Our other backends return an actual error value upon failure. Do the
same for stolen objects, which currently just return NULL on failure.
Signed-off-by: CQ Tang <cq.tang@intel.com>
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004170452.15410-2-matthew.auld@intel.com
Replace the struct_mutex requirement for pinning the i915_vma with the
local vm->mutex instead. Note that the vm->mutex is tainted by the
shrinker (we require unbinding from inside fs-reclaim) and so we cannot
allocate while holding that mutex. Instead we have to preallocate
workers to do allocate and apply the PTE updates after we have we
reserved their slot in the drm_mm (using fences to order the PTE writes
with the GPU work and with later unbind).
In adding the asynchronous vma binding, one subtle requirement is to
avoid coupling the binding fence into the backing object->resv. That is
the asynchronous binding only applies to the vma timeline itself and not
to the pages as that is a more global timeline (the binding of one vma
does not need to be ordered with another vma, nor does the implicit GEM
fencing depend on a vma, only on writes to the backing store). Keeping
the vma binding distinct from the backing store timelines is verified by
a number of async gem_exec_fence and gem_exec_schedule tests. The way we
do this is quite simple, we keep the fence for the vma binding separate
and only wait on it as required, and never add it to the obj->resv
itself.
Another consequence in reducing the locking around the vma is the
destruction of the vma is no longer globally serialised by struct_mutex.
A natural solution would be to add a kref to i915_vma, but that requires
decoupling the reference cycles, possibly by introducing a new
i915_mm_pages object that is own by both obj->mm and vma->pages.
However, we have not taken that route due to the overshadowing lmem/ttm
discussions, and instead play a series of complicated games with
trylocks to (hopefully) ensure that only one destruction path is called!
v2: Add some commentary, and some helpers to reduce patch churn.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-4-chris@chris-wilson.co.uk
The request->timeline is only valid until the request is retired (i.e.
before it is completed). Upon retiring the request, the context may be
unpinned and freed, and along with it the timeline may be freed. We
therefore need to be very careful when chasing rq->timeline that the
pointer does not disappear beneath us. The vast majority of users are in
a protected context, either during request construction or retirement,
where the timeline->mutex is held and the timeline cannot disappear. It
is those few off the beaten path (where we access a second timeline) that
need extra scrutiny -- to be added in the next patch after first adding
the warnings about dangerous access.
One complication, where we cannot use the timeline->mutex itself, is
during request submission onto hardware (under spinlocks). Here, we want
to check on the timeline to finalize the breadcrumb, and so we need to
impose a second rule to ensure that the request->timeline is indeed
valid. As we are submitting the request, it's context and timeline must
be pinned, as it will be used by the hardware. Since it is pinned, we
know the request->timeline must still be valid, and we cannot submit the
idle barrier until after we release the engine->active.lock, ergo while
submitting and holding that spinlock, a second thread cannot release the
timeline.
v2: Don't be lazy inside selftests; hold the timeline->mutex for as long
as we need it, and tidy up acquiring the timeline with a bit of
refactoring (i915_active_add_request)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
A few times in CI, we have detected a GPU hang on our Haswell GT2
systems with the characteristic IPEHR of 0x780c0000. When the PSMI w/a
was first introducted, it was applied to all Haswell, but later on we
found an erratum that supposedly restricted the issue to GT1 and so
constrained it only be applied on GT1. That may have been a mistake...
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111692
Fixes: 167bc759e8 ("drm/i915: Restrict PSMI context load w/a to Haswell GT1")
References: 2c55018347 ("drm/i915: Disable PSMI sleep messages on all rings around context switches")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Acked-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190917194746.26710-1-chris@chris-wilson.co.uk
With the upcoming change in timing (dramatically reducing the latency
between manipulating the ppGTT and execution), no amount of tweaking
could save Baytrail, it would always fail to invalidate its TLB. Ville
was right, Baytrail is beyond hope.
v2: Rollback on all gen7; same timing instability on TLB invalidation.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190830180000.24608-1-chris@chris-wilson.co.uk
Forgo the struct_mutex requirement for request retirement as we have
been transitioning over to only using the timeline->mutex for
controlling the lifetime of a request on that timeline.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190815205709.24285-4-chris@chris-wilson.co.uk
i915_irq.c is large. It serves as the central dispatch and handler for
all of our device interrupts. Lets break it up by pulling out the GT
interrupt handlers.
Based on a patch by Chris Wilson.
Signed-off-by: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190811210633.18417-1-chris@chris-wilson.co.uk
i915_irq.c is large. It serves as the central dispatch and handler for
all of our device interrupts. Pull out the GT pm interrupt handling
(leaving the central dispatch) so that we can encapsulate the logic a
little better.
Based on a patch by Chris Wilson.
Signed-off-by: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190811142801.2460-1-chris@chris-wilson.co.uk
We can already clear an object with the blt, so try to do the same to
support copying from one object backing store to another. Really this is
just object -> object, which is not that useful yet, what we really want
is two backing stores, but that will require some vma rework first,
otherwise we are stuck with "tmp" objects.
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Abdiel Janulgue <abdiel.janulgue@linux.intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190810174338.19810-1-chris@chris-wilson.co.uk
Move the timeline from being inside the intel_ring to intel_context
itself. This saves much pointer dancing and makes the relations of the
context to its timeline much clearer.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190809182518.20486-4-chris@chris-wilson.co.uk
Refactor the backends to handle the deferred context allocation in a
consistent manner, and allow calling it as an explicit first step in
pinning a context for the first time. This should make it easier for
backends to keep track of partially constructed contexts from
initialisation.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190809182518.20486-2-chris@chris-wilson.co.uk
Since we have already stopped the ring, cleared the ring, disabled the
ring (and verifying the ring is clear), a later debug message that the
ring is no longer clear serves no function. It appears it restarts
anyway, and we verify that the ring started correctly afterwards.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190808074207.18274-4-chris@chris-wilson.co.uk
The shrinker cannot touch objects used by the contexts (logical state
and ring). Currently we mark those as "pin_global" to let the shrinker
skip over them, however, if we remove them from the shrinker lists
entirely, we don't event have to include them in our shrink accounting.
By keeping the unshrinkable objects in our shrinker tracking, we report
a large number of objects available to be shrunk, and leave the shrinker
deeply unsatisfied when we fail to reclaim those. The shrinker will
persist in trying to reclaim the unavailable objects, forcing the system
into a livelock (not even hitting the dread oomkiller).
v2: Extend unshrinkable protection for perma-pinned scratch and guc
allocations (Tvrtko)
v3: Notice that we should be pinned when marking unshrinkable and so the
link cannot be empty; merge duplicate paths.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190802212137.22207-1-chris@chris-wilson.co.uk
Track the currently bound address space used by the HW context. Minor
conversions to use the local intel_context.vm are made, leaving behind
some more surgery required to make intel_context the primary through the
selftests.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190730143209.4549-2-chris@chris-wilson.co.uk
We only use the init_context vfunc once while recording the default
context state, and we use the same sequence in each backend (eliding
steps that do not apply). Remove the vfunc for simplicity and
de-duplication.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190729113720.24830-1-chris@chris-wilson.co.uk
Prior to freeing the struct, call the fini function to cleanup the
common members. Currently this only calls the debug functions to mark
the structs as destroyed, but may be extended to real work in future.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190718070024.21781-2-chris@chris-wilson.co.uk
Push the engine stop into the back reset_prepare (where it already was!)
This allows us to avoid dangerously setting the RING registers to 0 for
logical contexts. If we clear the register on a live context, those
invalid register values are recorded in the logical context state and
replayed (with hilarious results).
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190716124931.5870-2-chris@chris-wilson.co.uk
Having taken the first step in encapsulating the functionality by moving
the related files under gt/, the next step is to start encapsulating by
passing around the relevant structs rather than the global
drm_i915_private. In this step, we pass intel_gt to intel_reset.c
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190712192953.9187-1-chris@chris-wilson.co.uk
We have a bunch of offsets in the scratch buffer. As we're about to
add some more, let's group all of the offsets in a common location.
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190709123351.5645-6-lionel.g.landwerlin@intel.com
PM interrupts belong to the GT so move the variables to be inside
struct intel_gt.
Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Co-developed-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190704121756.27824-3-tvrtko.ursulin@linux.intel.com
The render state is used to initialise the default RCS context, and only
used during early setup from within the gt code. As such, it makes a
good candidate for placing within gt/, even if it is not yet entirely
clean of our GEM heritage.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190704091925.7391-1-chris@chris-wilson.co.uk
If we introduce a callback for i915_active that is only called the first
time we use the i915_active and is symmetrically paired with the
i915_active.retire callback, we can replace the open-coded and
non-atomic implementations -- which will be very fragile (i.e. broken)
upon removing the struct_mutex serialisation.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190621183801.23252-4-chris@chris-wilson.co.uk
Remove the accumulated optimisations that we have for i915_vma_retire
and reduce it to the bare essential of tracking the active object
reference. This allows us to only use atomic operations, and so will be
able to avoid the struct_mutex requirement.
The principal loss here is the shrinker MRU bumping, so now if we have
to shrink, we will do so in much more random order and more likely to
try and shrink recently used objects. That is a nuisance, but shrinking
active objects is a second step we try to avoid and will always be a
system-wide performance issue.
The other loss is here is in the automatic pruning of the
reservation_object when idling. This is not as large an issue as upon
reservation_object introduction as now adding new fences into the object
replaces already signaled fences, keeping the array compact. But we do
lose the auto-expiration of stale fences and unused arrays. That may be
a noticeable problem for which we need to re-implement autopruning.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190621183801.23252-3-chris@chris-wilson.co.uk
Scratch vma lives under gt but the API used to work on i915. Make this
consistent by renaming the function to intel_gt_scratch_offset and make
it take struct intel_gt.
v2:
* Move to intel_gt. (Chris)
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190621070811.7006-33-tvrtko.ursulin@linux.intel.com
Our timelines are stored inside intel_gt so we can convert the interface
to take exactly that and not i915.
At the same time re-order the params to our more typical layout and
replace the backpointer to the new containing structure.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190621070811.7006-31-tvrtko.ursulin@linux.intel.com
For gt related operations it makes more logical sense to stay in the realm
of gt instead of dereferencing via driver i915.
This patch handles a few of the easy ones with work requiring more
refactoring still outstanding.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190621070811.7006-30-tvrtko.ursulin@linux.intel.com
Our intel_rings are always flushed as they are continually used to submit
commands to the GPU, and so do not need to be flushed on unpinning. This
avoids pulling in the flush_ggtt_writes locking into our context
unpin, which we want to allow from atomic context (for simplicity).
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190619203504.4220-1-chris@chris-wilson.co.uk
Remember to keep the rings pinned as well as the context image until the
GPU is no longer active.
v2: Introduce a ring->pin_count primarily to hide the
mock_ring that doesn't fit into the normal GGTT vma picture.
v3: Order is important in teardown, ringbuffer submission needs to drop
the pin count on the engine->kernel_context before it can gleefully free
its ring.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=110946
Fixes: ce476c80b8 ("drm/i915: Keep contexts pinned until after the next kernel context switch")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190619170135.15281-1-chris@chris-wilson.co.uk
Since commit eb8d0f5af4 ("drm/i915: Remove GPU reset dependence on
struct_mutex"), the I915_WAIT_LOCKED flags passed to i915_request_wait()
has been defunct. Now go ahead and remove it from all callers.
References: eb8d0f5af4 ("drm/i915: Remove GPU reset dependence on struct_mutex")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190618074153.16055-3-chris@chris-wilson.co.uk
All page directories are identical in function, only the position in the
hierarchy differ. Use same base type for directory functionality.
v2: cleanup, size always 512, init to null
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Matthew Auld <matthew.william.auld@gmail.com>
Cc: Abdiel Janulgue <abdiel.janulgue@linux.intel.com>
Signed-off-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190614164350.30415-2-mika.kuoppala@linux.intel.com
To continue the onslaught of removing the assumption of a global
execution ordering, another casualty is the engine->timeline. Without an
actual timeline to track, it is overkill and we can replace it with a
much less grand plain list. We still need a list of requests inflight,
for the simple purpose of finding inflight requests (for retiring,
resetting, preemption etc).
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190614164606.15633-3-chris@chris-wilson.co.uk
We need to keep the context image pinned in memory until after the GPU
has finished writing into it. Since it continues to write as we signal
the final breadcrumb, we need to keep it pinned until the request after
it is complete. Currently we know the order in which requests execute on
each engine, and so to remove that presumption we need to identify a
request/context-switch we know must occur after our completion. Any
request queued after the signal must imply a context switch, for
simplicity we use a fresh request from the kernel context.
The sequence of operations for keeping the context pinned until saved is:
- On context activation, we preallocate a node for each physical engine
the context may operate on. This is to avoid allocations during
unpinning, which may be from inside FS_RECLAIM context (aka the
shrinker)
- On context deactivation on retirement of the last active request (which
is before we know the context has been saved), we add the
preallocated node onto a barrier list on each engine
- On engine idling, we emit a switch to kernel context. When this
switch completes, we know that all previous contexts must have been
saved, and so on retiring this request we can finally unpin all the
contexts that were marked as deactivated prior to the switch.
We can enhance this in future by flushing all the idle contexts on a
regular heartbeat pulse of a switch to kernel context, which will also
be used to check for hung engines.
v2: intel_context_active_acquire/_release
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190614164606.15633-1-chris@chris-wilson.co.uk
Only a few call sites remain which have been converted to uncore mmio
accessors and so the macro can be removed.
ENGINE_POSTING_READ16 is added to replace one engine->mmio_base relative
call site.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190611104548.30545-3-tvrtko.ursulin@linux.intel.com
An old optimisation to reduce the number of atomics per batch sadly
relies on struct_mutex for coordination. In order to remove struct_mutex
from serialising object/context closing, always taking and releasing an
active reference on first use / last use greatly simplifies the locking.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190528092956.14910-15-chris@chris-wilson.co.uk
After realising we need to sample RING_START to detect context switches
from preemption events that do not allow for the seqno to advance, we
can also realise that the seqno itself is just a distance along the ring
and so can be replaced by sampling RING_HEAD.
v2: Bonus comment for the mystery separate CS_STALL before MI_USER_INTERRUPT
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190508080704.24223-1-chris@chris-wilson.co.uk
Make the engine responsible for cleaning itself up!
This removes the i915->gt.cleanup vfunc that has been annoying the
casual reader and myself for the last several years, and helps keep a
future patch to add more cleanup tidy.
v2: Assert that engine->destroy is set after the backend starts
allocating its own state.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190501103204.18632-1-chris@chris-wilson.co.uk
In the next patch, we require the engine vfuncs setup prior to
initialising the pinned kernel contexts, so split the vfunc setup from
the engine initialisation and call it earlier.
v2: s/setup_xcs/setup_common/ for intel_ring_submission_setup()
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190426163336.15906-6-chris@chris-wilson.co.uk