_read_unlock() fastpath does not need to access
the new current->rcu_boosted field is that this new field cannot
be non-zero unless the RCU_READ_UNLOCK_BLOCKED bit is set in the
current->rcu_read_unlock_special field. Therefore, rcu_read_unlock()
need only test current->rcu_read_unlock_special: if that is zero, then
current->rcu_boosted must also be zero.
This bug does not affect TINY_PREEMPT_RCU because this implementation
of RCU accesses current->rcu_read_unlock_special with irqs disabled,
thus preventing races on the !SMP systems that TINY_PREEMPT_RCU runs on.
Maybe-reported-by: Dave Jones <davej@redhat.com>
Maybe-reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
fs_excl is a poor man's priority inheritance for filesystems to hint to
the block layer that an operation is important. It was never clearly
specified, not widely adopted, and will not prevent starvation in many
cases (like across cgroups).
fs_excl was introduced with the time sliced CFQ IO scheduler, to
indicate when a process held FS exclusive resources and thus needed
a boost.
It doesn't cover all file systems, and it was never fully complete.
Lets kill it.
Signed-off-by: Justin TerAvest <teravest@google.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Alex reported that commit c8b281161d ("sched: Increase
SCHED_LOAD_SCALE resolution") caused a power usage regression
under light load as it increases the number of load-balance
operations and keeps idle cpus from staying idle.
Time has run out to find the root cause for this release so
disable the feature for v3.0 until we can figure out what
causes the problem.
Reported-by: "Alex, Shi" <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nikhil Rao <ncrao@google.com>
Cc: Ming Lei <tom.leiming@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-m4onxn0sxnyn5iz9o88eskc3@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change de_thread() to set old_leader->exit_signal = -1. This is
good for the consistency, it is no longer the leader and all
sub-threads have exit_signal = -1 set by copy_process(CLONE_THREAD).
And this allows us to micro-optimize thread_group_leader(), it can
simply check exit_signal >= 0. This also makes sense because we
should move ->group_leader from task_struct to signal_struct.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Upadate the last user of task_detached(), wait_task_zombie(), to
use thread_group_leader() and kill task_detached().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Change other callers of do_notify_parent() to check the value it
returns, this makes the subsequent task_detached() unnecessary.
Mark do_notify_parent() as __must_check.
Use thread_group_leader() instead of !task_detached() to check
if we need to notify the real parent in wait_task_zombie().
Remove the stale comment in release_task(). "just for sanity" is
no longer true, we have to set EXIT_DEAD to avoid the races with
do_wait().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
- change do_notify_parent() to return a boolean, true if the task should
be reaped because its parent ignores SIGCHLD.
- update the only caller which checks the returned value, exit_notify().
This temporary uglifies exit_notify() even more, will be cleanuped by
the next change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
The previous patch implemented async notification for ptrace but it
only worked while trace is running. This patch introduces
PTRACE_LISTEN which is suggested by Oleg Nestrov.
It's allowed iff tracee is in STOP trap and puts tracee into
quasi-running state - tracee never really runs but wait(2) and
ptrace(2) consider it to be running. While ptracer is listening,
tracee is allowed to re-enter STOP to notify an async event.
Listening state is cleared on the first notification. Ptracer can
also clear it by issuing INTERRUPT - tracee will re-trap into STOP
with listening state cleared.
This allows ptracer to monitor group stop state without running tracee
- use INTERRUPT to put tracee into STOP trap, issue LISTEN and then
wait(2) to wait for the next group stop event. When it happens,
PTRACE_GETSIGINFO provides information to determine the current state.
Test program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_LISTEN 0x4208
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts1s = { .tv_sec = 1 };
int main(int argc, char **argv)
{
pid_t tracee, tracer;
int i;
tracee = fork();
if (!tracee)
while (1)
pause();
tracer = fork();
if (!tracer) {
siginfo_t si;
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
repeat:
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si);
if (!si.si_code) {
printf("tracer: SIG %d\n", si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL,
(void *)(unsigned long)si.si_signo);
goto repeat;
}
printf("tracer: stopped=%d signo=%d\n",
si.si_signo != SIGTRAP, si.si_signo);
if (si.si_signo != SIGTRAP)
ptrace(PTRACE_LISTEN, tracee, NULL, NULL);
else
ptrace(PTRACE_CONT, tracee, NULL, NULL);
goto repeat;
}
for (i = 0; i < 3; i++) {
nanosleep(&ts1s, NULL);
printf("mother: SIGSTOP\n");
kill(tracee, SIGSTOP);
nanosleep(&ts1s, NULL);
printf("mother: SIGCONT\n");
kill(tracee, SIGCONT);
}
nanosleep(&ts1s, NULL);
kill(tracer, SIGKILL);
kill(tracee, SIGKILL);
return 0;
}
This is identical to the program to test TRAP_NOTIFY except that
tracee is PTRACE_LISTEN'd instead of PTRACE_CONT'd when group stopped.
This allows ptracer to monitor when group stop ends without running
tracee.
# ./test-listen
tracer: stopped=0 signo=5
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
-v2: Moved JOBCTL_LISTENING check in wait_task_stopped() into
task_stopped_code() as suggested by Oleg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Currently there's no way for ptracer to find out whether group stop
finished other than polling with INTERRUPT - GETSIGINFO - CONT
sequence. This patch implements group stop notification for ptracer
using STOP traps.
When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY
is set, which schedules a STOP trap which is sticky - it isn't cleared
by other traps and at least one STOP trap will happen eventually.
STOP trap is synchronization point for event notification and the
tracer can determine the current group stop state by looking at the
signal number portion of exit code (si_status from waitid(2) or
si_code from PTRACE_GETSIGINFO).
Notifications are generated both on start and end of group stops but,
because group stop participation always happens before STOP trap, this
doesn't cause an extra trap while tracee is participating in group
stop. The symmetry will be useful later.
Note that this notification works iff tracee is not trapped.
Currently there is no way to be notified of group stop state changes
while tracee is trapped. This will be addressed by a later patch.
An example program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts1s = { .tv_sec = 1 };
int main(int argc, char **argv)
{
pid_t tracee, tracer;
int i;
tracee = fork();
if (!tracee)
while (1)
pause();
tracer = fork();
if (!tracer) {
siginfo_t si;
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
repeat:
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si);
if (!si.si_code) {
printf("tracer: SIG %d\n", si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL,
(void *)(unsigned long)si.si_signo);
goto repeat;
}
printf("tracer: stopped=%d signo=%d\n",
si.si_signo != SIGTRAP, si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL, NULL);
goto repeat;
}
for (i = 0; i < 3; i++) {
nanosleep(&ts1s, NULL);
printf("mother: SIGSTOP\n");
kill(tracee, SIGSTOP);
nanosleep(&ts1s, NULL);
printf("mother: SIGCONT\n");
kill(tracee, SIGCONT);
}
nanosleep(&ts1s, NULL);
kill(tracer, SIGKILL);
kill(tracee, SIGKILL);
return 0;
}
In the above program, tracer keeps tracee running and gets
notification of each group stop state changes.
# ./test-notify
tracer: stopped=0 signo=5
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
do_signal_stop() implemented both normal group stop and trap for group
stop while ptraced. This approach has been enough but scheduled
changes require trap mechanism which can be used in more generic
manner and using group stop trap for generic trap site simplifies both
userland visible interface and implementation.
This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it
triggers a trap site, which behaves like group stop trap, in
get_signal_to_deliver() after checking for pending signals. While
ptraced, do_signal_stop() doesn't stop itself. It initiates group
stop if requested and schedules JOBCTL_TRAP_STOP and returns. The
caller - get_signal_to_deliver() - is responsible for checking whether
TRAP_STOP is pending afterwards and handling it.
ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of
JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap
bits and TRAPPING so that TRAP_STOP and future trap bits don't linger
after detach.
While at it, add proper function comment to do_signal_stop() and make
it return bool.
-v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING
instead of JOBCTL_PENDING_MASK. This avoids accidentally
clearing JOBCTL_STOP_CONSUME. Spotted by Oleg.
-v3: do_signal_stop() updated to return %false without dropping
siglock while ptraced and TRAP_STOP check moved inside for(;;)
loop after group stop participation. This avoids unnecessary
relocking and also will help avoiding unnecessary traps by
consuming group stop before handling pending traps.
-v4: Jobctl trap handling moved into a separate function -
do_jobctl_trap().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Create a new CONFIG_PREEMPT_COUNT that handles the inc/dec
of preempt count offset independently. So that the offset
can be updated by preempt_disable() and preempt_enable()
even without the need for CONFIG_PREEMPT beeing set.
This prepares to make CONFIG_DEBUG_SPINLOCK_SLEEP working
with !CONFIG_PREEMPT where it currently doesn't detect
code that sleeps inside explicit preemption disabled
sections.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
task->jobctl currently hosts JOBCTL_STOP_PENDING and will host TRAP
pending bits too. Setting pending conditions on a dying task may make
the task unkillable. Currently, each setting site is responsible for
checking for the condition but with to-be-added job control traps this
becomes too fragile.
This patch adds task_set_jobctl_pending() which should be used when
setting task->jobctl bits to schedule a stop or trap. The function
performs the followings to ease setting pending bits.
* Sanity checks.
* If fatal signal is pending or PF_EXITING is set, no bit is set.
* STOP_SIGMASK is automatically cleared if new value is being set.
do_signal_stop() and ptrace_attach() are updated to use
task_set_jobctl_pending() instead of setting STOP_PENDING explicitly.
The surrounding structures around setting are changed to fit
task_set_jobctl_pending() better but there should be no userland
visible behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
This patch introduces JOBCTL_PENDING_MASK and replaces
task_clear_jobctl_stop_pending() with task_clear_jobctl_pending()
which takes an extra @mask argument.
JOBCTL_PENDING_MASK is currently equal to JOBCTL_STOP_PENDING but
future patches will add more bits. recalc_sigpending_tsk() is updated
to use JOBCTL_PENDING_MASK instead.
task_clear_jobctl_pending() takes @mask which in subset of
JOBCTL_PENDING_MASK and clears the relevant jobctl bits. If
JOBCTL_STOP_PENDING is set, other STOP bits are cleared together. All
task_clear_jobctl_stop_pending() users are updated to call
task_clear_jobctl_pending() with JOBCTL_STOP_PENDING which is
functionally identical to task_clear_jobctl_stop_pending().
This patch doesn't cause any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
signal->group_stop currently hosts mostly group stop related flags;
however, it's gonna be used for wider purposes and the GROUP_STOP_
flag prefix becomes confusing. Rename signal->group_stop to
signal->jobctl and rename all GROUP_STOP_* flags to JOBCTL_*.
Bit position macros JOBCTL_*_BIT are defined and JOBCTL_* flags are
defined in terms of them to allow using bitops later.
While at it, reassign JOBCTL_TRAPPING to bit 22 to better accomodate
future additions.
This doesn't cause any functional change.
-v2: JOBCTL_*_BIT macros added as suggested by Linus.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
While looking over the code I found that with the ttwu rework the
nr_wakeups_migrate test broke since we now switch cpus prior to
calling ttwu_stat(), hence the test is always true.
Cure this by passing the migration state in wake_flags. Also move the
whole test under CONFIG_SMP, its hard to migrate tasks on UP :-)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-pwwxl7gdqs5676f1d4cx6pj7@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Thomas Gleixner reports that we now have a boot crash triggered by
CONFIG_CPUMASK_OFFSTACK=y:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<c11ae035>] find_next_bit+0x55/0xb0
Call Trace:
[<c11addda>] cpumask_any_but+0x2a/0x70
[<c102396b>] flush_tlb_mm+0x2b/0x80
[<c1022705>] pud_populate+0x35/0x50
[<c10227ba>] pgd_alloc+0x9a/0xf0
[<c103a3fc>] mm_init+0xec/0x120
[<c103a7a3>] mm_alloc+0x53/0xd0
which was introduced by commit de03c72cfc ("mm: convert
mm->cpu_vm_cpumask into cpumask_var_t"), and is due to wrong ordering of
mm_init() vs mm_init_cpumask
Thomas wrote a patch to just fix the ordering of initialization, but I
hate the new double allocation in the fork path, so I ended up instead
doing some more radical surgery to clean it all up.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Ingo Molnar <mingo@elte.hu>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (25 commits)
perf: Fix SIGIO handling
perf top: Don't stop if no kernel symtab is found
perf top: Handle kptr_restrict
perf top: Remove unused macro
perf events: initialize fd array to -1 instead of 0
perf tools: Make sure kptr_restrict warnings fit 80 col terms
perf tools: Fix build on older systems
perf symbols: Handle /proc/sys/kernel/kptr_restrict
perf: Remove duplicate headers
ftrace: Add internal recursive checks
tracing: Update btrfs's tracepoints to use u64 interface
tracing: Add __print_symbolic_u64 to avoid warnings on 32bit machine
ftrace: Set ops->flag to enabled even on static function tracing
tracing: Have event with function tracer check error return
ftrace: Have ftrace_startup() return failure code
jump_label: Check entries limit in __jump_label_update
ftrace/recordmcount: Avoid STT_FUNC symbols as base on ARM
scripts/tags.sh: Add magic for trace-events for etags too
scripts/tags.sh: Fix ctags for DEFINE_EVENT()
x86/ftrace: Fix compiler warning in ftrace.c
...
The rule is, we have to update tsk->rt.nr_cpus_allowed if we change
tsk->cpus_allowed. Otherwise RT scheduler may confuse.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4DD4B3FA.5060901@jp.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Adds functionality to read/write lock CLONE_THREAD fork()ing per-threadgroup
Add an rwsem that lives in a threadgroup's signal_struct that's taken for
reading in the fork path, under CONFIG_CGROUPS. If another part of the
kernel later wants to use such a locking mechanism, the CONFIG_CGROUPS
ifdefs should be changed to a higher-up flag that CGROUPS and the other
system would both depend on.
This is a pre-patch for cgroup-procs-write.patch.
Signed-off-by: Ben Blum <bblum@andrew.cmu.edu>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Witold reported a reboot caused by the selftests of the dynamic function
tracer. He sent me a config and I used ktest to do a config_bisect on it
(as my config did not cause the crash). It pointed out that the problem
config was CONFIG_PROVE_RCU.
What happened was that if multiple callbacks are attached to the
function tracer, we iterate a list of callbacks. Because the list is
managed by synchronize_sched() and preempt_disable, the access to the
pointers uses rcu_dereference_raw().
When PROVE_RCU is enabled, the rcu_dereference_raw() calls some
debugging functions, which happen to be traced. The tracing of the debug
function would then call rcu_dereference_raw() which would then call the
debug function and then... well you get the idea.
I first wrote two different patches to solve this bug.
1) add a __rcu_dereference_raw() that would not do any checks.
2) add notrace to the offending debug functions.
Both of these patches worked.
Talking with Paul McKenney on IRC, he suggested to add recursion
detection instead. This seemed to be a better solution, so I decided to
implement it. As the task_struct already has a trace_recursion to detect
recursion in the ring buffer, and that has a very small number it
allows, I decided to use that same variable to add flags that can detect
the recursion inside the infrastructure of the function tracer.
I plan to change it so that the task struct bit can be checked in
mcount, but as that requires changes to all archs, I will hold that off
to the next merge window.
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1306348063.1465.116.camel@gandalf.stny.rr.com
Reported-by: Witold Baryluk <baryluk@smp.if.uj.edu.pl>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
cpumask_t is very big struct and cpu_vm_mask is placed wrong position.
It might lead to reduce cache hit ratio.
This patch has two change.
1) Move the place of cpumask into last of mm_struct. Because usually cpumask
is accessed only front bits when the system has cpu-hotplug capability
2) Convert cpu_vm_mask into cpumask_var_t. It may help to reduce memory
footprint if cpumask_size() will use nr_cpumask_bits properly in future.
In addition, this patch change the name of cpu_vm_mask with cpu_vm_mask_var.
It may help to detect out of tree cpu_vm_mask users.
This patch has no functional change.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a kernel-wide shortage of per-process flags, so it's always
helpful to trim one when possible without incurring a significant penalty.
It's even more important when you're planning on adding a per- process
flag yourself, which I plan to do shortly for transparent hugepages.
PF_OOM_ORIGIN is used by ksm and swapoff to prefer current since it has a
tendency to allocate large amounts of memory and should be preferred for
killing over other tasks. We'd rather immediately kill the task making
the errant syscall rather than penalizing an innocent task.
This patch removes PF_OOM_ORIGIN since its behavior is equivalent to
setting the process's oom_score_adj to OOM_SCORE_ADJ_MAX.
The process's old oom_score_adj is stored and then set to
OOM_SCORE_ADJ_MAX during the time it used to have PF_OOM_ORIGIN. The old
value is then reinstated when the process should no longer be considered a
high priority for oom killing.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf tools: Fix sample size bit operations
perf tools: Fix ommitted mmap data update on remap
watchdog: Change the default timeout and configure nmi watchdog period based on watchdog_thresh
watchdog: Disable watchdog when thresh is zero
watchdog: Only disable/enable watchdog if neccessary
watchdog: Fix rounding bug in get_sample_period()
perf tools: Propagate event parse error handling
perf tools: Robustify dynamic sample content fetch
perf tools: Pre-check sample size before parsing
perf tools: Move evlist sample helpers to evlist area
perf tools: Remove junk code in mmap size handling
perf tools: Check we are able to read the event size on mmap
This restores the previous behavior of softlock_thresh.
Currently, setting watchdog_thresh to zero causes the watchdog
kthreads to consume a lot of CPU.
In addition, the logic of proc_dowatchdog_thresh and
proc_dowatchdog_enabled has been factored into proc_dowatchdog.
Signed-off-by: Mandeep Singh Baines <msb@chromium.org>
Cc: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1306127423-3347-3-git-send-email-msb@chromium.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
LKML-Reference: <20110517071018.GE22305@elte.hu>
Introduce SCHED_LOAD_RESOLUTION, which scales is added to
SCHED_LOAD_SHIFT and increases the resolution of
SCHED_LOAD_SCALE. This patch sets the value of
SCHED_LOAD_RESOLUTION to 10, scaling up the weights for all
sched entities by a factor of 1024. With this extra resolution,
we can handle deeper cgroup hiearchies and the scheduler can do
better shares distribution and load load balancing on larger
systems (especially for low weight task groups).
This does not change the existing user interface, the scaled
weights are only used internally. We do not modify
prio_to_weight values or inverses, but use the original weights
when calculating the inverse which is used to scale execution
time delta in calc_delta_mine(). This ensures we do not lose
accuracy when accounting time to the sched entities. Thanks to
Nikunj Dadhania for fixing an bug in c_d_m() that broken fairness.
Below is some analysis of the performance costs/improvements of
this patch.
1. Micro-arch performance costs:
Experiment was to run Ingo's pipe_test_100k 200 times with the
task pinned to one cpu. I measured instruction, cycles and
stalled-cycles for the runs. See:
http://thread.gmane.org/gmane.linux.kernel/1129232/focus=1129389
for more info.
-tip (baseline):
Performance counter stats for '/root/load-scale/pipe-test-100k' (200 runs):
964,991,769 instructions # 0.82 insns per cycle
# 0.33 stalled cycles per insn
# ( +- 0.05% )
1,171,186,635 cycles # 0.000 GHz ( +- 0.08% )
306,373,664 stalled-cycles-backend # 26.16% backend cycles idle ( +- 0.28% )
314,933,621 stalled-cycles-frontend # 26.89% frontend cycles idle ( +- 0.34% )
1.122405684 seconds time elapsed ( +- 0.05% )
-tip+patches:
Performance counter stats for './load-scale/pipe-test-100k' (200 runs):
963,624,821 instructions # 0.82 insns per cycle
# 0.33 stalled cycles per insn
# ( +- 0.04% )
1,175,215,649 cycles # 0.000 GHz ( +- 0.08% )
315,321,126 stalled-cycles-backend # 26.83% backend cycles idle ( +- 0.28% )
316,835,873 stalled-cycles-frontend # 26.96% frontend cycles idle ( +- 0.29% )
1.122238659 seconds time elapsed ( +- 0.06% )
With this patch, instructions decrease by ~0.10% and cycles
increase by 0.27%. This doesn't look statistically significant.
The number of stalled cycles in the backend increased from
26.16% to 26.83%. This can be attributed to the shifts we do in
c_d_m() and other places. The fraction of stalled cycles in the
frontend remains about the same, at 26.96% compared to 26.89% in -tip.
2. Balancing low-weight task groups
Test setup: run 50 tasks with random sleep/busy times (biased
around 100ms) in a low weight container (with cpu.shares = 2).
Measure %idle as reported by mpstat over a 10s window.
-tip (baseline):
06:47:48 PM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle intr/s
06:47:49 PM all 94.32 0.00 0.06 0.00 0.00 0.00 0.00 0.00 5.62 15888.00
06:47:50 PM all 94.57 0.00 0.62 0.00 0.00 0.00 0.00 0.00 4.81 16180.00
06:47:51 PM all 94.69 0.00 0.06 0.00 0.00 0.00 0.00 0.00 5.25 15966.00
06:47:52 PM all 95.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.19 16053.00
06:47:53 PM all 94.88 0.06 0.00 0.00 0.00 0.00 0.00 0.00 5.06 15984.00
06:47:54 PM all 93.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.69 15806.00
06:47:55 PM all 94.19 0.00 0.06 0.00 0.00 0.00 0.00 0.00 5.75 15896.00
06:47:56 PM all 92.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.13 15716.00
06:47:57 PM all 94.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.12 15982.00
06:47:58 PM all 95.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.56 16075.00
Average: all 94.49 0.01 0.08 0.00 0.00 0.00 0.00 0.00 5.42 15954.60
-tip+patches:
06:47:03 PM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle intr/s
06:47:04 PM all 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16630.00
06:47:05 PM all 99.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 16580.20
06:47:06 PM all 99.69 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.25 16596.00
06:47:07 PM all 99.20 0.00 0.74 0.00 0.00 0.06 0.00 0.00 0.00 17838.61
06:47:08 PM all 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16540.00
06:47:09 PM all 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16575.00
06:47:10 PM all 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16614.00
06:47:11 PM all 99.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 16588.00
06:47:12 PM all 99.94 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 16593.00
06:47:13 PM all 99.94 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 16551.00
Average: all 99.84 0.00 0.09 0.00 0.00 0.01 0.00 0.00 0.06 16711.58
We see an improvement in idle% on the system (drops from 5.42% on -tip to 0.06%
with the patches).
We see an improvement in idle% on the system (drops from 5.42%
on -tip to 0.06% with the patches).
Signed-off-by: Nikhil Rao <ncrao@google.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Nikunj A. Dadhania <nikunj@linux.vnet.ibm.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Stephan Barwolf <stephan.baerwolf@tu-ilmenau.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1305754668-18792-1-git-send-email-ncrao@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
SCHED_LOAD_SCALE is used to increase nice resolution and to
scale cpu_power calculations in the scheduler. This patch
introduces SCHED_POWER_SCALE and converts all uses of
SCHED_LOAD_SCALE for scaling cpu_power to use SCHED_POWER_SCALE
instead.
This is a preparatory patch for increasing the resolution of
SCHED_LOAD_SCALE, and there is no need to increase resolution
for cpu_power calculations.
Signed-off-by: Nikhil Rao <ncrao@google.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Nikunj A. Dadhania <nikunj@linux.vnet.ibm.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Stephan Barwolf <stephan.baerwolf@tu-ilmenau.de>
Cc: Mike Galbraith <efault@gmx.de>
Link: http://lkml.kernel.org/r/1305738580-9924-3-git-send-email-ncrao@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
sched_fork() and wake_up_new_task() are defined with a parameter
'unsigned long clone_flags', which is unused.
This patch removes the parameters.
Signed-off-by: Samir Bellabes <sam@synack.fr>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1305130685-1047-1-git-send-email-sam@synack.fr
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a task is traced and is in a stopped state, the tracer
may execute a ptrace request to examine the tracee state and
get its task struct. Right after, the tracee can be killed
and thus its breakpoints released.
This can happen concurrently when the tracer is in the middle
of reading or modifying these breakpoints, leading to dereferencing
a freed pointer.
Hence, to prepare the fix, create a generic breakpoint reference
holding API. When a reference on the breakpoints of a task is
held, the breakpoints won't be released until the last reference
is dropped. After that, no more ptrace request on the task's
breakpoints can be serviced for the tracer.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: v2.6.33.. <stable@kernel.org>
Link: http://lkml.kernel.org/r/1302284067-7860-2-git-send-email-fweisbec@gmail.com
Neil Brown pointed out that lock_depth somehow escaped the BKL
removal work. Let's get rid of it now.
Note that the perf scripting utilities still have a bunch of
code for dealing with common_lock_depth in tracepoints; I have
left that in place in case anybody wants to use that code with
older kernels.
Suggested-by: Neil Brown <neilb@suse.de>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110422111910.456c0e84@bike.lwn.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
5520e89 ("brk: fix min_brk lower bound computation for COMPAT_BRK")
tried to get the whole logic of brk randomization for legacy
(libc5-based) applications finally right.
It turns out that the way to detect whether brk has actually been
randomized in the end or not introduced by that patch still doesn't work
for those binaries, as reported by Geert:
: /sbin/init from my old m68k ramdisk exists prematurely.
:
: Before the patch:
:
: | brk(0x80005c8e) = 0x80006000
:
: After the patch:
:
: | brk(0x80005c8e) = 0x80005c8e
:
: Old libc5 considers brk() to have failed if the return value is not
: identical to the requested value.
I don't like it, but currently see no better option than a bit flag in
task_struct to catch the CONFIG_COMPAT_BRK && randomize_va_space == 2
case.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we've removed the rq->lock requirement from the first part of
ttwu() and can compute placement without holding any rq->lock, ensure
we execute the second half of ttwu() on the actual cpu we want the
task to run on.
This avoids having to take rq->lock and doing the task enqueue
remotely, saving lots on cacheline transfers.
As measured using: http://oss.oracle.com/~mason/sembench.c
$ for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor ; do echo performance > $i; done
$ echo 4096 32000 64 128 > /proc/sys/kernel/sem
$ ./sembench -t 2048 -w 1900 -o 0
unpatched: run time 30 seconds 647278 worker burns per second
patched: run time 30 seconds 816715 worker burns per second
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152729.515897185@chello.nl
In prepratation of having to call task_contributes_to_load() without
holding rq->lock, we need to store the result until we do and can
update the rq accounting accordingly.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152729.151523907@chello.nl
In preparation of calling this without rq->lock held, remove the
dependency on the rq argument.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152729.071474242@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In preparation of calling select_task_rq() without rq->lock held, drop
the dependency on the rq argument.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152729.031077745@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide a generic p->on_rq because the p->se.on_rq semantics are
unfavourable for lockless wakeups but needed for sched_fair.
In particular, p->on_rq is only cleared when we actually dequeue the
task in schedule() and not on any random dequeue as done by things
like __migrate_task() and __sched_setscheduler().
This also allows us to remove p->se usage from !sched_fair code.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152728.949545047@chello.nl
Since we now have p->on_cpu unconditionally available, use it to
re-implement mutex_spin_on_owner.
Requested-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152728.826338173@chello.nl
Always provide p->on_cpu so that we can determine if its on a cpu
without having to lock the rq.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152728.785452014@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For future rework of try_to_wake_up() we'd like to push part of that
function onto the CPU the task is actually going to run on.
In order to do so we need a generic callback from the existing scheduler IPI.
This patch introduces such a generic callback: scheduler_ipi() and
implements it as a NOP.
BenH notes: PowerPC might use this IPI on offline CPUs under rare conditions!
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152728.744338123@chello.nl
Remove the SD_LV_ enum and use dynamic level assignments.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.969433965@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since we now allocate SD_LV_MAX * nr_cpu_ids sched_domain/sched_group
structures when rebuilding the scheduler toplogy it might make sense
to shrink that depending on the CONFIG_ options.
This is only needed until we get rid of SD_LV_* alltogether and
provide a full dynamic topology interface.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.406226449@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of relying on static allocations for the sched_domain and
sched_group trees, dynamically allocate and RCU free them.
Allocating this dynamically also allows for some build_sched_groups()
simplification since we can now (like with other simplifications) rely
on the sched_domain tree instead of hard-coded knowledge.
One tricky to note is that detach_destroy_domains() needs to hold
rcu_read_lock() over the entire tear-down, per-cpu is not sufficient
since that can lead to partial sched_group existance (could possibly
be solved by doing the tear-down backwards but this is much more
robust).
A concequence of the above is that we can no longer print the
sched_domain debug stuff from cpu_attach_domain() since that might now
run with preemption disabled (due to classic RCU etc.) and
sched_domain_debug() does some GFP_KERNEL allocations.
Another thing to note is that we now fully rely on normal RCU and not
RCU-sched, this is because with the new and exiting RCU flavours we
grew over the years BH doesn't necessarily hold off RCU-sched grace
periods (-rt is known to break this). This would in fact already cause
us grief since we do sched_domain/sched_group iterations from softirq
context.
This patch is somewhat larger than I would like it to be, but I didn't
find any means of shrinking/splitting this.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.245307941@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch moves SIGNAL_STOP_DEQUEUED from signal_struct->flags to
task_struct->group_stop, and thus makes it per-thread.
Like SIGNAL_STOP_DEQUEUED, GROUP_STOP_DEQUEUED can be false-positive
after return from get_signal_to_deliver(), this is fine. The only
purpose of this bit is: we can drop ->siglock after __dequeue_signal()
returns the sig_kernel_stop() signal and before we call
do_signal_stop(), in this case we must not miss SIGCONT if it comes in
between.
But, unlike SIGNAL_STOP_DEQUEUED, GROUP_STOP_DEQUEUED can not be
false-positive in do_signal_stop() if multiple threads dequeue the
sig_kernel_stop() signal at the same time.
Consider two threads T1 and T2, SIGTTIN has a hanlder.
- T1 dequeues SIGTSTP and sets SIGNAL_STOP_DEQUEUED, then
it drops ->siglock
- SIGCONT comes and clears SIGNAL_STOP_DEQUEUED, SIGTSTP
should be cancelled.
- T2 dequeues SIGTTIN and sets SIGNAL_STOP_DEQUEUED again.
Since we have a handler we should not stop, T2 returns
to usermode to run the handler.
- T1 continues, calls do_signal_stop() and wrongly starts
the group stop because SIGNAL_STOP_DEQUEUED was restored
in between.
With or without this change:
- we need to do something with ptrace_signal() which can
return SIGSTOP, but this needs another discussion
- SIGSTOP can be lost if it races with the mt exec, will
be fixed later.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
* 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-block: (65 commits)
Documentation/iostats.txt: bit-size reference etc.
cfq-iosched: removing unnecessary think time checking
cfq-iosched: Don't clear queue stats when preempt.
blk-throttle: Reset group slice when limits are changed
blk-cgroup: Only give unaccounted_time under debug
cfq-iosched: Don't set active queue in preempt
block: fix non-atomic access to genhd inflight structures
block: attempt to merge with existing requests on plug flush
block: NULL dereference on error path in __blkdev_get()
cfq-iosched: Don't update group weights when on service tree
fs: assign sb->s_bdi to default_backing_dev_info if the bdi is going away
block: Require subsystems to explicitly allocate bio_set integrity mempool
jbd2: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
jbd: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
fs: make fsync_buffers_list() plug
mm: make generic_writepages() use plugging
blk-cgroup: Add unaccounted time to timeslice_used.
block: fixup plugging stubs for !CONFIG_BLOCK
block: remove obsolete comments for blkdev_issue_zeroout.
blktrace: Use rq->cmd_flags directly in blk_add_trace_rq.
...
Fix up conflicts in fs/{aio.c,super.c}
The sentence uses the possessive pronoun, which is spelled
without an apostrophe.
Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Cc: Jiri Kosina <trivial@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <1300735487-2406-1-git-send-email-j.neuschaefer@gmx.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, if the task is STOPPED on ptrace attach, it's left alone
and the state is silently changed to TRACED on the next ptrace call.
The behavior breaks the assumption that arch_ptrace_stop() is called
before any task is poked by ptrace and is ugly in that a task
manipulates the state of another task directly.
With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and
TRACED can be made clean. The tracer can use the flag to tell the
tracee to retry stop on attach and detach. On retry, the tracee will
enter the desired state in the correct way. The lower 16bits of
task->group_stop is used to remember the signal number which caused
the last group stop. This is used while retrying for ptrace attach as
the original group_exit_code could have been consumed with wait(2) by
then.
As the real parent may wait(2) and consume the group_exit_code
anytime, the group_exit_code needs to be saved separately so that it
can be used when switching from regular sleep to ptrace_stop(). This
is recorded in the lower 16bits of task->group_stop.
If a task is already stopped and there's no intervening SIGCONT, a
ptrace request immediately following a successful PTRACE_ATTACH should
always succeed even if the tracer doesn't wait(2) for attach
completion; however, with this change, the tracee might still be
TASK_RUNNING trying to enter TASK_TRACED which would cause the
following request to fail with -ESRCH.
This intermediate state is hidden from the ptracer by setting
GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait
for it to clear on its signal->wait_chldexit. Completing the
transition or getting killed clears TRAPPING and wakes up the tracer.
Note that the STOPPED -> RUNNING -> TRACED transition is still visible
to other threads which are in the same group as the ptracer and the
reverse transition is visible to all. Please read the comments for
details.
Oleg:
* Spotted a race condition where a task may retry group stop without
proper bookkeeping. Fixed by redoing bookkeeping on retry.
* Spotted that the transition is visible to userland in several
different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled
corner case is documented.
* Pointed out not setting GROUP_STOP_SIGMASK on an already stopped
task would result in more consistent behavior.
* Pointed out that calling ptrace_stop() from do_signal_stop() in
TASK_STOPPED can race with group stop start logic and then confuse
the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now
called with TASK_RUNNING.
* Suggested using signal->wait_chldexit instead of bit wait.
* Spotted a race condition between TRACED transition and clearing of
TRAPPING.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
Currently task->signal->group_stop_count is used to decide whether to
stop for group stop. However, if there is a task in the group which
is taking a long time to stop, other tasks which are continued by
ptrace would repeatedly stop for the same group stop until the group
stop is complete.
Conversely, if a ptraced task is in TASK_TRACED state, the debugger
won't get notified of group stops which is inconsistent compared to
the ptraced task in any other state.
This patch introduces GROUP_STOP_PENDING which tracks whether a task
is yet to stop for the group stop in progress. The flag is set when a
group stop starts and cleared when the task stops the first time for
the group stop, and consulted whenever whether the task should
participate in a group stop needs to be determined. Note that now
tasks in TASK_TRACED also participate in group stop.
This results in the following behavior changes.
* For a single group stop, a ptracer would see at most one stop
reported.
* A ptracee in TASK_TRACED now also participates in group stop and the
tracer would get the notification. However, as a ptraced task could
be in TASK_STOPPED state or any ptrace trap could consume group
stop, the notification may still be missing. These will be
addressed with further patches.
* A ptracee may start a group stop while one is still in progress if
the tracer let it continue with stop signal delivery. Group stop
code handles this correctly.
Oleg:
* Spotted that a task might skip signal check even when its
GROUP_STOP_PENDING is set. Fixed by updating
recalc_sigpending_tsk() to check GROUP_STOP_PENDING instead of
group_stop_count.
* Pointed out that task->group_stop should be cleared whenever
task->signal->group_stop_count is cleared. Fixed accordingly.
* Pointed out the behavior inconsistency between TASK_TRACED and
RUNNING and the last behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
task->signal->group_stop_count is used to track the progress of group
stop. It's initialized to the number of tasks which need to stop for
group stop to finish and each stopping or trapping task decrements.
However, each task doesn't keep track of whether it decremented the
counter or not and if woken up before the group stop is complete and
stops again, it can decrement the counter multiple times.
Please consider the following example code.
static void *worker(void *arg)
{
while (1) ;
return NULL;
}
int main(void)
{
pthread_t thread;
pid_t pid;
int i;
pid = fork();
if (!pid) {
for (i = 0; i < 5; i++)
pthread_create(&thread, NULL, worker, NULL);
while (1) ;
return 0;
}
ptrace(PTRACE_ATTACH, pid, NULL, NULL);
while (1) {
waitid(P_PID, pid, NULL, WSTOPPED);
ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP);
}
return 0;
}
The child creates five threads and the parent continuously traps the
first thread and whenever the child gets a signal, SIGSTOP is
delivered. If an external process sends SIGSTOP to the child, all
other threads in the process should reliably stop. However, due to
the above bug, the first thread will often end up consuming
group_stop_count multiple times and SIGSTOP often ends up stopping
none or part of the other four threads.
This patch adds a new field task->group_stop which is protected by
siglock and uses GROUP_STOP_CONSUME flag to track which task is still
to consume group_stop_count to fix this bug.
task_clear_group_stop_pending() and task_participate_group_stop() are
added to help manipulating group stop states. As ptrace_stop() now
also uses task_participate_group_stop(), it will set
SIGNAL_STOP_STOPPED if it completes a group stop.
There still are many issues regarding the interaction between group
stop and ptrace. Patches to address them will follow.
- Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
All kthreads being created from a single helper task, they all use memory
from a single node for their kernel stack and task struct.
This patch suite creates kthread_create_on_node(), adding a 'cpu' parameter
to parameters already used by kthread_create().
This parameter serves in allocating memory for the new kthread on its
memory node if possible.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (62 commits)
posix-clocks: Check write permissions in posix syscalls
hrtimer: Remove empty hrtimer_init_hres_timer()
hrtimer: Update hrtimer->state documentation
hrtimer: Update base[CLOCK_BOOTTIME].offset correctly
timers: Export CLOCK_BOOTTIME via the posix timers interface
timers: Add CLOCK_BOOTTIME hrtimer base
time: Extend get_xtime_and_monotonic_offset() to also return sleep
time: Introduce get_monotonic_boottime and ktime_get_boottime
hrtimers: extend hrtimer base code to handle more then 2 clockids
ntp: Remove redundant and incorrect parameter check
mn10300: Switch do_timer() to xtimer_update()
posix clocks: Introduce dynamic clocks
posix-timers: Cleanup namespace
posix-timers: Add support for fd based clocks
x86: Add clock_adjtime for x86
posix-timers: Introduce a syscall for clock tuning.
time: Splitout compat timex accessors
ntp: Add ADJ_SETOFFSET mode bit
time: Introduce timekeeping_inject_offset
posix-timer: Update comment
...
Fix up new system-call-related conflicts in
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/syscall_table_32.S
(name_to_handle_at()/open_by_handle_at() vs clock_adjtime()), and some
due to movement of get_jiffies_64() in:
kernel/time.c
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (26 commits)
sched: Resched proper CPU on yield_to()
sched: Allow users with sufficient RLIMIT_NICE to change from SCHED_IDLE policy
sched: Allow SCHED_BATCH to preempt SCHED_IDLE tasks
sched: Clean up the IRQ_TIME_ACCOUNTING code
sched: Add #ifdef around irq time accounting functions
sched, autogroup: Stop claiming ownership of the root task group
sched, autogroup: Stop going ahead if autogroup is disabled
sched, autogroup, sysctl: Use proc_dointvec_minmax() instead
sched: Fix the group_imb logic
sched: Clean up some f_b_g() comments
sched: Clean up remnants of sd_idle
sched: Wholesale removal of sd_idle logic
sched: Add yield_to(task, preempt) functionality
sched: Use a buddy to implement yield_task_fair()
sched: Limit the scope of clear_buddies
sched: Check the right ->nr_running in yield_task_fair()
sched: Avoid expensive initial update_cfs_load(), on UP too
sched: Fix switch_from_fair()
sched: Simplify the idle scheduling class
softirqs: Account ksoftirqd time as cpustat softirq
...
This patch adds support for creating a queuing context outside
of the queue itself. This enables us to batch up pieces of IO
before grabbing the block device queue lock and submitting them to
the IO scheduler.
The context is created on the stack of the process and assigned in
the task structure, so that we can auto-unplug it if we hit a schedule
event.
The current queue plugging happens implicitly if IO is submitted to
an empty device, yet callers have to remember to unplug that IO when
they are going to wait for it. This is an ugly API and has caused bugs
in the past. Additionally, it requires hacks in the vm (->sync_page()
callback) to handle that logic. By switching to an explicit plugging
scheme we make the API a lot nicer and can get rid of the ->sync_page()
hack in the vm.
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
There are two spellings in use for 'freeze' + 'able' - 'freezable' and
'freezeable'. The former is the more prominent one. The latter is
mostly used by workqueue and in a few other odd places. Unify the
spelling to 'freezable'.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Dmitry Torokhov <dtor@mail.ru>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Alex Dubov <oakad@yahoo.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Currently only implemented for fair class tasks.
Add a yield_to_task method() to the fair scheduling class. allowing the
caller of yield_to() to accelerate another thread in it's thread group,
task group.
Implemented via a scheduler hint, using cfs_rq->next to encourage the
target being selected. We can rely on pick_next_entity to keep things
fair, so noone can accelerate a thread that has already used its fair
share of CPU time.
This also means callers should only call yield_to when they really
mean it. Calling it too often can result in the scheduler just
ignoring the hint.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20110201095051.4ddb7738@annuminas.surriel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the buddy mechanism to implement yield_task_fair. This
allows us to skip onto the next highest priority se at every
level in the CFS tree, unless doing so would introduce gross
unfairness in CPU time distribution.
We order the buddy selection in pick_next_entity to check
yield first, then last, then next. We need next to be able
to override yield, because it is possible for the "next" and
"yield" task to be different processen in the same sub-tree
of the CFS tree. When they are, we need to go into that
sub-tree regardless of the "yield" hint, and pick the correct
entity once we get to the right level.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20110201095103.3a79e92a@annuminas.surriel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Oleg reported that on architectures with
__ARCH_WANT_INTERRUPTS_ON_CTXSW the IPI from
task_oncpu_function_call() can land before perf_event_task_sched_in()
and cause interesting situations for eg. perf_install_in_context().
This patch reworks the task_oncpu_function_call() interface to give a
more usable primitive as well as rework all its users to hopefully be
more obvious as well as remove the races.
While looking at the code I also found a number of races against
perf_event_task_sched_out() which can flip contexts between tasks so
plug those too.
Reported-and-reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>