Commit Graph

198 Commits

Author SHA1 Message Date
Lance Roy
35f3aa39f2 mm: Replace spin_is_locked() with lockdep
lockdep_assert_held() is better suited to checking locking requirements,
since it only checks if the current thread holds the lock regardless of
whether someone else does. This is also a step towards possibly removing
spin_is_locked().

Signed-off-by: Lance Roy <ldr709@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <linux-mm@kvack.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
2018-11-12 09:06:22 -08:00
Linus Torvalds
dad4f140ed Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-dax
Pull XArray conversion from Matthew Wilcox:
 "The XArray provides an improved interface to the radix tree data
  structure, providing locking as part of the API, specifying GFP flags
  at allocation time, eliminating preloading, less re-walking the tree,
  more efficient iterations and not exposing RCU-protected pointers to
  its users.

  This patch set

   1. Introduces the XArray implementation

   2. Converts the pagecache to use it

   3. Converts memremap to use it

  The page cache is the most complex and important user of the radix
  tree, so converting it was most important. Converting the memremap
  code removes the only other user of the multiorder code, which allows
  us to remove the radix tree code that supported it.

  I have 40+ followup patches to convert many other users of the radix
  tree over to the XArray, but I'd like to get this part in first. The
  other conversions haven't been in linux-next and aren't suitable for
  applying yet, but you can see them in the xarray-conv branch if you're
  interested"

* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
  radix tree: Remove multiorder support
  radix tree test: Convert multiorder tests to XArray
  radix tree tests: Convert item_delete_rcu to XArray
  radix tree tests: Convert item_kill_tree to XArray
  radix tree tests: Move item_insert_order
  radix tree test suite: Remove multiorder benchmarking
  radix tree test suite: Remove __item_insert
  memremap: Convert to XArray
  xarray: Add range store functionality
  xarray: Move multiorder_check to in-kernel tests
  xarray: Move multiorder_shrink to kernel tests
  xarray: Move multiorder account test in-kernel
  radix tree test suite: Convert iteration test to XArray
  radix tree test suite: Convert tag_tagged_items to XArray
  radix tree: Remove radix_tree_clear_tags
  radix tree: Remove radix_tree_maybe_preload_order
  radix tree: Remove split/join code
  radix tree: Remove radix_tree_update_node_t
  page cache: Finish XArray conversion
  dax: Convert page fault handlers to XArray
  ...
2018-10-28 11:35:40 -07:00
YueHaibing
c3df29d130 mm/swap.c: remove duplicated include
Remove duplicated include linux/memremap.h

Link: http://lkml.kernel.org/r/20180917131308.16420-1-yuehaibing@huawei.com
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Matthew Wilcox
10bbd23585 pagevec: Use xa_mark_t
Removes sparse warnings.

Signed-off-by: Matthew Wilcox <willy@infradead.org>
2018-10-21 10:46:39 -04:00
Matthew Wilcox
3159f943aa xarray: Replace exceptional entries
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries.  This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry).  It is also a change in emphasis; exceptional entries are
intimidating and different.  As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.

Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2018-09-29 22:47:49 -04:00
Dan Williams
e763848843 mm: introduce MEMORY_DEVICE_FS_DAX and CONFIG_DEV_PAGEMAP_OPS
In preparation for fixing dax-dma-vs-unmap issues, filesystems need to
be able to rely on the fact that they will get wakeups on dev_pagemap
page-idle events. Introduce MEMORY_DEVICE_FS_DAX and
generic_dax_page_free() as common indicator / infrastructure for dax
filesytems to require. With this change there are no users of the
MEMORY_DEVICE_HOST designation, so remove it.

The HMM sub-system extended dev_pagemap to arrange a callback when a
dev_pagemap managed page is freed. Since a dev_pagemap page is free /
idle when its reference count is 1 it requires an additional branch to
check the page-type at put_page() time. Given put_page() is a hot-path
we do not want to incur that check if HMM is not in use, so a static
branch is used to avoid that overhead when not necessary.

Now, the FS_DAX implementation wants to reuse this mechanism for
receiving dev_pagemap ->page_free() callbacks. Rework the HMM-specific
static-key into a generic mechanism that either HMM or FS_DAX code paths
can enable.

For ARCH=um builds, and any other arch that lacks ZONE_DEVICE support,
care must be taken to compile out the DEV_PAGEMAP_OPS infrastructure.
However, we still need to support FS_DAX in the FS_DAX_LIMITED case
implemented by the s390/dcssblk driver.

Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Reported-by: kbuild test robot <lkp@intel.com>
Reported-by: Thomas Meyer <thomas@m3y3r.de>
Reported-by: Dave Jiang <dave.jiang@intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-05-22 06:59:39 -07:00
Mike Rapoport
002843de36 mm/swap.c: remove @cold parameter description for release_pages()
The 'cold' parameter was removed from release_pages function by commit
c6f92f9fbe ("mm: remove cold parameter for release_pages").

Update the description to match the code.

Link: http://lkml.kernel.org/r/1519585191-10180-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:26 -07:00
Mike Rapoport
cb6f0f3480 mm/swap.c: make functions and their kernel-doc agree (again)
There was a conflict between the commit e02a9f048e ("mm/swap.c: make
functions and their kernel-doc agree") and the commit f144c390f9 ("mm:
docs: fix parameter names mismatch") that both tried to fix mismatch
betweeen pagevec_lookup_entries() parameter names and their description.

Since nr_entries is a better name for the parameter, fix the description
again.

Link: http://lkml.kernel.org/r/1518116946-20947-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:43 -08:00
Shakeel Butt
9c4e6b1a70 mm, mlock, vmscan: no more skipping pagevecs
When a thread mlocks an address space backed either by file pages which
are currently not present in memory or swapped out anon pages (not in
swapcache), a new page is allocated and added to the local pagevec
(lru_add_pvec), I/O is triggered and the thread then sleeps on the page.
On I/O completion, the thread can wake on a different CPU, the mlock
syscall will then sets the PageMlocked() bit of the page but will not be
able to put that page in unevictable LRU as the page is on the pagevec
of a different CPU.  Even on drain, that page will go to evictable LRU
because the PageMlocked() bit is not checked on pagevec drain.

The page will eventually go to right LRU on reclaim but the LRU stats
will remain skewed for a long time.

This patch puts all the pages, even unevictable, to the pagevecs and on
the drain, the pages will be added on their LRUs correctly by checking
their evictability.  This resolves the mlocked pages on pagevec of other
CPUs issue because when those pagevecs will be drained, the mlocked file
pages will go to unevictable LRU.  Also this makes the race with munlock
easier to resolve because the pagevec drains happen in LRU lock.

However there is still one place which makes a page evictable and does
PageLRU check on that page without LRU lock and needs special attention.
TestClearPageMlocked() and isolate_lru_page() in clear_page_mlock().

	#0: __pagevec_lru_add_fn	#1: clear_page_mlock

	SetPageLRU()			if (!TestClearPageMlocked())
					  return
	smp_mb() // <--required
					// inside does PageLRU
	if (!PageMlocked())		if (isolate_lru_page())
	  move to evictable LRU		  putback_lru_page()
	else
	  move to unevictable LRU

In '#1', TestClearPageMlocked() provides full memory barrier semantics
and thus the PageLRU check (inside isolate_lru_page) can not be
reordered before it.

In '#0', without explicit memory barrier, the PageMlocked() check can be
reordered before SetPageLRU().  If that happens, '#0' can put a page in
unevictable LRU and '#1' might have just cleared the Mlocked bit of that
page but fails to isolate as PageLRU fails as '#0' still hasn't set
PageLRU bit of that page.  That page will be stranded on the unevictable
LRU.

There is one (good) side effect though.  Without this patch, the pages
allocated for System V shared memory segment are added to evictable LRUs
even after shmctl(SHM_LOCK) on that segment.  This patch will correctly
put such pages to unevictable LRU.

Link: http://lkml.kernel.org/r/20171121211241.18877-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:42 -08:00
Mike Rapoport
f144c390f9 mm: docs: fix parameter names mismatch
There are several places where parameter descriptions do no match the
actual code.  Fix it.

Link: http://lkml.kernel.org/r/1516700871-22279-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:48 -08:00
Randy Dunlap
e02a9f048e mm/swap.c: make functions and their kernel-doc agree
Fix some basic kernel-doc notation in mm/swap.c:

 - for function lru_cache_add_anon(), make its kernel-doc function name
   match its function name and change colon to hyphen following the
   function name

 - for function pagevec_lookup_entries(), change the function parameter
   name from nr_pages to nr_entries since that is more descriptive of
   what the parameter actually is and then it matches the kernel-doc
   comments also

Fix function kernel-doc to match the change in commit 67fd707f46:

 - drop the kernel-doc notation for @nr_pages from
   pagevec_lookup_range() and correct the function description for that
   change

Link: http://lkml.kernel.org/r/3b42ee3e-04a9-a6ca-6be4-f00752a114fe@infradead.org
Fixes: 67fd707f46 ("mm: remove nr_pages argument from pagevec_lookup_{,range}_tag()")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
9852a72123 mm: drop hotplug lock from lru_add_drain_all()
Pulling cpu hotplug locks inside the mm core function like
lru_add_drain_all just asks for problems and the recent lockdep splat
[1] just proves this.  While the usage in that particular case might be
wrong we should avoid the locking as lru_add_drain_all() is used in many
places.  It seems that this is not all that hard to achieve actually.

We have done the same thing for drain_all_pages which is analogous by
commit a459eeb7b8 ("mm, page_alloc: do not depend on cpu hotplug locks
inside the allocator").  All we have to care about is to handle

      - the work item might be executed on a different cpu in worker from
        unbound pool so it doesn't run on pinned on the cpu

      - we have to make sure that we do not race with page_alloc_cpu_dead
        calling lru_add_drain_cpu

the first part is already handled because the worker calls lru_add_drain
which disables preemption when calling lru_add_drain_cpu on the local
cpu it is draining.  The later is true because page_alloc_cpu_dead is
called on the controlling CPU after the hotplugged CPU vanished
completely.

[1] http://lkml.kernel.org/r/089e0825eec8955c1f055c83d476@google.com

[add a cpu hotplug locking interaction as per tglx]
Link: http://lkml.kernel.org/r/20171116120535.23765-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Mel Gorman
7f0b5fb953 mm, pagevec: rename pagevec drained field
According to Vlastimil Babka, the drained field in pagevec is
potentially misleading because it might be interpreted as draining this
pagevec instead of the percpu lru pagevecs.  Rename the field for
clarity.

Link: http://lkml.kernel.org/r/20171019093346.ylahzdpzmoriyf4v@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Mel Gorman
2d4894b5d2 mm: remove cold parameter from free_hot_cold_page*
Most callers users of free_hot_cold_page claim the pages being released
are cache hot.  The exception is the page reclaim paths where it is
likely that enough pages will be freed in the near future that the
per-cpu lists are going to be recycled and the cache hotness information
is lost.  As no one really cares about the hotness of pages being
released to the allocator, just ditch the parameter.

The APIs are renamed to indicate that it's no longer about hot/cold
pages.  It should also be less confusing as there are subtle differences
between them.  __free_pages drops a reference and frees a page when the
refcount reaches zero.  free_hot_cold_page handled pages whose refcount
was already zero which is non-obvious from the name.  free_unref_page
should be more obvious.

No performance impact is expected as the overhead is marginal.  The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.

[mgorman@techsingularity.net: add pages to head, not tail]
  Link: http://lkml.kernel.org/r/20171019154321.qtpzaeftoyyw4iey@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-8-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Mel Gorman
c6f92f9fbe mm: remove cold parameter for release_pages
All callers of release_pages claim the pages being released are cache
hot.  As no one cares about the hotness of pages being released to the
allocator, just ditch the parameter.

No performance impact is expected as the overhead is marginal.  The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.

Link: http://lkml.kernel.org/r/20171018075952.10627-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Mel Gorman
8667982014 mm, pagevec: remove cold parameter for pagevecs
Every pagevec_init user claims the pages being released are hot even in
cases where it is unlikely the pages are hot.  As no one cares about the
hotness of pages being released to the allocator, just ditch the
parameter.

No performance impact is expected as the overhead is marginal.  The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.

Link: http://lkml.kernel.org/r/20171018075952.10627-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Mel Gorman
d9ed0d08b6 mm: only drain per-cpu pagevecs once per pagevec usage
When a pagevec is initialised on the stack, it is generally used
multiple times over a range of pages, looking up entries and then
releasing them.  On each pagevec_release, the per-cpu deferred LRU
pagevecs are drained on the grounds the page being released may be on
those queues and the pages may be cache hot.  In many cases only the
first drain is necessary as it's unlikely that the range of pages being
walked is racing against LRU addition.  Even if there is such a race,
the impact is marginal where as constantly redraining the lru pagevecs
costs.

This patch ensures that pagevec is only drained once in a given
lifecycle without increasing the cache footprint of the pagevec
structure.  Only sparsetruncate tiny is shown here as large files have
many exceptional entries and calls pagecache_release less frequently.

sparsetruncate (tiny)
                              4.14.0-rc4             4.14.0-rc4
                        batchshadow-v1r1          onedrain-v1r1
Min          Time      141.00 (   0.00%)      141.00 (   0.00%)
1st-qrtle    Time      142.00 (   0.00%)      142.00 (   0.00%)
2nd-qrtle    Time      142.00 (   0.00%)      142.00 (   0.00%)
3rd-qrtle    Time      143.00 (   0.00%)      143.00 (   0.00%)
Max-90%      Time      144.00 (   0.00%)      144.00 (   0.00%)
Max-95%      Time      146.00 (   0.00%)      145.00 (   0.68%)
Max-99%      Time      198.00 (   0.00%)      194.00 (   2.02%)
Max          Time      254.00 (   0.00%)      208.00 (  18.11%)
Amean        Time      145.12 (   0.00%)      144.30 (   0.56%)
Stddev       Time       12.74 (   0.00%)        9.62 (  24.49%)
Coeff        Time        8.78 (   0.00%)        6.67 (  24.06%)
Best99%Amean Time      144.29 (   0.00%)      143.82 (   0.32%)
Best95%Amean Time      142.68 (   0.00%)      142.31 (   0.26%)
Best90%Amean Time      142.52 (   0.00%)      142.19 (   0.24%)
Best75%Amean Time      142.26 (   0.00%)      141.98 (   0.20%)
Best50%Amean Time      141.90 (   0.00%)      141.71 (   0.13%)
Best25%Amean Time      141.80 (   0.00%)      141.43 (   0.26%)

The impact on bonnie is marginal and within the noise because a
significant percentage of the file being truncated has been reclaimed
and consists of shadow entries which reduce the hotness of the
pagevec_release path.

Link: http://lkml.kernel.org/r/20171018075952.10627-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Jan Kara
67fd707f46 mm: remove nr_pages argument from pagevec_lookup_{,range}_tag()
All users of pagevec_lookup() and pagevec_lookup_range() now pass
PAGEVEC_SIZE as a desired number of pages.  Just drop the argument.

Link: http://lkml.kernel.org/r/20171009151359.31984-15-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:04 -08:00
Jan Kara
93d3b7140a mm: add variant of pagevec_lookup_range_tag() taking number of pages
Currently pagevec_lookup_range_tag() takes number of pages to look up
but most users don't need this.  Create a new function
pagevec_lookup_range_nr_tag() that takes maximum number of pages to
lookup for Ceph which wants this functionality so that we can drop
nr_pages argument from pagevec_lookup_range_tag().

Link: http://lkml.kernel.org/r/20171009151359.31984-13-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:04 -08:00
Jan Kara
72b045aecd mm: implement find_get_pages_range_tag()
Patch series "Ranged pagevec tagged lookup", v3.

In this series I provide a ranged variant of pagevec_lookup_tag() and
use it in places where it makes sense.  This series removes some common
code and it also has a potential for speeding up some operations
similarly as for pagevec_lookup_range() (but for now I can think of only
artificial cases where this happens).

This patch (of 16):

Implement a variant of find_get_pages_tag() that stops iterating at
given index.  Lots of users of this function (through pagevec_lookup())
actually want a range lookup and all of them are currently open-coding
this.

Also create corresponding pagevec_lookup_range_tag() function.

Link: http://lkml.kernel.org/r/20171009151359.31984-2-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Peterson <rpeterso@redhat.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: David Howells <dhowells@redhat.com>
Cc: David Sterba <dsterba@suse.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Steve French <sfrench@samba.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: "Yan, Zheng" <zyan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:03 -08:00
Shaohua Li
24c92eb7dc mm: avoid marking swap cached page as lazyfree
MADV_FREE clears pte dirty bit and then marks the page lazyfree (clear
SwapBacked).  There is no lock to prevent the page is added to swap
cache between these two steps by page reclaim.  Page reclaim could add
the page to swap cache and unmap the page.  After page reclaim, the page
is added back to lru.  At that time, we probably start draining per-cpu
pagevec and mark the page lazyfree.  So the page could be in a state
with SwapBacked cleared and PG_swapcache set.  Next time there is a
refault in the virtual address, do_swap_page can find the page from swap
cache but the page has PageSwapCache false because SwapBacked isn't set,
so do_swap_page will bail out and do nothing.  The task will keep
running into fault handler.

Fixes: 802a3a92ad ("mm: reclaim MADV_FREE pages")
Link: http://lkml.kernel.org/r/6537ef3814398c0073630b03f176263bc81f0902.1506446061.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Reported-by: Artem Savkov <asavkov@redhat.com>
Tested-by: Artem Savkov <asavkov@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>	[4.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:24 -07:00
Jérôme Glisse
df6ad69838 mm/device-public-memory: device memory cache coherent with CPU
Platform with advance system bus (like CAPI or CCIX) allow device memory
to be accessible from CPU in a cache coherent fashion.  Add a new type of
ZONE_DEVICE to represent such memory.  The use case are the same as for
the un-addressable device memory but without all the corners cases.

Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:46 -07:00
Jan Kara
397162ffa2 mm: remove nr_pages argument from pagevec_lookup{,_range}()
All users of pagevec_lookup() and pagevec_lookup_range() now pass
PAGEVEC_SIZE as a desired number of pages.

Just drop the argument.

Link: http://lkml.kernel.org/r/20170726114704.7626-11-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Jan Kara
b947cee4b9 mm: implement find_get_pages_range()
Implement a variant of find_get_pages() that stops iterating at given
index.  This may be substantial performance gain if the mapping is
sparse.  See following commit for details.  Furthermore lots of users of
this function (through pagevec_lookup()) actually want a range lookup
and all of them are currently open-coding this.

Also create corresponding pagevec_lookup_range() function.

Link: http://lkml.kernel.org/r/20170726114704.7626-4-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:26 -07:00
Jan Kara
d72dc8a25a mm: make pagevec_lookup() update index
Make pagevec_lookup() (and underlying find_get_pages()) update index to
the next page where iteration should continue.  Most callers want this
and also pagevec_lookup_tag() already does this.

Link: http://lkml.kernel.org/r/20170726114704.7626-3-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:26 -07:00
Thomas Gleixner
a47fed5b5b mm: swap: provide lru_add_drain_all_cpuslocked()
The rework of the cpu hotplug locking unearthed potential deadlocks with
the memory hotplug locking code.

The solution for these is to rework the memory hotplug locking code as
well and take the cpu hotplug lock before the memory hotplug lock in
mem_hotplug_begin(), but this will cause a recursive locking of the cpu
hotplug lock when the memory hotplug code calls lru_add_drain_all().

Split out the inner workings of lru_add_drain_all() into
lru_add_drain_all_cpuslocked() so this function can be invoked from the
memory hotplug code with the cpu hotplug lock held.

Link: http://lkml.kernel.org/r/20170704093421.419329357@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:33 -07:00
Roman Gushchin
2262185c5b mm: per-cgroup memory reclaim stats
Track the following reclaim counters for every memory cgroup: PGREFILL,
PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED.

These values are exposed using the memory.stats interface of cgroup v2.

The meaning of each value is the same as for global counters, available
using /proc/vmstat.

Also, for consistency, rename mem_cgroup_count_vm_event() to
count_memcg_event_mm().

Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Shaohua Li
f7ad2a6cb9 mm: move MADV_FREE pages into LRU_INACTIVE_FILE list
madv()'s MADV_FREE indicate pages are 'lazyfree'.  They are still
anonymous pages, but they can be freed without pageout.  To distinguish
these from normal anonymous pages, we clear their SwapBacked flag.

MADV_FREE pages could be freed without pageout, so they pretty much like
used once file pages.  For such pages, we'd like to reclaim them once
there is memory pressure.  Also it might be unfair reclaiming MADV_FREE
pages always before used once file pages and we definitively want to
reclaim the pages before other anonymous and file pages.

To speed up MADV_FREE pages reclaim, we put the pages into
LRU_INACTIVE_FILE list.  The rationale is LRU_INACTIVE_FILE list is tiny
nowadays and should be full of used once file pages.  Reclaiming
MADV_FREE pages will not have much interfere of anonymous and active
file pages.  And the inactive file pages and MADV_FREE pages will be
reclaimed according to their age, so we don't reclaim too many MADV_FREE
pages too.  Putting the MADV_FREE pages into LRU_INACTIVE_FILE_LIST also
means we can reclaim the pages without swap support.  This idea is
suggested by Johannes.

This patch doesn't move MADV_FREE pages to LRU_INACTIVE_FILE list yet to
avoid bisect failure, next patch will do it.

The patch is based on Minchan's original patch.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/2f87063c1e9354677b7618c647abde77b07561e5.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00
Linus Torvalds
d3b5d35290 Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar:
 "The main x86 MM changes in this cycle were:

   - continued native kernel PCID support preparation patches to the TLB
     flushing code (Andy Lutomirski)

   - various fixes related to 32-bit compat syscall returning address
     over 4Gb in applications, launched from 64-bit binaries - motivated
     by C/R frameworks such as Virtuozzo. (Dmitry Safonov)

   - continued Intel 5-level paging enablement: in particular the
     conversion of x86 GUP to the generic GUP code. (Kirill A. Shutemov)

   - x86/mpx ABI corner case fixes/enhancements (Joerg Roedel)

   - ... plus misc updates, fixes and cleanups"

* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
  mm, zone_device: Replace {get, put}_zone_device_page() with a single reference to fix pmem crash
  x86/mm: Fix flush_tlb_page() on Xen
  x86/mm: Make flush_tlb_mm_range() more predictable
  x86/mm: Remove flush_tlb() and flush_tlb_current_task()
  x86/vm86/32: Switch to flush_tlb_mm_range() in mark_screen_rdonly()
  x86/mm/64: Fix crash in remove_pagetable()
  Revert "x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation"
  x86/boot/e820: Remove a redundant self assignment
  x86/mm: Fix dump pagetables for 4 levels of page tables
  x86/mpx, selftests: Only check bounds-vs-shadow when we keep shadow
  x86/mpx: Correctly report do_mpx_bt_fault() failures to user-space
  Revert "x86/mm/numa: Remove numa_nodemask_from_meminfo()"
  x86/espfix: Add support for 5-level paging
  x86/kasan: Extend KASAN to support 5-level paging
  x86/mm: Add basic defines/helpers for CONFIG_X86_5LEVEL=y
  x86/paravirt: Add 5-level support to the paravirt code
  x86/mm: Define virtual memory map for 5-level paging
  x86/asm: Remove __VIRTUAL_MASK_SHIFT==47 assert
  x86/boot: Detect 5-level paging support
  x86/mm/numa: Remove numa_nodemask_from_meminfo()
  ...
2017-05-01 23:54:56 -07:00
Dan Williams
7138970383 mm, zone_device: Replace {get, put}_zone_device_page() with a single reference to fix pmem crash
The x86 conversion to the generic GUP code included a small change which causes
crashes and data corruption in the pmem code - not good.

The root cause is that the /dev/pmem driver code implicitly relies on the x86
get_user_pages() implementation doing a get_page() on the page refcount, because
get_page() does a get_zone_device_page() which properly refcounts pmem's separate
page struct arrays that are not present in the regular page struct structures.
(The pmem driver does this because it can cover huge memory areas.)

But the x86 conversion to the generic GUP code changed the get_page() to
page_cache_get_speculative() which is faster but doesn't do the
get_zone_device_page() call the pmem code relies on.

One way to solve the regression would be to change the generic GUP code to use
get_page(), but that would slow things down a bit and punish other generic-GUP
using architectures for an x86-ism they did not care about. (Arguably the pmem
driver was probably not working reliably for them: but nvdimm is an Intel
feature, so non-x86 exposure is probably still limited.)

So restructure the pmem code's interface with the MM instead: get rid of the
get/put_zone_device_page() distinction, integrate put_zone_device_page() into
__put_page() and and restructure the pmem completion-wait and teardown machinery:

Kirill points out that the calls to {get,put}_dev_pagemap() can be
removed from the mm fast path if we take a single get_dev_pagemap()
reference to signify that the page is alive and use the final put of the
page to drop that reference.

This does require some care to make sure that any waits for the
percpu_ref to drop to zero occur *after* devm_memremap_page_release(),
since it now maintains its own elevated reference.

This speeds up things while also making the pmem refcounting more robust going
forward.

Suggested-by: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/149339998297.24933.1129582806028305912.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-01 09:15:53 +02:00
Michal Hocko
ce612879dd mm: move pcp and lru-pcp draining into single wq
We currently have 2 specific WQ_RECLAIM workqueues in the mm code.
vmstat_wq for updating pcp stats and lru_add_drain_wq dedicated to drain
per cpu lru caches.  This seems more than necessary because both can run
on a single WQ.  Both do not block on locks requiring a memory
allocation nor perform any allocations themselves.  We will save one
rescuer thread this way.

On the other hand drain_all_pages() queues work on the system wq which
doesn't have rescuer and so this depend on memory allocation (when all
workers are stuck allocating and new ones cannot be created).

Initially we thought this would be more of a theoretical problem but
Hugh Dickins has reported:

: 4.11-rc has been giving me hangs after hours of swapping load.  At
: first they looked like memory leaks ("fork: Cannot allocate memory");
: but for no good reason I happened to do "cat /proc/sys/vm/stat_refresh"
: before looking at /proc/meminfo one time, and the stat_refresh stuck
: in D state, waiting for completion of flush_work like many kworkers.
: kthreadd waiting for completion of flush_work in drain_all_pages().

This worker should be using WQ_RECLAIM as well in order to guarantee a
forward progress.  We can reuse the same one as for lru draining and
vmstat.

Link: http://lkml.kernel.org/r/20170307131751.24936-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Yang Li <pku.leo@gmail.com>
Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-04-08 00:47:49 -07:00
Johannes Weiner
c55e8d035b mm: vmscan: move dirty pages out of the way until they're flushed
We noticed a performance regression when moving hadoop workloads from
3.10 kernels to 4.0 and 4.6.  This is accompanied by increased pageout
activity initiated by kswapd as well as frequent bursts of allocation
stalls and direct reclaim scans.  Even lowering the dirty ratios to the
equivalent of less than 1% of memory would not eliminate the issue,
suggesting that dirty pages concentrate where the scanner is looking.

This can be traced back to recent efforts of thrash avoidance.  Where
3.10 would not detect refaulting pages and continuously supply clean
cache to the inactive list, a thrashing workload on 4.0+ will detect and
activate refaulting pages right away, distilling used-once pages on the
inactive list much more effectively.  This is by design, and it makes
sense for clean cache.  But for the most part our workload's cache
faults are refaults and its use-once cache is from streaming writes.  We
end up with most of the inactive list dirty, and we don't go after the
active cache as long as we have use-once pages around.

But waiting for writes to avoid reclaiming clean cache that *might*
refault is a bad trade-off.  Even if the refaults happen, reads are
faster than writes.  Before getting bogged down on writeback, reclaim
should first look at *all* cache in the system, even active cache.

To accomplish this, activate pages that are dirty or under writeback
when they reach the end of the inactive LRU.  The pages are marked for
immediate reclaim, meaning they'll get moved back to the inactive LRU
tail as soon as they're written back and become reclaimable.  But in the
meantime, by reducing the inactive list to only immediately reclaimable
pages, we allow the scanner to deactivate and refill the inactive list
with clean cache from the active list tail to guarantee forward
progress.

[hannes@cmpxchg.org: update comment]
  Link: http://lkml.kernel.org/r/20170202191957.22872-8-hannes@cmpxchg.org
Link: http://lkml.kernel.org/r/20170123181641.23938-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Huang, Ying
4b3ef9daa4 mm/swap: split swap cache into 64MB trunks
The patch is to improve the scalability of the swap out/in via using
fine grained locks for the swap cache.  In current kernel, one address
space will be used for each swap device.  And in the common
configuration, the number of the swap device is very small (one is
typical).  This causes the heavy lock contention on the radix tree of
the address space if multiple tasks swap out/in concurrently.

But in fact, there is no dependency between pages in the swap cache.  So
that, we can split the one shared address space for each swap device
into several address spaces to reduce the lock contention.  In the
patch, the shared address space is split into 64MB trunks.  64MB is
chosen to balance the memory space usage and effect of lock contention
reduction.

The size of struct address_space on x86_64 architecture is 408B, so with
the patch, 6528B more memory will be used for every 1GB swap space on
x86_64 architecture.

One address space is still shared for the swap entries in the same 64M
trunks.  To avoid lock contention for the first round of swap space
allocation, the order of the swap clusters in the initial free clusters
list is changed.  The swap space distance between the consecutive swap
clusters in the free cluster list is at least 64M.  After the first
round of allocation, the swap clusters are expected to be freed
randomly, so the lock contention should be reduced effectively.

Link: http://lkml.kernel.org/r/735bab895e64c930581ffb0a05b661e01da82bc5.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Nicholas Piggin
6290602709 mm: add PageWaiters indicating tasks are waiting for a page bit
Add a new page flag, PageWaiters, to indicate the page waitqueue has
tasks waiting. This can be tested rather than testing waitqueue_active
which requires another cacheline load.

This bit is always set when the page has tasks on page_waitqueue(page),
and is set and cleared under the waitqueue lock. It may be set when
there are no tasks on the waitqueue, which will cause a harmless extra
wakeup check that will clears the bit.

The generic bit-waitqueue infrastructure is no longer used for pages.
Instead, waitqueues are used directly with a custom key type. The
generic code was not flexible enough to have PageWaiters manipulation
under the waitqueue lock (which simplifies concurrency).

This improves the performance of page lock intensive microbenchmarks by
2-3%.

Putting two bits in the same word opens the opportunity to remove the
memory barrier between clearing the lock bit and testing the waiters
bit, after some work on the arch primitives (e.g., ensuring memory
operand widths match and cover both bits).

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Bob Peterson <rpeterso@redhat.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andrew Lutomirski <luto@kernel.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-25 11:54:48 -08:00
Aaron Lu
6fcb52a56f thp: reduce usage of huge zero page's atomic counter
The global zero page is used to satisfy an anonymous read fault.  If
THP(Transparent HugePage) is enabled then the global huge zero page is
used.  The global huge zero page uses an atomic counter for reference
counting and is allocated/freed dynamically according to its counter
value.

CPU time spent on that counter will greatly increase if there are a lot
of processes doing anonymous read faults.  This patch proposes a way to
reduce the access to the global counter so that the CPU load can be
reduced accordingly.

To do this, a new flag of the mm_struct is introduced:
MMF_USED_HUGE_ZERO_PAGE.  With this flag, the process only need to touch
the global counter in two cases:

 1 The first time it uses the global huge zero page;
 2 The time when mm_user of its mm_struct reaches zero.

Note that right now, the huge zero page is eligible to be freed as soon
as its last use goes away.  With this patch, the page will not be
eligible to be freed until the exit of the last process from which it
was ever used.

And with the use of mm_user, the kthread is not eligible to use huge
zero page either.  Since no kthread is using huge zero page today, there
is no difference after applying this patch.  But if that is not desired,
I can change it to when mm_count reaches zero.

Case used for test on Haswell EP:

  usemem -n 72 --readonly -j 0x200000 100G

Which spawns 72 processes and each will mmap 100G anonymous space and
then do read only access to that space sequentially with a step of 2MB.

  CPU cycles from perf report for base commit:
      54.03%  usemem   [kernel.kallsyms]   [k] get_huge_zero_page
  CPU cycles from perf report for this commit:
       0.11%  usemem   [kernel.kallsyms]   [k] mm_get_huge_zero_page

Performance(throughput) of the workload for base commit: 1784430792
Performance(throughput) of the workload for this commit: 4726928591
164% increase.

Runtime of the workload for base commit: 707592 us
Runtime of the workload for this commit: 303970 us
50% drop.

Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Mel Gorman
68eb0731c4 mm, pagevec: release/reacquire lru_lock on pgdat change
With node-lru, the locking is based on the pgdat.  Previously it was
required that a pagevec drain released one zone lru_lock and acquired
another zone lru_lock on every zone change.  Now, it's only necessary if
the node changes.  The end-result is fewer lock release/acquires if the
pages are all on the same node but in different zones.

Link: http://lkml.kernel.org/r/1468588165-12461-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a52633d8e9 mm, vmscan: move lru_lock to the node
Node-based reclaim requires node-based LRUs and locking.  This is a
preparation patch that just moves the lru_lock to the node so later
patches are easier to review.  It is a mechanical change but note this
patch makes contention worse because the LRU lock is hotter and direct
reclaim and kswapd can contend on the same lock even when reclaiming
from different zones.

Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Kirill A. Shutemov
800d8c63b2 shmem: add huge pages support
Here's basic implementation of huge pages support for shmem/tmpfs.

It's all pretty streight-forward:

  - shmem_getpage() allcoates huge page if it can and try to inserd into
    radix tree with shmem_add_to_page_cache();

  - shmem_add_to_page_cache() puts the page onto radix-tree if there's
    space for it;

  - shmem_undo_range() removes huge pages, if it fully within range.
    Partial truncate of huge pages zero out this part of THP.

    This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE)
    behaviour. As we don't really create hole in this case,
    lseek(SEEK_HOLE) may have inconsistent results depending what
    pages happened to be allocated.

  - no need to change shmem_fault: core-mm will map an compound page as
    huge if VMA is suitable;

Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Lukasz Odzioba
8f182270df mm/swap.c: flush lru pvecs on compound page arrival
Currently we can have compound pages held on per cpu pagevecs, which
leads to a lot of memory unavailable for reclaim when needed.  In the
systems with hundreads of processors it can be GBs of memory.

On of the way of reproducing the problem is to not call munmap
explicitly on all mapped regions (i.e.  after receiving SIGTERM).  After
that some pages (with THP enabled also huge pages) may end up on
lru_add_pvec, example below.

  void main() {
  #pragma omp parallel
  {
	size_t size = 55 * 1000 * 1000; // smaller than  MEM/CPUS
	void *p = mmap(NULL, size, PROT_READ | PROT_WRITE,
		MAP_PRIVATE | MAP_ANONYMOUS , -1, 0);
	if (p != MAP_FAILED)
		memset(p, 0, size);
	//munmap(p, size); // uncomment to make the problem go away
  }
  }

When we run it with THP enabled it will leave significant amount of
memory on lru_add_pvec.  This memory will be not reclaimed if we hit
OOM, so when we run above program in a loop:

	for i in `seq 100`; do ./a.out; done

many processes (95% in my case) will be killed by OOM.

The primary point of the LRU add cache is to save the zone lru_lock
contention with a hope that more pages will belong to the same zone and
so their addition can be batched.  The huge page is already a form of
batched addition (it will add 512 worth of memory in one go) so skipping
the batching seems like a safer option when compared to a potential
excess in the caching which can be quite large and much harder to fix
because lru_add_drain_all is way to expensive and it is not really clear
what would be a good moment to call it.

Similarly we can reproduce the problem on lru_deactivate_pvec by adding:
madvise(p, size, MADV_FREE); after memset.

This patch flushes lru pvecs on compound page arrival making the problem
less severe - after applying it kill rate of above example drops to 0%,
due to reducing maximum amount of memory held on pvec from 28MB (with
THP) to 56kB per CPU.

Suggested-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/1466180198-18854-1-git-send-email-lukasz.odzioba@intel.com
Signed-off-by: Lukasz Odzioba <lukasz.odzioba@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Ming Li <mingli199x@qq.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Wang Sheng-Hui
f3a932baa7 mm: introduce dedicated WQ_MEM_RECLAIM workqueue to do lru_add_drain_all
This patch is based on https://patchwork.ozlabs.org/patch/574623/.

Tejun submitted commit 23d11a58a9 ("workqueue: skip flush dependency
checks for legacy workqueues") for the legacy create*_workqueue()
interface.

But some workq created by alloc_workqueue still reports warning on
memory reclaim, e.g nvme_workq with flag WQ_MEM_RECLAIM set:

    workqueue: WQ_MEM_RECLAIM nvme:nvme_reset_work is flushing !WQ_MEM_RECLAIM events:lru_add_drain_per_cpu
    ------------[ cut here ]------------
    WARNING: CPU: 0 PID: 6 at SoC/linux/kernel/workqueue.c:2448 check_flush_dependency+0xb4/0x10c
    ...
    check_flush_dependency+0xb4/0x10c
    flush_work+0x54/0x140
    lru_add_drain_all+0x138/0x188
    migrate_prep+0xc/0x18
    alloc_contig_range+0xf4/0x350
    cma_alloc+0xec/0x1e4
    dma_alloc_from_contiguous+0x38/0x40
    __dma_alloc+0x74/0x25c
    nvme_alloc_queue+0xcc/0x36c
    nvme_reset_work+0x5c4/0xda8
    process_one_work+0x128/0x2ec
    worker_thread+0x58/0x434
    kthread+0xd4/0xe8
    ret_from_fork+0x10/0x50

That's because lru_add_drain_all() will schedule the drain work on
system_wq, whose flag is set to 0, !WQ_MEM_RECLAIM.

Introduce a dedicated WQ_MEM_RECLAIM workqueue to do
lru_add_drain_all(), aiding in getting memory freed.

Link: http://lkml.kernel.org/r/1464917521-9775-1-git-send-email-shhuiw@foxmail.com
Signed-off-by: Wang Sheng-Hui <shhuiw@foxmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-09 14:23:11 -07:00
Ming Li
a4a921aa5c mm/swap.c: put activate_page_pvecs and other pagevecs together
Put the activate_page_pvecs definition next to those of the other
pagevecs, for clarity.

Signed-off-by: Ming Li <mingli199x@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Kirill A. Shutemov
aa88b68c3b thp: keep huge zero page pinned until tlb flush
Andrea has found[1] a race condition on MMU-gather based TLB flush vs
split_huge_page() or shrinker which frees huge zero under us (patch 1/2
and 2/2 respectively).

With new THP refcounting, we don't need patch 1/2: mmu_gather keeps the
page pinned until flush is complete and the pin prevents the page from
being split under us.

We still need patch 2/2.  This is simplified version of Andrea's patch.
We don't need fancy encoding.

[1] http://lkml.kernel.org/r/1447938052-22165-1-git-send-email-aarcange@redhat.com

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Kirill A. Shutemov
ea1754a084 mm, fs: remove remaining PAGE_CACHE_* and page_cache_{get,release} usage
Mostly direct substitution with occasional adjustment or removing
outdated comments.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Kirill A. Shutemov
09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Dan Williams
3565fce3a6 mm, x86: get_user_pages() for dax mappings
A dax mapping establishes a pte with _PAGE_DEVMAP set when the driver
has established a devm_memremap_pages() mapping, i.e.  when the pfn_t
return from ->direct_access() has PFN_DEV and PFN_MAP set.  Later, when
encountering _PAGE_DEVMAP during a page table walk we lookup and pin a
struct dev_pagemap instance to keep the result of pfn_to_page() valid
until put_page().

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Minchan Kim
10853a0392 mm: move lazily freed pages to inactive list
MADV_FREE is a hint that it's okay to discard pages if there is memory
pressure and we use reclaimers(ie, kswapd and direct reclaim) to free
them so there is no value keeping them in the active anonymous LRU so
this patch moves them to inactive LRU list's head.

This means that MADV_FREE-ed pages which were living on the inactive
list are reclaimed first because they are more likely to be cold rather
than recently active pages.

An arguable issue for the approach would be whether we should put the
page to the head or tail of the inactive list.  I chose head because the
kernel cannot make sure it's really cold or warm for every MADV_FREE
usecase but at least we know it's not *hot*, so landing of inactive head
would be a comprimise for various usecases.

This fixes suboptimal behavior of MADV_FREE when pages living on the
active list will sit there for a long time even under memory pressure
while the inactive list is reclaimed heavily.  This basically breaks the
whole purpose of using MADV_FREE to help the system to free memory which
is might not be used.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: <yalin.wang2010@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jason Evans <je@fb.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Mika Penttil <mika.penttila@nextfour.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Roland Dreier <roland@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
e90309c9f7 thp: allow mlocked THP again
Before THP refcounting rework, THP was not allowed to cross VMA
boundary.  So, if we have THP and we split it, PG_mlocked can be safely
transferred to small pages.

With new THP refcounting and naive approach to mlocking we can end up
with this scenario:
 1. we have a mlocked THP, which belong to one VM_LOCKED VMA.
 2. the process does munlock() on the *part* of the THP:
      - the VMA is split into two, one of them VM_LOCKED;
      - huge PMD split into PTE table;
      - THP is still mlocked;
 3. split_huge_page():
      - it transfers PG_mlocked to *all* small pages regrardless if it
	blong to any VM_LOCKED VMA.

We probably could munlock() all small pages on split_huge_page(), but I
think we have accounting issue already on step two.

Instead of forbidding mlocked pages altogether, we just avoid mlocking
PTE-mapped THPs and munlock THPs on split_huge_pmd().

This means PTE-mapped THPs will be on normal lru lists and will be split
under memory pressure by vmscan.  After the split vmscan will detect
unevictable small pages and mlock them.

With this approach we shouldn't hit situation like described above.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
ddc58f27f9 mm: drop tail page refcounting
Tail page refcounting is utterly complicated and painful to support.

It uses ->_mapcount on tail pages to store how many times this page is
pinned.  get_page() bumps ->_mapcount on tail page in addition to
->_count on head.  This information is required by split_huge_page() to
be able to distribute pins from head of compound page to tails during
the split.

We will need ->_mapcount to account PTE mappings of subpages of the
compound page.  We eliminate need in current meaning of ->_mapcount in
tail pages by forbidding split entirely if the page is pinned.

The only user of tail page refcounting is THP which is marked BROKEN for
now.

Let's drop all this mess.  It makes get_page() and put_page() much
simpler.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
1d798ca3f1 mm: make compound_head() robust
Hugh has pointed that compound_head() call can be unsafe in some
context. There's one example:

	CPU0					CPU1

isolate_migratepages_block()
  page_count()
    compound_head()
      !!PageTail() == true
					put_page()
					  tail->first_page = NULL
      head = tail->first_page
					alloc_pages(__GFP_COMP)
					   prep_compound_page()
					     tail->first_page = head
					     __SetPageTail(p);
      !!PageTail() == true
    <head == NULL dereferencing>

The race is pure theoretical. I don't it's possible to trigger it in
practice. But who knows.

We can fix the race by changing how encode PageTail() and compound_head()
within struct page to be able to update them in one shot.

The patch introduces page->compound_head into third double word block in
front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
the rest bits are pointer to head page if bit zero is set.

The patch moves page->pmd_huge_pte out of word, just in case if an
architecture defines pgtable_t into something what can have the bit 0
set.

hugetlb_cgroup uses page->lru.next in the second tail page to store
pointer struct hugetlb_cgroup. The patch switch it to use page->private
in the second tail page instead. The space is free since ->first_page is
removed from the union.

The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
limitation, since there's now space in first tail page to store struct
hugetlb_cgroup pointer. But that's out of scope of the patch.

That means page->compound_head shares storage space with:

 - page->lru.next;
 - page->next;
 - page->rcu_head.next;

That's too long list to be absolutely sure, but looks like nobody uses
bit 0 of the word.

page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
call_rcu_lazy() is not allowed as it makes use of the bit and we can
get false positive PageTail().

[1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00