Commit Graph

1337 Commits

Author SHA1 Message Date
ZhuangYanying
47a66eed99 KVM: x86: Fix nmi injection failure when vcpu got blocked
When spin_lock_irqsave() deadlock occurs inside the guest, vcpu threads,
other than the lock-holding one, would enter into S state because of
pvspinlock. Then inject NMI via libvirt API "inject-nmi", the NMI could
not be injected into vm.

The reason is:
1 It sets nmi_queued to 1 when calling ioctl KVM_NMI in qemu, and sets
cpu->kvm_vcpu_dirty to true in do_inject_external_nmi() meanwhile.
2 It sets nmi_queued to 0 in process_nmi(), before entering guest, because
cpu->kvm_vcpu_dirty is true.

It's not enough just to check nmi_queued to decide whether to stay in
vcpu_block() or not. NMI should be injected immediately at any situation.
Add checking nmi_pending, and testing KVM_REQ_NMI replaces nmi_queued
in vm_vcpu_has_events().

Do the same change for SMIs.

Signed-off-by: Zhuang Yanying <ann.zhuangyanying@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-06-01 11:23:10 +02:00
Radim Krčmář
f0367ee1d6 KVM: x86: zero base3 of unusable segments
Static checker noticed that base3 could be used uninitialized if the
segment was not present (useable).  Random stack values probably would
not pass VMCS entry checks.

Reported-by:  Dan Carpenter <dan.carpenter@oracle.com>
Fixes: 1aa366163b ("KVM: x86 emulator: consolidate segment accessors")
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-05-19 19:59:27 +02:00
Wanpeng Li
cbfc6c9184 KVM: X86: Fix read out-of-bounds vulnerability in kvm pio emulation
Huawei folks reported a read out-of-bounds vulnerability in kvm pio emulation.

- "inb" instruction to access PIT Mod/Command register (ioport 0x43, write only,
  a read should be ignored) in guest can get a random number.
- "rep insb" instruction to access PIT register port 0x43 can control memcpy()
  in emulator_pio_in_emulated() to copy max 0x400 bytes but only read 1 bytes,
  which will disclose the unimportant kernel memory in host but no crash.

The similar test program below can reproduce the read out-of-bounds vulnerability:

void hexdump(void *mem, unsigned int len)
{
        unsigned int i, j;

        for(i = 0; i < len + ((len % HEXDUMP_COLS) ? (HEXDUMP_COLS - len % HEXDUMP_COLS) : 0); i++)
        {
                /* print offset */
                if(i % HEXDUMP_COLS == 0)
                {
                        printf("0x%06x: ", i);
                }

                /* print hex data */
                if(i < len)
                {
                        printf("%02x ", 0xFF & ((char*)mem)[i]);
                }
                else /* end of block, just aligning for ASCII dump */
                {
                        printf("   ");
                }

                /* print ASCII dump */
                if(i % HEXDUMP_COLS == (HEXDUMP_COLS - 1))
                {
                        for(j = i - (HEXDUMP_COLS - 1); j <= i; j++)
                        {
                                if(j >= len) /* end of block, not really printing */
                                {
                                        putchar(' ');
                                }
                                else if(isprint(((char*)mem)[j])) /* printable char */
                                {
                                        putchar(0xFF & ((char*)mem)[j]);
                                }
                                else /* other char */
                                {
                                        putchar('.');
                                }
                        }
                        putchar('\n');
                }
        }
}

int main(void)
{
	int i;
	if (iopl(3))
	{
		err(1, "set iopl unsuccessfully\n");
		return -1;
	}
	static char buf[0x40];

	/* test ioport 0x40,0x41,0x42,0x43,0x44,0x45 */

	memset(buf, 0xab, sizeof(buf));

	asm volatile("push %rdi;");
	asm volatile("mov %0, %%rdi;"::"q"(buf));

	asm volatile ("mov $0x40, %rdx;");
	asm volatile ("in %dx,%al;");
	asm volatile ("stosb;");

	asm volatile ("mov $0x41, %rdx;");
	asm volatile ("in %dx,%al;");
	asm volatile ("stosb;");

	asm volatile ("mov $0x42, %rdx;");
	asm volatile ("in %dx,%al;");
	asm volatile ("stosb;");

	asm volatile ("mov $0x43, %rdx;");
	asm volatile ("in %dx,%al;");
	asm volatile ("stosb;");

	asm volatile ("mov $0x44, %rdx;");
	asm volatile ("in %dx,%al;");
	asm volatile ("stosb;");

	asm volatile ("mov $0x45, %rdx;");
	asm volatile ("in %dx,%al;");
	asm volatile ("stosb;");

	asm volatile ("pop %rdi;");
	hexdump(buf, 0x40);

	printf("\n");

	/* ins port 0x40 */

	memset(buf, 0xab, sizeof(buf));

	asm volatile("push %rdi;");
	asm volatile("mov %0, %%rdi;"::"q"(buf));

	asm volatile ("mov $0x20, %rcx;");
	asm volatile ("mov $0x40, %rdx;");
	asm volatile ("rep insb;");

	asm volatile ("pop %rdi;");
	hexdump(buf, 0x40);

	printf("\n");

	/* ins port 0x43 */

	memset(buf, 0xab, sizeof(buf));

	asm volatile("push %rdi;");
	asm volatile("mov %0, %%rdi;"::"q"(buf));

	asm volatile ("mov $0x20, %rcx;");
	asm volatile ("mov $0x43, %rdx;");
	asm volatile ("rep insb;");

	asm volatile ("pop %rdi;");
	hexdump(buf, 0x40);

	printf("\n");
	return 0;
}

The vcpu->arch.pio_data buffer is used by both in/out instrutions emulation
w/o clear after using which results in some random datas are left over in
the buffer. Guest reads port 0x43 will be ignored since it is write only,
however, the function kernel_pio() can't distigush this ignore from successfully
reads data from device's ioport. There is no new data fill the buffer from
port 0x43, however, emulator_pio_in_emulated() will copy the stale data in
the buffer to the guest unconditionally. This patch fixes it by clearing the
buffer before in instruction emulation to avoid to grant guest the stale data
in the buffer.

In addition, string I/O is not supported for in kernel device. So there is no
iteration to read ioport %RCX times for string I/O. The function kernel_pio()
just reads one round, and then copy the io size * %RCX to the guest unconditionally,
actually it copies the one round ioport data w/ other random datas which are left
over in the vcpu->arch.pio_data buffer to the guest. This patch fixes it by
introducing the string I/O support for in kernel device in order to grant the right
ioport datas to the guest.

Before the patch:

0x000000: fe 38 93 93 ff ff ab ab .8......
0x000008: ab ab ab ab ab ab ab ab ........
0x000010: ab ab ab ab ab ab ab ab ........
0x000018: ab ab ab ab ab ab ab ab ........
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........

0x000000: f6 00 00 00 00 00 00 00 ........
0x000008: 00 00 00 00 00 00 00 00 ........
0x000010: 00 00 00 00 4d 51 30 30 ....MQ00
0x000018: 30 30 20 33 20 20 20 20 00 3
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........

0x000000: f6 00 00 00 00 00 00 00 ........
0x000008: 00 00 00 00 00 00 00 00 ........
0x000010: 00 00 00 00 4d 51 30 30 ....MQ00
0x000018: 30 30 20 33 20 20 20 20 00 3
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........

After the patch:

0x000000: 1e 02 f8 00 ff ff ab ab ........
0x000008: ab ab ab ab ab ab ab ab ........
0x000010: ab ab ab ab ab ab ab ab ........
0x000018: ab ab ab ab ab ab ab ab ........
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........

0x000000: d2 e2 d2 df d2 db d2 d7 ........
0x000008: d2 d3 d2 cf d2 cb d2 c7 ........
0x000010: d2 c4 d2 c0 d2 bc d2 b8 ........
0x000018: d2 b4 d2 b0 d2 ac d2 a8 ........
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........

0x000000: 00 00 00 00 00 00 00 00 ........
0x000008: 00 00 00 00 00 00 00 00 ........
0x000010: 00 00 00 00 00 00 00 00 ........
0x000018: 00 00 00 00 00 00 00 00 ........
0x000020: ab ab ab ab ab ab ab ab ........
0x000028: ab ab ab ab ab ab ab ab ........
0x000030: ab ab ab ab ab ab ab ab ........
0x000038: ab ab ab ab ab ab ab ab ........

Reported-by: Moguofang <moguofang@huawei.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Moguofang <moguofang@huawei.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-05-19 19:59:26 +02:00
Wanpeng Li
e2c2206a18 KVM: x86: Fix potential preemption when get the current kvmclock timestamp
BUG: using __this_cpu_read() in preemptible [00000000] code: qemu-system-x86/2809
 caller is __this_cpu_preempt_check+0x13/0x20
 CPU: 2 PID: 2809 Comm: qemu-system-x86 Not tainted 4.11.0+ #13
 Call Trace:
  dump_stack+0x99/0xce
  check_preemption_disabled+0xf5/0x100
  __this_cpu_preempt_check+0x13/0x20
  get_kvmclock_ns+0x6f/0x110 [kvm]
  get_time_ref_counter+0x5d/0x80 [kvm]
  kvm_hv_process_stimers+0x2a1/0x8a0 [kvm]
  ? kvm_hv_process_stimers+0x2a1/0x8a0 [kvm]
  ? kvm_arch_vcpu_ioctl_run+0xac9/0x1ce0 [kvm]
  kvm_arch_vcpu_ioctl_run+0x5bf/0x1ce0 [kvm]
  kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
  ? kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
  ? __fget+0xf3/0x210
  do_vfs_ioctl+0xa4/0x700
  ? __fget+0x114/0x210
  SyS_ioctl+0x79/0x90
  entry_SYSCALL_64_fastpath+0x23/0xc2
 RIP: 0033:0x7f9d164ed357
  ? __this_cpu_preempt_check+0x13/0x20

This can be reproduced by run kvm-unit-tests/hyperv_stimer.flat w/
CONFIG_PREEMPT and CONFIG_DEBUG_PREEMPT enabled.

Safe access to per-CPU data requires a couple of constraints, though: the
thread working with the data cannot be preempted and it cannot be migrated
while it manipulates per-CPU variables. If the thread is preempted, the
thread that replaces it could try to work with the same variables; migration
to another CPU could also cause confusion. However there is no preemption
disable when reads host per-CPU tsc rate to calculate the current kvmclock
timestamp.

This patch fixes it by utilizing get_cpu/put_cpu pair to guarantee both
__this_cpu_read() and rdtsc() are not preempted.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-05-19 19:59:25 +02:00
Wanpeng Li
a575813bfe KVM: x86: Fix load damaged SSEx MXCSR register
Reported by syzkaller:

   BUG: unable to handle kernel paging request at ffffffffc07f6a2e
   IP: report_bug+0x94/0x120
   PGD 348e12067
   P4D 348e12067
   PUD 348e14067
   PMD 3cbd84067
   PTE 80000003f7e87161

   Oops: 0003 [#1] SMP
   CPU: 2 PID: 7091 Comm: kvm_load_guest_ Tainted: G           OE   4.11.0+ #8
   task: ffff92fdfb525400 task.stack: ffffbda6c3d04000
   RIP: 0010:report_bug+0x94/0x120
   RSP: 0018:ffffbda6c3d07b20 EFLAGS: 00010202
    do_trap+0x156/0x170
    do_error_trap+0xa3/0x170
    ? kvm_load_guest_fpu.part.175+0x12a/0x170 [kvm]
    ? mark_held_locks+0x79/0xa0
    ? retint_kernel+0x10/0x10
    ? trace_hardirqs_off_thunk+0x1a/0x1c
    do_invalid_op+0x20/0x30
    invalid_op+0x1e/0x30
   RIP: 0010:kvm_load_guest_fpu.part.175+0x12a/0x170 [kvm]
    ? kvm_load_guest_fpu.part.175+0x1c/0x170 [kvm]
    kvm_arch_vcpu_ioctl_run+0xed6/0x1b70 [kvm]
    kvm_vcpu_ioctl+0x384/0x780 [kvm]
    ? kvm_vcpu_ioctl+0x384/0x780 [kvm]
    ? sched_clock+0x13/0x20
    ? __do_page_fault+0x2a0/0x550
    do_vfs_ioctl+0xa4/0x700
    ? up_read+0x1f/0x40
    ? __do_page_fault+0x2a0/0x550
    SyS_ioctl+0x79/0x90
    entry_SYSCALL_64_fastpath+0x23/0xc2

SDM mentioned that "The MXCSR has several reserved bits, and attempting to write
a 1 to any of these bits will cause a general-protection exception(#GP) to be
generated". The syzkaller forks' testcase overrides xsave area w/ random values
and steps on the reserved bits of MXCSR register. The damaged MXCSR register
values of guest will be restored to SSEx MXCSR register before vmentry. This
patch fixes it by catching userspace override MXCSR register reserved bits w/
random values and bails out immediately.

Reported-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-05-15 16:08:56 +02:00
Linus Torvalds
bf5f89463f Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:

 - the rest of MM

 - various misc things

 - procfs updates

 - lib/ updates

 - checkpatch updates

 - kdump/kexec updates

 - add kvmalloc helpers, use them

 - time helper updates for Y2038 issues. We're almost ready to remove
   current_fs_time() but that awaits a btrfs merge.

 - add tracepoints to DAX

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits)
  drivers/staging/ccree/ssi_hash.c: fix build with gcc-4.4.4
  selftests/vm: add a test for virtual address range mapping
  dax: add tracepoint to dax_insert_mapping()
  dax: add tracepoint to dax_writeback_one()
  dax: add tracepoints to dax_writeback_mapping_range()
  dax: add tracepoints to dax_load_hole()
  dax: add tracepoints to dax_pfn_mkwrite()
  dax: add tracepoints to dax_iomap_pte_fault()
  mtd: nand: nandsim: convert to memalloc_noreclaim_*()
  treewide: convert PF_MEMALLOC manipulations to new helpers
  mm: introduce memalloc_noreclaim_{save,restore}
  mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
  mm/huge_memory.c: deposit a pgtable for DAX PMD faults when required
  mm/huge_memory.c: use zap_deposited_table() more
  time: delete CURRENT_TIME_SEC and CURRENT_TIME
  gfs2: replace CURRENT_TIME with current_time
  apparmorfs: replace CURRENT_TIME with current_time()
  lustre: replace CURRENT_TIME macro
  fs: ubifs: replace CURRENT_TIME_SEC with current_time
  fs: ufs: use ktime_get_real_ts64() for birthtime
  ...
2017-05-08 18:17:56 -07:00
Michal Hocko
a7c3e901a4 mm: introduce kv[mz]alloc helpers
Patch series "kvmalloc", v5.

There are many open coded kmalloc with vmalloc fallback instances in the
tree.  Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.

As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.

Most callers, I could find, have been converted to use the helper
instead.  This is patch 6.  There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.

[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com

This patch (of 9):

Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code.  Yet we do not have any common helper
for that and so users have invented their own helpers.  Some of them are
really creative when doing so.  Let's just add kv[mz]alloc and make sure
it is implemented properly.  This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures.  This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.

This patch also changes some existing users and removes helpers which
are specific for them.  In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL).  Those need to be
fixed separately.

While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers.  Existing ones would have to die
slowly.

[sfr@canb.auug.org.au: f2fs fixup]
  Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>	[ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:12 -07:00
Paolo Bonzini
4e335d9e7d Revert "KVM: Support vCPU-based gfn->hva cache"
This reverts commit bbd6411513.

I've been sitting on this revert for too long and it unfortunately
missed 4.11.  It's also the reason why I haven't merged ring-based
dirty tracking for 4.12.

Using kvm_vcpu_memslots in kvm_gfn_to_hva_cache_init and
kvm_vcpu_write_guest_offset_cached means that the MSR value can
now be used to access SMRAM, simply by making it point to an SMRAM
physical address.  This is problematic because it lets the guest
OS overwrite memory that it shouldn't be able to touch.

Cc: stable@vger.kernel.org
Fixes: bbd6411513
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-05-03 16:30:26 +02:00
David Hildenbrand
5c0aea0e8d KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
We needed the lock to avoid racing with creation of the irqchip on x86. As
kvm_set_irq_routing() calls srcu_synchronize_expedited(), this lock
might be held for a longer time.

Let's introduce an arch specific callback to check if we can actually
add irq routes. For x86, all we have to do is check if we have an
irqchip in the kernel. We don't need kvm->lock at that point as the
irqchip is marked as inititalized only when actually fully created.

Reported-by: Steve Rutherford <srutherford@google.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Fixes: 1df6ddede1 ("KVM: x86: race between KVM_SET_GSI_ROUTING and KVM_CREATE_IRQCHIP")
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-05-02 14:45:45 +02:00
Ladi Prosek
6ed071f051 KVM: x86: fix emulation of RSM and IRET instructions
On AMD, the effect of set_nmi_mask called by emulate_iret_real and em_rsm
on hflags is reverted later on in x86_emulate_instruction where hflags are
overwritten with ctxt->emul_flags (the kvm_set_hflags call). This manifests
as a hang when rebooting Windows VMs with QEMU, OVMF, and >1 vcpu.

Instead of trying to merge ctxt->emul_flags into vcpu->arch.hflags after
an instruction is emulated, this commit deletes emul_flags altogether and
makes the emulator access vcpu->arch.hflags using two new accessors. This
way all changes, on the emulator side as well as in functions called from
the emulator and accessing vcpu state with emul_to_vcpu, are preserved.

More details on the bug and its manifestation with Windows and OVMF:

  It's a KVM bug in the interaction between SMI/SMM and NMI, specific to AMD.
  I believe that the SMM part explains why we started seeing this only with
  OVMF.

  KVM masks and unmasks NMI when entering and leaving SMM. When KVM emulates
  the RSM instruction in em_rsm, the set_nmi_mask call doesn't stick because
  later on in x86_emulate_instruction we overwrite arch.hflags with
  ctxt->emul_flags, effectively reverting the effect of the set_nmi_mask call.
  The AMD-specific hflag of interest here is HF_NMI_MASK.

  When rebooting the system, Windows sends an NMI IPI to all but the current
  cpu to shut them down. Only after all of them are parked in HLT will the
  initiating cpu finish the restart. If NMI is masked, other cpus never get
  the memo and the initiating cpu spins forever, waiting for
  hal!HalpInterruptProcessorsStarted to drop. That's the symptom we observe.

Fixes: a584539b24 ("KVM: x86: pass the whole hflags field to emulator and back")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-04-27 16:54:09 +02:00
Andrew Jones
cde9af6e79 KVM: add explicit barrier to kvm_vcpu_kick
kvm_vcpu_kick() must issue a general memory barrier prior to reading
vcpu->mode in order to ensure correctness of the mutual-exclusion
memory barrier pattern used with vcpu->requests.  While the cmpxchg
called from kvm_vcpu_kick():

 kvm_vcpu_kick
   kvm_arch_vcpu_should_kick
     kvm_vcpu_exiting_guest_mode
       cmpxchg

implies general memory barriers before and after the operation, that
implication is only valid when cmpxchg succeeds.  We need an explicit
barrier for when it fails, otherwise a VCPU thread on its entry path
that reads zero for vcpu->requests does not exclude the possibility
the requesting thread sees !IN_GUEST_MODE when it reads vcpu->mode.

kvm_make_all_cpus_request already had a barrier, so we remove it, as
now it would be redundant.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-04-27 14:16:17 +02:00
Radim Krčmář
1bd2009e73 KVM: x86: always use kvm_make_request instead of set_bit
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-04-27 14:12:53 +02:00
Radim Krčmář
72875d8a4d KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
Users were expected to use kvm_check_request() for testing and clearing,
but request have expanded their use since then and some users want to
only test or do a faster clear.

Make sure that requests are not directly accessed with bit operations.

Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-04-27 14:12:22 +02:00
Marcelo Tosatti
e891a32e7a KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
The disablement of interrupts at KVM_SET_CLOCK/KVM_GET_CLOCK
attempts to disable software suspend from causing "non atomic behaviour" of
the operation:

    Add a helper function to compute the kernel time and convert nanoseconds
    back to CPU specific cycles.  Note that these must not be called in preemptible
    context, as that would mean the kernel could enter software suspend state,
    which would cause non-atomic operation.

However, assume the kernel can enter software suspend at the following 2 points:

        ktime_get_ts(&ts);
1.
						hypothetical_ktime_get_ts(&ts)
        monotonic_to_bootbased(&ts);
2.

monotonic_to_bootbased() should be correct relative to a ktime_get_ts(&ts)
performed after point 1 (that is after resuming from software suspend),
hypothetical_ktime_get_ts()

Therefore it is also correct for the ktime_get_ts(&ts) before point 1,
which is

	ktime_get_ts(&ts) = hypothetical_ktime_get_ts(&ts) + time-to-execute-suspend-code

Note CLOCK_MONOTONIC does not count during suspension.

So remove the irq disablement, which causes the following warning on
-RT kernels:

 With this reasoning, and the -RT bug that the irq disablement causes
 (because spin_lock is now a sleeping lock), remove the IRQ protection as it
 causes:

 [ 1064.668109] in_atomic(): 0, irqs_disabled(): 1, pid: 15296, name:m
 [ 1064.668110] INFO: lockdep is turned off.
 [ 1064.668110] irq event stamp: 0
 [ 1064.668112] hardirqs last  enabled at (0): [<          (null)>]  )
 [ 1064.668116] hardirqs last disabled at (0): [] c0
 [ 1064.668118] softirqs last  enabled at (0): [] c0
 [ 1064.668118] softirqs last disabled at (0): [<          (null)>]  )
 [ 1064.668121] CPU: 13 PID: 15296 Comm: qemu-kvm Not tainted 3.10.0-1
 [ 1064.668121] Hardware name: Dell Inc. PowerEdge R730/0H21J3, BIOS 5
 [ 1064.668123]  ffff8c1796b88000 00000000afe7344c ffff8c179abf3c68 f3
 [ 1064.668125]  ffff8c179abf3c90 ffffffff930ccb3d ffff8c1b992b3610 f0
 [ 1064.668126]  00007ffc1a26fbc0 ffff8c179abf3cb0 ffffffff9375f694 f0
 [ 1064.668126] Call Trace:
 [ 1064.668132]  [] dump_stack+0x19/0x1b
 [ 1064.668135]  [] __might_sleep+0x12d/0x1f0
 [ 1064.668138]  [] rt_spin_lock+0x24/0x60
 [ 1064.668155]  [] __get_kvmclock_ns+0x36/0x110 [k]
 [ 1064.668159]  [] ? futex_wait_queue_me+0x103/0x10
 [ 1064.668171]  [] kvm_arch_vm_ioctl+0xa2/0xd70 [k]
 [ 1064.668173]  [] ? futex_wait+0x1ac/0x2a0

v2: notice get_kvmclock_ns with the same problem (Pankaj).
v3: remove useless helper function (Pankaj).

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-04-21 12:50:28 +02:00
Michael S. Tsirkin
668fffa3f8 kvm: better MWAIT emulation for guests
Guests that are heavy on futexes end up IPI'ing each other a lot. That
can lead to significant slowdowns and latency increase for those guests
when running within KVM.

If only a single guest is needed on a host, we have a lot of spare host
CPU time we can throw at the problem. Modern CPUs implement a feature
called "MWAIT" which allows guests to wake up sleeping remote CPUs without
an IPI - thus without an exit - at the expense of never going out of guest
context.

The decision whether this is something sensible to use should be up to the
VM admin, so to user space. We can however allow MWAIT execution on systems
that support it properly hardware wise.

This patch adds a CAP to user space and a KVM cpuid leaf to indicate
availability of native MWAIT execution. With that enabled, the worst a
guest can do is waste as many cycles as a "jmp ." would do, so it's not
a privilege problem.

We consciously do *not* expose the feature in our CPUID bitmap, as most
people will want to benefit from sleeping vCPUs to allow for over commit.

Reported-by: "Gabriel L. Somlo" <gsomlo@gmail.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
[agraf: fix amd, change commit message]
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-04-21 12:50:28 +02:00
Kyle Huey
db2336a804 KVM: x86: virtualize cpuid faulting
Hardware support for faulting on the cpuid instruction is not required to
emulate it, because cpuid triggers a VM exit anyways. KVM handles the relevant
MSRs (MSR_PLATFORM_INFO and MSR_MISC_FEATURES_ENABLE) and upon a
cpuid-induced VM exit checks the cpuid faulting state and the CPL.
kvm_require_cpl is even kind enough to inject the GP fault for us.

Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[Return "1" from kvm_emulate_cpuid, it's not void. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-04-21 12:50:06 +02:00
Ladi Prosek
405a353a0e KVM: x86: Add MSR_AMD64_DC_CFG to the list of ignored MSRs
Hyper-V writes 0x800000000000 to MSR_AMD64_DC_CFG when running on AMD CPUs
as recommended in erratum 383, analogous to our svm_init_erratum_383.

By ignoring the MSR, this patch enables running Hyper-V in L1 on AMD.

Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-12 21:09:24 +02:00
Denis Plotnikov
bd8fab39cd KVM: x86: fix maintaining of kvm_clock stability on guest CPU hotplug
VCPU TSC synchronization is perfromed in kvm_write_tsc() when the TSC
value being set is within 1 second from the expected, as obtained by
extrapolating of the TSC in already synchronized VCPUs.

This is naturally achieved on all VCPUs at VM start and resume;
however on VCPU hotplug it is not: the newly added VCPU is created
with TSC == 0 while others are well ahead.

To compensate for that, consider host-initiated kvm_write_tsc() with
TSC == 0 a special case requiring synchronization regardless of the
current TSC on other VCPUs.

Signed-off-by: Denis Plotnikov <dplotnikov@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-12 20:17:15 +02:00
Denis Plotnikov
c5e8ec8e9b KVM: x86: remaster kvm_write_tsc code
Reuse existing code instead of using inline asm.
Make the code more concise and clear in the TSC
synchronization part.

Signed-off-by: Denis Plotnikov <dplotnikov@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-12 20:17:15 +02:00
David Hildenbrand
49f520b99a KVM: x86: push usage of slots_lock down
Let's just move it to the place where it is actually needed.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-12 20:17:14 +02:00
David Hildenbrand
ba7454e17f KVM: x86: don't take kvm->irq_lock when creating IRQCHIP
I don't see any reason any more for this lock, seemed to be used to protect
removal of kvm->arch.vpic / kvm->arch.vioapic when already partially
inititalized, now access is properly protected using kvm->arch.irqchip_mode
and this shouldn't be necessary anymore.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-12 20:17:14 +02:00
David Hildenbrand
33392b4911 KVM: x86: convert kvm_(set|get)_ioapic() into void
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-12 20:17:14 +02:00
David Hildenbrand
90bca0529e KVM: x86: get rid of pic_irqchip()
It seemed like a nice idea to encapsulate access to kvm->arch.vpic. But
as the usage is already mixed, internal locks are taken outside of i8259.c
and grepping for "vpic" only is much easier, let's just get rid of
pic_irqchip().

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-12 20:17:13 +02:00
David Hildenbrand
637e3f86fa KVM: x86: new irqchip mode KVM_IRQCHIP_INIT_IN_PROGRESS
Let's add a new mode and set it while we create the irqchip via
KVM_CREATE_IRQCHIP and KVM_CAP_SPLIT_IRQCHIP.

This mode will be used later to test if adding routes
(in kvm_set_routing_entry()) is already allowed.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-12 20:17:13 +02:00
Jim Mattson
28d0635388 kvm: nVMX: Disallow userspace-injected exceptions in guest mode
The userspace exception injection API and code path are entirely
unprepared for exceptions that might cause a VM-exit from L2 to L1, so
the best course of action may be to simply disallow this for now.

1. The API provides no mechanism for userspace to specify the new DR6
bits for a #DB exception or the new CR2 value for a #PF
exception. Presumably, userspace is expected to modify these registers
directly with KVM_SET_SREGS before the next KVM_RUN ioctl. However, in
the event that L1 intercepts the exception, these registers should not
be changed. Instead, the new values should be provided in the
exit_qualification field of vmcs12 (Intel SDM vol 3, section 27.1).

2. In the case of a userspace-injected #DB, inject_pending_event()
clears DR7.GD before calling vmx_queue_exception(). However, in the
event that L1 intercepts the exception, this is too early, because
DR7.GD should not be modified by a #DB that causes a VM-exit directly
(Intel SDM vol 3, section 27.1).

3. If the injected exception is a #PF, nested_vmx_check_exception()
doesn't properly check whether or not L1 is interested in the
associated error code (using the #PF error code mask and match fields
from vmcs12). It may either return 0 when it should call
nested_vmx_vmexit() or vice versa.

4. nested_vmx_check_exception() assumes that it is dealing with a
hardware-generated exception intercept from L2, with some of the
relevant details (the VM-exit interruption-information and the exit
qualification) live in vmcs02. For userspace-injected exceptions, this
is not the case.

5. prepare_vmcs12() assumes that when its exit_intr_info argument
specifies valid information with a valid error code that it can VMREAD
the VM-exit interruption error code from vmcs02. For
userspace-injected exceptions, this is not the case.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-07 16:49:01 +02:00
David Hildenbrand
28bf288879 KVM: x86: fix user triggerable warning in kvm_apic_accept_events()
If we already entered/are about to enter SMM, don't allow switching to
INIT/SIPI_RECEIVED, otherwise the next call to kvm_apic_accept_events()
will report a warning.

Same applies if we are already in MP state INIT_RECEIVED and SMM is
requested to be turned on. Refuse to set the VCPU events in this case.

Fixes: cd7764fe9f ("KVM: x86: latch INITs while in system management mode")
Cc: stable@vger.kernel.org # 4.2+
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-07 16:49:01 +02:00
Paolo Bonzini
3042255899 kvm: make KVM_CAP_COALESCED_MMIO architecture agnostic
Remove code from architecture files that can be moved to virt/kvm, since there
is already common code for coalesced MMIO.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[Removed a pointless 'break' after 'return'.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-07 16:49:00 +02:00
Paolo Bonzini
ad6260da1e KVM: x86: drop legacy device assignment
Legacy device assignment has been deprecated since 4.2 (released
1.5 years ago).  VFIO is better and everyone should have switched to it.
If they haven't, this should convince them. :)

Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-04-07 16:49:00 +02:00
Paolo Bonzini
2beb6dad2e KVM: x86: cleanup the page tracking SRCU instance
SRCU uses a delayed work item.  Skip cleaning it up, and
the result is use-after-free in the work item callbacks.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Cc: stable@vger.kernel.org
Fixes: 0eb05bf290
Reviewed-by: Xiao Guangrong <xiaoguangrong.eric@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-03-28 14:08:02 +02:00
Wanpeng Li
24dccf83a1 KVM: x86: correct async page present tracepoint
After async pf setup successfully, there is a broadcast wakeup w/ special
token 0xffffffff which tells vCPU that it should wake up all processes
waiting for APFs though there is no real process waiting at the moment.

The async page present tracepoint print prematurely and fails to catch the
special token setup. This patch fixes it by moving the async page present
tracepoint after the special token setup.

Before patch:

qemu-system-x86-8499  [006] ...1  5973.473292: kvm_async_pf_ready: token 0x0 gva 0x0

After patch:

qemu-system-x86-8499  [006] ...1  5973.473292: kvm_async_pf_ready: token 0xffffffff gva 0x0

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-03-23 19:02:07 +01:00
Peter Xu
c761159cf8 KVM: x86: use pic/ioapic destructor when destroy vm
We have specific destructors for pic/ioapic, we'd better use them when
destroying the VM as well.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-03-23 19:02:06 +01:00
Ingo Molnar
3905f9ad45 sched/headers: Prepare to move sched_info_on() and force_schedstat_enabled() from <linux/sched.h> to <linux/sched/stat.h>
But first update usage sites with the new header dependency.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:39 +01:00
Linus Torvalds
fd7e9a8834 4.11 is going to be a relatively large release for KVM, with a little over
200 commits and noteworthy changes for most architectures.
 
 * ARM:
 - GICv3 save/restore
 - cache flushing fixes
 - working MSI injection for GICv3 ITS
 - physical timer emulation
 
 * MIPS:
 - various improvements under the hood
 - support for SMP guests
 - a large rewrite of MMU emulation.  KVM MIPS can now use MMU notifiers
 to support copy-on-write, KSM, idle page tracking, swapping, ballooning
 and everything else.  KVM_CAP_READONLY_MEM is also supported, so that
 writes to some memory regions can be treated as MMIO.  The new MMU also
 paves the way for hardware virtualization support.
 
 * PPC:
 - support for POWER9 using the radix-tree MMU for host and guest
 - resizable hashed page table
 - bugfixes.
 
 * s390: expose more features to the guest
 - more SIMD extensions
 - instruction execution protection
 - ESOP2
 
 * x86:
 - improved hashing in the MMU
 - faster PageLRU tracking for Intel CPUs without EPT A/D bits
 - some refactoring of nested VMX entry/exit code, preparing for live
 migration support of nested hypervisors
 - expose yet another AVX512 CPUID bit
 - host-to-guest PTP support
 - refactoring of interrupt injection, with some optimizations thrown in
 and some duct tape removed.
 - remove lazy FPU handling
 - optimizations of user-mode exits
 - optimizations of vcpu_is_preempted() for KVM guests
 
 * generic:
 - alternative signaling mechanism that doesn't pound on tsk->sighand->siglock
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJYral1AAoJEL/70l94x66DbNgH/Rx8YXuidFq2fe3RWOvld3RK
 85OM/D5g38cTLpBE0/sJpcvX34iYN8U/l5foCZwpxB+83GHEk2Cr57JyfTogdaAJ
 x8dBhHKQCA/HxSQUQLN6nFqRV+yT8WUR92Fhqx82+80BSen5Yzcfee/TDoW6T1IW
 g8CYgX9FrRaGOX066ImAuUfdAdUVjyssfs9VttDTX+HiusPeuBPx/wsRe1ZEEPlH
 vnltIJQb1ETV2GOZLUojKjzH6aZkjIl29XxjkYii9JTUornClG0DfW+5QT3uLrB5
 gJ+G+Zmpsq8ZBx9jNDtAi7sFsoPY1Mzf+JPNCGXBra2sP2GrBAuXcxmgznRYltQ=
 =8IIp
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "4.11 is going to be a relatively large release for KVM, with a little
  over 200 commits and noteworthy changes for most architectures.

  ARM:
   - GICv3 save/restore
   - cache flushing fixes
   - working MSI injection for GICv3 ITS
   - physical timer emulation

  MIPS:
   - various improvements under the hood
   - support for SMP guests
   - a large rewrite of MMU emulation. KVM MIPS can now use MMU
     notifiers to support copy-on-write, KSM, idle page tracking,
     swapping, ballooning and everything else. KVM_CAP_READONLY_MEM is
     also supported, so that writes to some memory regions can be
     treated as MMIO. The new MMU also paves the way for hardware
     virtualization support.

  PPC:
   - support for POWER9 using the radix-tree MMU for host and guest
   - resizable hashed page table
   - bugfixes.

  s390:
   - expose more features to the guest
   - more SIMD extensions
   - instruction execution protection
   - ESOP2

  x86:
   - improved hashing in the MMU
   - faster PageLRU tracking for Intel CPUs without EPT A/D bits
   - some refactoring of nested VMX entry/exit code, preparing for live
     migration support of nested hypervisors
   - expose yet another AVX512 CPUID bit
   - host-to-guest PTP support
   - refactoring of interrupt injection, with some optimizations thrown
     in and some duct tape removed.
   - remove lazy FPU handling
   - optimizations of user-mode exits
   - optimizations of vcpu_is_preempted() for KVM guests

  generic:
   - alternative signaling mechanism that doesn't pound on
     tsk->sighand->siglock"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (195 commits)
  x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64
  x86/paravirt: Change vcp_is_preempted() arg type to long
  KVM: VMX: use correct vmcs_read/write for guest segment selector/base
  x86/kvm/vmx: Defer TR reload after VM exit
  x86/asm/64: Drop __cacheline_aligned from struct x86_hw_tss
  x86/kvm/vmx: Simplify segment_base()
  x86/kvm/vmx: Get rid of segment_base() on 64-bit kernels
  x86/kvm/vmx: Don't fetch the TSS base from the GDT
  x86/asm: Define the kernel TSS limit in a macro
  kvm: fix page struct leak in handle_vmon
  KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now
  KVM: Return an error code only as a constant in kvm_get_dirty_log()
  KVM: Return an error code only as a constant in kvm_get_dirty_log_protect()
  KVM: Return directly after a failed copy_from_user() in kvm_vm_compat_ioctl()
  KVM: x86: remove code for lazy FPU handling
  KVM: race-free exit from KVM_RUN without POSIX signals
  KVM: PPC: Book3S HV: Turn "KVM guest htab" message into a debug message
  KVM: PPC: Book3S PR: Ratelimit copy data failure error messages
  KVM: Support vCPU-based gfn->hva cache
  KVM: use separate generations for each address space
  ...
2017-02-22 18:22:53 -08:00
Paolo Bonzini
bd7e5b0899 KVM: x86: remove code for lazy FPU handling
The FPU is always active now when running KVM.

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-17 12:28:01 +01:00
Paolo Bonzini
460df4c1fc KVM: race-free exit from KVM_RUN without POSIX signals
The purpose of the KVM_SET_SIGNAL_MASK API is to let userspace "kick"
a VCPU out of KVM_RUN through a POSIX signal.  A signal is attached
to a dummy signal handler; by blocking the signal outside KVM_RUN and
unblocking it inside, this possible race is closed:

          VCPU thread                     service thread
   --------------------------------------------------------------
        check flag
                                          set flag
                                          raise signal
        (signal handler does nothing)
        KVM_RUN

However, one issue with KVM_SET_SIGNAL_MASK is that it has to take
tsk->sighand->siglock on every KVM_RUN.  This lock is often on a
remote NUMA node, because it is on the node of a thread's creator.
Taking this lock can be very expensive if there are many userspace
exits (as is the case for SMP Windows VMs without Hyper-V reference
time counter).

As an alternative, we can put the flag directly in kvm_run so that
KVM can see it:

          VCPU thread                     service thread
   --------------------------------------------------------------
                                          raise signal
        signal handler
          set run->immediate_exit
        KVM_RUN
          check run->immediate_exit

Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-17 12:27:37 +01:00
Cao, Lei
bbd6411513 KVM: Support vCPU-based gfn->hva cache
Provide versions of struct gfn_to_hva_cache functions that
take vcpu as a parameter instead of struct kvm.  The existing functions
are not needed anymore, so delete them.  This allows dirty pages to
be logged in the vcpu dirty ring, instead of the global dirty ring,
for ring-based dirty memory tracking.

Signed-off-by: Lei Cao <lei.cao@stratus.com>
Message-Id: <CY1PR08MB19929BD2AC47A291FD680E83F04F0@CY1PR08MB1992.namprd08.prod.outlook.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-16 18:42:46 +01:00
Paolo Bonzini
b95234c840 kvm: x86: do not use KVM_REQ_EVENT for APICv interrupt injection
Since bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU
is blocked", 2015-09-18) the posted interrupt descriptor is checked
unconditionally for PIR.ON.  Therefore we don't need KVM_REQ_EVENT to
trigger the scan and, if NMIs or SMIs are not involved, we can avoid
the complicated event injection path.

Calling kvm_vcpu_kick if PIR.ON=1 is also useless, though it has been
there since APICv was introduced.

However, without the KVM_REQ_EVENT safety net KVM needs to be much
more careful about races between vmx_deliver_posted_interrupt and
vcpu_enter_guest.  First, the IPI for posted interrupts may be issued
between setting vcpu->mode = IN_GUEST_MODE and disabling interrupts.
If that happens, kvm_trigger_posted_interrupt returns true, but
smp_kvm_posted_intr_ipi doesn't do anything about it.  The guest is
entered with PIR.ON, but the posted interrupt IPI has not been sent
and the interrupt is only delivered to the guest on the next vmentry
(if any).  To fix this, disable interrupts before setting vcpu->mode.
This ensures that the IPI is delayed until the guest enters non-root mode;
it is then trapped by the processor causing the interrupt to be injected.

Second, the IPI may be issued between kvm_x86_ops->sync_pir_to_irr(vcpu)
and vcpu->mode = IN_GUEST_MODE.  In this case, kvm_vcpu_kick is called
but it (correctly) doesn't do anything because it sees vcpu->mode ==
OUTSIDE_GUEST_MODE.  Again, the guest is entered with PIR.ON but no
posted interrupt IPI is pending; this time, the fix for this is to move
the RVI update after IN_GUEST_MODE.

Both issues were mostly masked by the liberal usage of KVM_REQ_EVENT,
though the second could actually happen with VT-d posted interrupts.
In both race scenarios KVM_REQ_EVENT would cancel guest entry, resulting
in another vmentry which would inject the interrupt.

This saves about 300 cycles on the self_ipi_* tests of vmexit.flat.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-15 14:54:36 +01:00
Paolo Bonzini
76dfafd536 KVM: x86: do not scan IRR twice on APICv vmentry
Calls to apic_find_highest_irr are scanning IRR twice, once
in vmx_sync_pir_from_irr and once in apic_search_irr.  Change
sync_pir_from_irr to get the new maximum IRR from kvm_apic_update_irr;
now that it does the computation, it can also do the RVI write.

In order to avoid complications in svm.c, make the callback optional.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-15 14:54:35 +01:00
Paolo Bonzini
3d92789f69 KVM: vmx: move sync_pir_to_irr from apic_find_highest_irr to callers
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-15 14:54:34 +01:00
Paolo Bonzini
0ad3bed6c5 kvm: nVMX: move nested events check to kvm_vcpu_running
vcpu_run calls kvm_vcpu_running, not kvm_arch_vcpu_runnable,
and the former does not call check_nested_events.

Once KVM_REQ_EVENT is removed from the APICv interrupt injection
path, however, this would leave no place to trigger a vmexit
from L2 to L1, causing a missed interrupt delivery while in guest
mode.  This is caught by the "ack interrupt on exit" test in
vmx.flat.

[This does not change the calls to check_nested_events in
 inject_pending_event.  That is material for a separate cleanup.]

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-15 14:54:33 +01:00
Arnd Bergmann
8ef81a9a45 KVM: x86: hide KVM_HC_CLOCK_PAIRING on 32 bit
The newly added hypercall doesn't work on x86-32:

arch/x86/kvm/x86.c: In function 'kvm_pv_clock_pairing':
arch/x86/kvm/x86.c:6163:6: error: implicit declaration of function 'kvm_get_walltime_and_clockread';did you mean 'kvm_get_time_scale'? [-Werror=implicit-function-declaration]

This adds an #ifdef around it, matching the one around the related
functions that are also only implemented on 64-bit systems.

Fixes: 55dd00a73a ("KVM: x86: add KVM_HC_CLOCK_PAIRING hypercall")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-09 16:23:39 +01:00
Paolo Bonzini
2e751dfb5f kvmarm updates for 4.11
- GICv3 save restore
 - Cache flushing fixes
 - MSI injection fix for GICv3 ITS
 - Physical timer emulation support
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJYnICmAAoJECPQ0LrRPXpDC04P/A73ZEL6m0vUzGpuvclxwWc6
 OCJ2C9kYloK+twyGLFbPprI4eN/70dpThgFE1Zr+ol/vAOhQlGQJoarc4n4+eYyb
 8e8IxM5Cmi44HUB64xOInidLacqeyRy5+TvKXIH0aHLgpdynSEQJu88RVXUvVgvs
 IZizhTpYueDYdexNNEkL5r2yJhVZCaczyjB1vU8k5MdODLDM63ABnPOSNJNXio2x
 itoO0EU1Lb9GhuzQj0hiMvKJPyviuPHwau7AhokUSjDPaHzaQT7TgSVioKov/rl6
 bRzhPmXqesex97ZWA5Fxr8jgSNR7JyRz+bzCLEry7XFaI3chbe0YvXeRv32PNH7I
 meuycQw64gsKmfJGRNlq30qhQQfv4fTbzpZP/j1UbvKNwhK5J6e7037c1CUH4i9C
 p9UO9HF/zAMqzD3iMcDZSpaFcbhJYrfQufbhTnbHfGC5AMVJEOWheHSEmzlDWnwr
 K5fPBxnsPv58hDmp/UZUTqCEPusY+HyuOq4ZumFSsnBwjdW+z9mLuaaTJbxaqR/G
 B6dfSQNwSnw6b2lbiXPUCm6c+Z9b190pUEWdwJ4kOTxwiPUWBppVU7gE2TrjnQ8m
 aIvEBPGIf58okjEewA5Dni6qjv7CjDN5z1V0vZUTTdVw8xuhX9eJ1Cx853SM7n0U
 sJgW5nSvSLDUpizSKdRI
 =H4vX
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

kvmarm updates for 4.11

- GICv3 save restore
- Cache flushing fixes
- MSI injection fix for GICv3 ITS
- Physical timer emulation support
2017-02-09 16:01:23 +01:00
Paolo Bonzini
80fbd89cbd KVM: x86: fix compilation
Fix rebase breakage from commit 55dd00a73a ("KVM: x86: add
KVM_HC_CLOCK_PAIRING hypercall", 2017-01-24), courtesy of the
"I could have sworn I had pushed the right branch" department.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-08 10:57:24 +01:00
Marcelo Tosatti
55dd00a73a KVM: x86: add KVM_HC_CLOCK_PAIRING hypercall
Add a hypercall to retrieve the host realtime clock and the TSC value
used to calculate that clock read.

Used to implement clock synchronization between host and guest.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-07 18:16:45 +01:00
Radim Krčmář
00c87e9a70 KVM: x86: do not save guest-unsupported XSAVE state
Saving unsupported state prevents migration when the new host does not
support a XSAVE feature of the original host, even if the feature is not
exposed to the guest.

We've masked host features with guest-visible features before, with
4344ee981e ("KVM: x86: only copy XSAVE state for the supported
features") and dropped it when implementing XSAVES.  Do it again.

Fixes: df1daba7d1 ("KVM: x86: support XSAVES usage in the host")
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-02-03 18:43:08 +01:00
Junaid Shahid
312b616b30 kvm: x86: mmu: Set SPTE_SPECIAL_MASK within mmu.c
Instead of the caller including the SPTE_SPECIAL_MASK in the masks being
supplied to kvm_mmu_set_mmio_spte_mask() and kvm_mmu_set_mask_ptes(),
those functions now themselves include the SPTE_SPECIAL_MASK.

Note that bit 63 is now reset in the default MMIO mask.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-01-27 15:46:39 +01:00
Radim Krčmář
a9ff720e0f Merge branch 'x86/cpufeature' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into next
For AVX512_VPOPCNTDQ.
2017-01-17 17:53:01 +01:00
Dmitry Vyukov
ce2e852ecc KVM: x86: fix fixing of hypercalls
emulator_fix_hypercall() replaces hypercall with vmcall instruction,
but it does not handle GP exception properly when writes the new instruction.
It can return X86EMUL_PROPAGATE_FAULT without setting exception information.
This leads to incorrect emulation and triggers
WARN_ON(ctxt->exception.vector > 0x1f) in x86_emulate_insn()
as discovered by syzkaller fuzzer:

WARNING: CPU: 2 PID: 18646 at arch/x86/kvm/emulate.c:5558
Call Trace:
 warn_slowpath_null+0x2c/0x40 kernel/panic.c:582
 x86_emulate_insn+0x16a5/0x4090 arch/x86/kvm/emulate.c:5572
 x86_emulate_instruction+0x403/0x1cc0 arch/x86/kvm/x86.c:5618
 emulate_instruction arch/x86/include/asm/kvm_host.h:1127 [inline]
 handle_exception+0x594/0xfd0 arch/x86/kvm/vmx.c:5762
 vmx_handle_exit+0x2b7/0x38b0 arch/x86/kvm/vmx.c:8625
 vcpu_enter_guest arch/x86/kvm/x86.c:6888 [inline]
 vcpu_run arch/x86/kvm/x86.c:6947 [inline]

Set exception information when write in emulator_fix_hypercall() fails.

Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: kvm@vger.kernel.org
Cc: syzkaller@googlegroups.com
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-01-17 15:06:05 +01:00
Wanpeng Li
546d87e5c9 KVM: x86: fix NULL deref in vcpu_scan_ioapic
Reported by syzkaller:

    BUG: unable to handle kernel NULL pointer dereference at 00000000000001b0
    IP: _raw_spin_lock+0xc/0x30
    PGD 3e28eb067
    PUD 3f0ac6067
    PMD 0
    Oops: 0002 [#1] SMP
    CPU: 0 PID: 2431 Comm: test Tainted: G           OE   4.10.0-rc1+ #3
    Call Trace:
     ? kvm_ioapic_scan_entry+0x3e/0x110 [kvm]
     kvm_arch_vcpu_ioctl_run+0x10a8/0x15f0 [kvm]
     ? pick_next_task_fair+0xe1/0x4e0
     ? kvm_arch_vcpu_load+0xea/0x260 [kvm]
     kvm_vcpu_ioctl+0x33a/0x600 [kvm]
     ? hrtimer_try_to_cancel+0x29/0x130
     ? do_nanosleep+0x97/0xf0
     do_vfs_ioctl+0xa1/0x5d0
     ? __hrtimer_init+0x90/0x90
     ? do_nanosleep+0x5b/0xf0
     SyS_ioctl+0x79/0x90
     do_syscall_64+0x6e/0x180
     entry_SYSCALL64_slow_path+0x25/0x25
    RIP: _raw_spin_lock+0xc/0x30 RSP: ffffa43688973cc0

The syzkaller folks reported a NULL pointer dereference due to
ENABLE_CAP succeeding even without an irqchip.  The Hyper-V
synthetic interrupt controller is activated, resulting in a
wrong request to rescan the ioapic and a NULL pointer dereference.

    #include <sys/ioctl.h>
    #include <sys/mman.h>
    #include <sys/types.h>
    #include <linux/kvm.h>
    #include <pthread.h>
    #include <stddef.h>
    #include <stdint.h>
    #include <stdlib.h>
    #include <string.h>
    #include <unistd.h>

    #ifndef KVM_CAP_HYPERV_SYNIC
    #define KVM_CAP_HYPERV_SYNIC 123
    #endif

    void* thr(void* arg)
    {
	struct kvm_enable_cap cap;
	cap.flags = 0;
	cap.cap = KVM_CAP_HYPERV_SYNIC;
	ioctl((long)arg, KVM_ENABLE_CAP, &cap);
	return 0;
    }

    int main()
    {
	void *host_mem = mmap(0, 0x1000, PROT_READ|PROT_WRITE,
			MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
	int kvmfd = open("/dev/kvm", 0);
	int vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
	struct kvm_userspace_memory_region memreg;
	memreg.slot = 0;
	memreg.flags = 0;
	memreg.guest_phys_addr = 0;
	memreg.memory_size = 0x1000;
	memreg.userspace_addr = (unsigned long)host_mem;
	host_mem[0] = 0xf4;
	ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
	int cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
	struct kvm_sregs sregs;
	ioctl(cpufd, KVM_GET_SREGS, &sregs);
	sregs.cr0 = 0;
	sregs.cr4 = 0;
	sregs.efer = 0;
	sregs.cs.selector = 0;
	sregs.cs.base = 0;
	ioctl(cpufd, KVM_SET_SREGS, &sregs);
	struct kvm_regs regs = { .rflags = 2 };
	ioctl(cpufd, KVM_SET_REGS, &regs);
	ioctl(vmfd, KVM_CREATE_IRQCHIP, 0);
	pthread_t th;
	pthread_create(&th, 0, thr, (void*)(long)cpufd);
	usleep(rand() % 10000);
	ioctl(cpufd, KVM_RUN, 0);
	pthread_join(th, 0);
	return 0;
    }

This patch fixes it by failing ENABLE_CAP if without an irqchip.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Fixes: 5c919412fe (kvm/x86: Hyper-V synthetic interrupt controller)
Cc: stable@vger.kernel.org # 4.5+
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-01-12 14:52:52 +01:00
David Matlack
cef84c302f KVM: x86: flush pending lapic jump label updates on module unload
KVM's lapic emulation uses static_key_deferred (apic_{hw,sw}_disabled).
These are implemented with delayed_work structs which can still be
pending when the KVM module is unloaded. We've seen this cause kernel
panics when the kvm_intel module is quickly reloaded.

Use the new static_key_deferred_flush() API to flush pending updates on
module unload.

Signed-off-by: David Matlack <dmatlack@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-01-12 14:33:17 +01:00