Commit Graph

274 Commits

Author SHA1 Message Date
Wang Xiaoqiang
61e165578d mm/vmalloc.c: use macro IS_ALIGNED to judge the aligment
Just cleanup, no functional change.

Signed-off-by: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
David Rientjes
244d63ee34 mm, vmalloc: remove VM_VPAGES
VM_VPAGES is unnecessary, it's easier to check is_vmalloc_addr() when
reading /proc/vmallocinfo.

[akpm@linux-foundation.org: remove VM_VPAGES reference via kvfree()]
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Geliang Tang
6219c2a2ec mm/vmalloc.c: use list_{next,first}_entry
To make the intention clearer, use list_{next,first}_entry instead of
list_entry.

Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Vladimir Davydov
37f08dda29 vmalloc: allow to account vmalloc to memcg
Make vmalloc family functions allocate vmalloc area pages with
alloc_kmem_pages so that if __GFP_ACCOUNT is set they will be accounted
to memcg.  This is needed, at least, to account alloc_fdmem allocations.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Jerome Marchand
7511c3ede7 mm: vmalloc: don't remove inexistent guard hole in remove_vm_area()
Commit 71394fe501 ("mm: vmalloc: add flag preventing guard hole
allocation") missed a spot.  Currently remove_vm_area() decreases vm->size
to "remove" the guard hole page, even when it isn't present.  All but one
users just free the vm_struct rigth away and never access vm->size anyway.

Don't touch the size in remove_vm_area() and have __vunmap() use the
proper get_vm_area_size() helper.

Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-20 16:17:32 -08:00
Mel Gorman
dd56b04642 mm: page_alloc: hide some GFP internals and document the bits and flag combinations
Andrew stated the following

	We have quite a history of remote parts of the kernel using
	weird/wrong/inexplicable combinations of __GFP_ flags.	I tend
	to think that this is because we didn't adequately explain the
	interface.

	And I don't think that gfp.h really improved much in this area as
	a result of this patchset.  Could you go through it some time and
	decide if we've adequately documented all this stuff?

This patches first moves some GFP flag combinations that are part of the MM
internals to mm/internal.h. The rest of the patch documents the __GFP_FOO
bits under various headings and then documents the flag combinations. It
will not help callers that are brain damaged but the clarity might motivate
some fixes and avoid future mistakes.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Mel Gorman
d0164adc89 mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts.  They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve".  __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".

Over time, callers had a requirement to not block when fallback options
were available.  Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.

This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative.  High priority users continue to use
__GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.

This patch then converts a number of sites

o __GFP_ATOMIC is used by callers that are high priority and have memory
  pools for those requests. GFP_ATOMIC uses this flag.

o Callers that have a limited mempool to guarantee forward progress clear
  __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
  into this category where kswapd will still be woken but atomic reserves
  are not used as there is a one-entry mempool to guarantee progress.

o Callers that are checking if they are non-blocking should use the
  helper gfpflags_allow_blocking() where possible. This is because
  checking for __GFP_WAIT as was done historically now can trigger false
  positives. Some exceptions like dm-crypt.c exist where the code intent
  is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
  flag manipulations.

o Callers that built their own GFP flags instead of starting with GFP_KERNEL
  and friends now also need to specify __GFP_KSWAPD_RECLAIM.

The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.

The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL.  They may
now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Alexander Kuleshov
891c49abfb mm/vmalloc: use offset_in_page macro
linux/mm.h provides offset_in_page() macro.  Let's use already predefined
macro instead of (addr & ~PAGE_MASK).

Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Linus Torvalds
a5ad88ce8c mm: get rid of 'vmalloc_info' from /proc/meminfo
It turns out that at least some versions of glibc end up reading
/proc/meminfo at every single startup, because glibc wants to know the
amount of memory the machine has.  And while that's arguably insane,
it's just how things are.

And it turns out that it's not all that expensive most of the time, but
the vmalloc information statistics (amount of virtual memory used in the
vmalloc space, and the biggest remaining chunk) can be rather expensive
to compute.

The 'get_vmalloc_info()' function actually showed up on my profiles as
4% of the CPU usage of "make test" in the git source repository, because
the git tests are lots of very short-lived shell-scripts etc.

It turns out that apparently this same silly vmalloc info gathering
shows up on the facebook servers too, according to Dave Jones.  So it's
not just "make test" for git.

We had two patches to just cache the information (one by me, one by
Ingo) to mitigate this issue, but the whole vmalloc information of of
rather dubious value to begin with, and people who *actually* want to
know what the situation is wrt the vmalloc area should just look at the
much more complete /proc/vmallocinfo instead.

In fact, according to my testing - and perhaps more importantly,
according to that big search engine in the sky: Google - there is
nothing out there that actually cares about those two expensive fields:
VmallocUsed and VmallocChunk.

So let's try to just remove them entirely.  Actually, this just removes
the computation and reports the numbers as zero for now, just to try to
be minimally intrusive.

If this breaks anything, we'll obviously have to re-introduce the code
to compute this all and add the caching patches on top.  But if given
the option, I'd really prefer to just remove this bad idea entirely
rather than add even more code to work around our historical mistake
that likely nobody really cares about.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-01 17:09:15 -08:00
Roman Pen
7d61bfe8fd mm/vmalloc: get rid of dirty bitmap inside vmap_block structure
In original implementation of vm_map_ram made by Nick Piggin there were
two bitmaps: alloc_map and dirty_map.  None of them were used as supposed
to be: finding a suitable free hole for next allocation in block.
vm_map_ram allocates space sequentially in block and on free call marks
pages as dirty, so freed space can't be reused anymore.

Actually it would be very interesting to know the real meaning of those
bitmaps, maybe implementation was incomplete, etc.

But long time ago Zhang Yanfei removed alloc_map by these two commits:

  mm/vmalloc.c: remove dead code in vb_alloc
     3fcd76e802
  mm/vmalloc.c: remove alloc_map from vmap_block
     b8e748b6c3

In this patch I replaced dirty_map with two range variables: dirty min and
max.  These variables store minimum and maximum position of dirty space in
a block, since we need only to know the dirty range, not exact position of
dirty pages.

Why it was made?  Several reasons: at first glance it seems that
vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for
finding free hole, but it is not true.  To avoid complexity seems it is
better to use something simple, like min or max range values.  Secondly,
code also becomes simpler, without iteration over bitmap, just comparing
values in min and max macros.  Thirdly, bitmap occupies up to 1024 bits
(4MB is a max size of a block).  Here I replaced the whole bitmap with two
longs.

Finally vm_unmap_aliases should be slightly faster and the whole
vmap_block structure occupies less memory.

Signed-off-by: Roman Pen <r.peniaev@gmail.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Eric Dumazet <edumazet@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Christoph Lameter <cl@linux.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: Rob Jones <rob.jones@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Roman Pen
cf725ce274 mm/vmalloc: occupy newly allocated vmap block just after allocation
Previous implementation allocates new vmap block and repeats search of a
free block from the very beginning, iterating over the CPU free list.

Why it can be better??

1. Allocation can happen on one CPU, but search can be done on another CPU.
   In worst case we preallocate amount of vmap blocks which is equal to
   CPU number on the system.

2. In previous patch I added newly allocated block to the tail of free list
   to avoid soon exhaustion of virtual space and give a chance to occupy
   blocks which were allocated long time ago.  Thus to find newly allocated
   block all the search sequence should be repeated, seems it is not efficient.

In this patch newly allocated block is occupied right away, address of
virtual space is returned to the caller, so there is no any need to repeat
the search sequence, allocation job is done.

Signed-off-by: Roman Pen <r.peniaev@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Christoph Lameter <cl@linux.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: Rob Jones <rob.jones@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Roman Pen
68ac546f26 mm/vmalloc: fix possible exhaustion of vmalloc space caused by vm_map_ram allocator
Recently I came across high fragmentation of vm_map_ram allocator:
vmap_block has free space, but still new blocks continue to appear.
Further investigation showed that certain mapping/unmapping sequences
can exhaust vmalloc space.  On small 32bit systems that's not a big
problem, cause purging will be called soon on a first allocation failure
(alloc_vmap_area), but on 64bit machines, e.g.  x86_64 has 45 bits of
vmalloc space, that can be a disaster.

1) I came up with a simple allocation sequence, which exhausts virtual
   space very quickly:

  while (iters) {

                /* Map/unmap big chunk */
                vaddr = vm_map_ram(pages, 16, -1, PAGE_KERNEL);
                vm_unmap_ram(vaddr, 16);

                /* Map/unmap small chunks.
                 *
                 * -1 for hole, which should be left at the end of each block
                 * to keep it partially used, with some free space available */
                for (i = 0; i < (VMAP_BBMAP_BITS - 16) / 8 - 1; i++) {
                        vaddr = vm_map_ram(pages, 8, -1, PAGE_KERNEL);
                        vm_unmap_ram(vaddr, 8);
                }
  }

The idea behind is simple:

 1. We have to map a big chunk, e.g. 16 pages.

 2. Then we have to occupy the remaining space with smaller chunks, i.e.
    8 pages. At the end small hole should remain to keep block in free list,
    but do not let big chunk to occupy remaining space.

 3. Goto 1 - allocation request of 16 pages can't be completed (only 8 slots
    are left free in the block in the #2 step), new block will be allocated,
    all further requests will lay into newly allocated block.

To have some measurement numbers for all further tests I setup ftrace and
enabled 4 basic calls in a function profile:

        echo vm_map_ram              > /sys/kernel/debug/tracing/set_ftrace_filter;
        echo alloc_vmap_area        >> /sys/kernel/debug/tracing/set_ftrace_filter;
        echo vm_unmap_ram           >> /sys/kernel/debug/tracing/set_ftrace_filter;
        echo free_vmap_block        >> /sys/kernel/debug/tracing/set_ftrace_filter;

So for this scenario I got these results:

BEFORE (all new blocks are put to the head of a free list)
# cat /sys/kernel/debug/tracing/trace_stat/function0
  Function                               Hit    Time            Avg             s^2
  --------                               ---    ----            ---             ---
  vm_map_ram                          126000    30683.30 us     0.243 us        30819.36 us
  vm_unmap_ram                        126000    22003.24 us     0.174 us        340.886 us
  alloc_vmap_area                       1000    4132.065 us     4.132 us        0.903 us

AFTER (all new blocks are put to the tail of a free list)
# cat /sys/kernel/debug/tracing/trace_stat/function0
  Function                               Hit    Time            Avg             s^2
  --------                               ---    ----            ---             ---
  vm_map_ram                          126000    28713.13 us     0.227 us        24944.70 us
  vm_unmap_ram                        126000    20403.96 us     0.161 us        1429.872 us
  alloc_vmap_area                        993    3916.795 us     3.944 us        29.370 us
  free_vmap_block                        992    654.157 us      0.659 us        1.273 us

SUMMARY:

The most interesting numbers in those tables are numbers of block
allocations and deallocations: alloc_vmap_area and free_vmap_block
calls, which show that before the change blocks were not freed, and
virtual space and physical memory (vmap_block structure allocations,
etc) were consumed.

Average time which were spent in vm_map_ram/vm_unmap_ram became slightly
better.  That can be explained with a reasonable amount of blocks in a
free list, which we need to iterate to find a suitable free block.

2) Another scenario is a random allocation:

  while (iters) {

                /* Randomly take number from a range [1..32/64] */
                nr = rand(1, VMAP_MAX_ALLOC);
                vaddr = vm_map_ram(pages, nr, -1, PAGE_KERNEL);
                vm_unmap_ram(vaddr, nr);
  }

I chose mersenne twister PRNG to generate persistent random state to
guarantee that both runs have the same random sequence.  For each
vm_map_ram call random number from [1..32/64] was taken to represent
amount of pages which I do map.

I did 10'000 vm_map_ram calls and got these two tables:

BEFORE (all new blocks are put to the head of a free list)

# cat /sys/kernel/debug/tracing/trace_stat/function0
  Function                               Hit    Time            Avg             s^2
  --------                               ---    ----            ---             ---
  vm_map_ram                           10000    10170.01 us     1.017 us        993.609 us
  vm_unmap_ram                         10000    5321.823 us     0.532 us        59.789 us
  alloc_vmap_area                        420    2150.239 us     5.119 us        3.307 us
  free_vmap_block                         37    159.587 us      4.313 us        134.344 us

AFTER (all new blocks are put to the tail of a free list)

# cat /sys/kernel/debug/tracing/trace_stat/function0
  Function                               Hit    Time            Avg             s^2
  --------                               ---    ----            ---             ---
  vm_map_ram                           10000    7745.637 us     0.774 us        395.229 us
  vm_unmap_ram                         10000    5460.573 us     0.546 us        67.187 us
  alloc_vmap_area                        414    2201.650 us     5.317 us        5.591 us
  free_vmap_block                        412    574.421 us      1.394 us        15.138 us

SUMMARY:

'BEFORE' table shows, that 420 blocks were allocated and only 37 were
freed.  Remained 383 blocks are still in a free list, consuming virtual
space and physical memory.

'AFTER' table shows, that 414 blocks were allocated and 412 were really
freed.  2 blocks remained in a free list.

So fragmentation was dramatically reduced.  Why? Because when we put
newly allocated block to the head, all further requests will occupy new
block, regardless remained space in other blocks.  In this scenario all
requests come randomly.  Eventually remained free space will be less
than requested size, free list will be iterated and it is possible that
nothing will be found there - finally new block will be created.  So
exhaustion in random scenario happens for the maximum possible
allocation size: 32 pages for 32-bit system and 64 pages for 64-bit
system.

Also average cost of vm_map_ram was reduced from 1.017 us to 0.774 us.
Again this can be explained by iteration through smaller list of free
blocks.

3) Next simple scenario is a sequential allocation, when the allocation
   order is increased for each block.  This scenario forces allocator to
   reach maximum amount of partially free blocks in a free list:

  while (iters) {

                /* Populate free list with blocks with remaining space */
                for (order = 0; order <= ilog2(VMAP_MAX_ALLOC); order++) {
                        nr = VMAP_BBMAP_BITS / (1 << order);

                        /* Leave a hole */
                        nr -= 1;

                        for (i = 0; i < nr; i++) {
                                vaddr = vm_map_ram(pages, (1 << order), -1, PAGE_KERNEL);
                                vm_unmap_ram(vaddr, (1 << order));
                }

                /* Completely occupy blocks from a free list */
                for (order = 0; order <= ilog2(VMAP_MAX_ALLOC); order++) {
                        vaddr = vm_map_ram(pages, (1 << order), -1, PAGE_KERNEL);
                        vm_unmap_ram(vaddr, (1 << order));
                }
  }

Results which I got:

BEFORE (all new blocks are put to the head of a free list)

# cat /sys/kernel/debug/tracing/trace_stat/function0
  Function                               Hit    Time            Avg             s^2
  --------                               ---    ----            ---             ---
  vm_map_ram                         2032000    399545.2 us     0.196 us        467123.7 us
  vm_unmap_ram                       2032000    363225.7 us     0.178 us        111405.9 us
  alloc_vmap_area                       7001    30627.76 us     4.374 us        495.755 us
  free_vmap_block                       6993    7011.685 us     1.002 us        159.090 us

AFTER (all new blocks are put to the tail of a free list)

# cat /sys/kernel/debug/tracing/trace_stat/function0
  Function                               Hit    Time            Avg             s^2
  --------                               ---    ----            ---             ---
  vm_map_ram                         2032000    394259.7 us     0.194 us        589395.9 us
  vm_unmap_ram                       2032000    292500.7 us     0.143 us        94181.08 us
  alloc_vmap_area                       7000    31103.11 us     4.443 us        703.225 us
  free_vmap_block                       7000    6750.844 us     0.964 us        119.112 us

SUMMARY:

No surprises here, almost all numbers are the same.

Fixing this fragmentation problem I also did some improvements in a
allocation logic of a new vmap block: occupy block immediately and get
rid of extra search in a free list.

Also I replaced dirty bitmap with min/max dirty range values to make the
logic simpler and slightly faster, since two longs comparison costs
less, than loop thru bitmap.

This patchset raises several questions:

 Q: Think the problem you comments is already known so that I wrote comments
    about it as "it could consume lots of address space through fragmentation".
    Could you tell me about your situation and reason why it should be avoided?
                                                                     Gioh Kim

 A: Indeed, there was a commit 364376383 which adds explicit comment about
    fragmentation.  But fragmentation which is described in this comment caused
    by mixing of long-lived and short-lived objects, when a whole block is pinned
    in memory because some page slots are still in use.  But here I am talking
    about blocks which are free, nobody uses them, and allocator keeps them alive
    forever, continuously allocating new blocks.

 Q: I think that if you put newly allocated block to the tail of a free
    list, below example would results in enormous performance degradation.

    new block: 1MB (256 pages)

    while (iters--) {
      vm_map_ram(3 or something else not dividable for 256) * 85
      vm_unmap_ram(3) * 85
    }

    On every iteration, it needs newly allocated block and it is put to the
    tail of a free list so finding it consumes large amount of time.
                                                                    Joonsoo Kim

 A: Second patch in current patchset gets rid of extra search in a free list,
    so new block will be immediately occupied..

    Also, the scenario above is impossible, cause vm_map_ram allocates virtual
    range in orders, i.e. 2^n.  I.e. passing 3 to vm_map_ram you will allocate
    4 slots in a block and 256 slots (capacity of a block) of course dividable
    on 4, so block will be completely occupied.

    But there is a worst case which we can achieve: each free block has a hole
    equal to order size.

    The maximum size of allocation is 64 pages for 64-bit system
    (if you try to map more, original alloc_vmap_area will be called).

    So the maximum order is 6.  That means that worst case, before allocator
    makes a decision to allocate a new block, is to iterate 7 blocks:

    HEAD
    1st block - has 1  page slot  free (order 0)
    2nd block - has 2  page slots free (order 1)
    3rd block - has 4  page slots free (order 2)
    4th block - has 8  page slots free (order 3)
    5th block - has 16 page slots free (order 4)
    6th block - has 32 page slots free (order 5)
    7th block - has 64 page slots free (order 6)
    TAIL

    So the worst scenario on 64-bit system is that each CPU queue can have 7
    blocks in a free list.

    This can happen only and only if you allocate blocks increasing the order.
    (as I did in the function written in the comment of the first patch)
    This is weird and rare case, but still it is possible.  Afterwards you will
    get 7 blocks in a list.

    All further requests should be placed in a newly allocated block or some
    free slots should be found in a free list.
    Seems it does not look dramatically awful.

This patch (of 3):

If suitable block can't be found, new block is allocated and put into a
head of a free list, so on next iteration this new block will be found
first.

That's bad, because old blocks in a free list will not get a chance to be
fully used, thus fragmentation will grow.

Let's consider this simple example:

 #1 We have one block in a free list which is partially used, and where only
    one page is free:

    HEAD |xxxxxxxxx-| TAIL
                   ^
                   free space for 1 page, order 0

 #2 New allocation request of order 1 (2 pages) comes, new block is allocated
    since we do not have free space to complete this request. New block is put
    into a head of a free list:

    HEAD |----------|xxxxxxxxx-| TAIL

 #3 Two pages were occupied in a new found block:

    HEAD |xx--------|xxxxxxxxx-| TAIL
          ^
          two pages mapped here

 #4 New allocation request of order 0 (1 page) comes.  Block, which was created
    on #2 step, is located at the beginning of a free list, so it will be found
    first:

  HEAD |xxX-------|xxxxxxxxx-| TAIL
          ^                 ^
          page mapped here, but better to use this hole

It is obvious, that it is better to complete request of #4 step using the
old block, where free space is left, because in other case fragmentation
will be highly increased.

But fragmentation is not only the case.  The worst thing is that I can
easily create scenario, when the whole vmalloc space is exhausted by
blocks, which are not used, but already dirty and have several free pages.

Let's consider this function which execution should be pinned to one CPU:

static void exhaust_virtual_space(struct page *pages[16], int iters)
{
        /* Firstly we have to map a big chunk, e.g. 16 pages.
         * Then we have to occupy the remaining space with smaller
         * chunks, i.e. 8 pages. At the end small hole should remain.
         * So at the end of our allocation sequence block looks like
         * this:
         *                XX  big chunk
         * |XXxxxxxxx-|    x  small chunk
         *                 -  hole, which is enough for a small chunk,
         *                    but is not enough for a big chunk
         */
        while (iters--) {
                int i;
                void *vaddr;

                /* Map/unmap big chunk */
                vaddr = vm_map_ram(pages, 16, -1, PAGE_KERNEL);
                vm_unmap_ram(vaddr, 16);

                /* Map/unmap small chunks.
                 *
                 * -1 for hole, which should be left at the end of each block
                 * to keep it partially used, with some free space available */
                for (i = 0; i < (VMAP_BBMAP_BITS - 16) / 8 - 1; i++) {
                        vaddr = vm_map_ram(pages, 8, -1, PAGE_KERNEL);
                        vm_unmap_ram(vaddr, 8);
                }
        }
}

On every iteration new block (1MB of vm area in my case) will be
allocated and then will be occupied, without attempt to resolve small
allocation request using previously allocated blocks in a free list.

In case of random allocation (size should be randomly taken from the
range [1..64] in 64-bit case or [1..32] in 32-bit case) situation is the
same: new blocks continue to appear if maximum possible allocation size
(32 or 64) passed to the allocator, because all remaining blocks in a
free list do not have enough free space to complete this allocation
request.

In summary if new blocks are put into the head of a free list eventually
virtual space will be exhausted.

In current patch I simply put newly allocated block to the tail of a
free list, thus reduce fragmentation, giving a chance to resolve
allocation request using older blocks with possible holes left.

Signed-off-by: Roman Pen <r.peniaev@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Christoph Lameter <cl@linux.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: Rob Jones <rob.jones@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Toshi Kani
b9820d8f39 mm: change vunmap to tear down huge KVA mappings
Change vunmap_pmd_range() and vunmap_pud_range() to tear down huge KVA
mappings when they are set.  pud_clear_huge() and pmd_clear_huge() return
zero when no-operation is performed, i.e.  huge page mapping was not used.

These changes are only enabled when CONFIG_HAVE_ARCH_HUGE_VMAP is defined
on the architecture.

[akpm@linux-foundation.org: use consistent code layout]
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Robert Elliott <Elliott@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:04 -07:00
Toshi Kani
0f616be120 mm: change __get_vm_area_node() to use fls_long()
ioremap() and its related interfaces are used to create I/O mappings to
memory-mapped I/O devices.  The mapping sizes of the traditional I/O
devices are relatively small.  Non-volatile memory (NVM), however, has
many GB and is going to have TB soon.  It is not very efficient to create
large I/O mappings with 4KB.

This patchset extends the ioremap() interfaces to transparently create I/O
mappings with huge pages whenever possible.  ioremap() continues to use
4KB mappings when a huge page does not fit into a requested range.  There
is no change necessary to the drivers using ioremap().  A requested
physical address must be aligned by a huge page size (1GB or 2MB on x86)
for using huge page mapping, though.  The kernel huge I/O mapping will
improve performance of NVM and other devices with large memory, and reduce
the time to create their mappings as well.

On x86, MTRRs can override PAT memory types with a 4KB granularity.  When
using a huge page, MTRRs can override the memory type of the huge page,
which may lead a performance penalty.  The processor can also behave in an
undefined manner if a huge page is mapped to a memory range that MTRRs
have mapped with multiple different memory types.  Therefore, the mapping
code falls back to use a smaller page size toward 4KB when a mapping range
is covered by non-WB type of MTRRs.  The WB type of MTRRs has no affect on
the PAT memory types.

The patchset introduces HAVE_ARCH_HUGE_VMAP, which indicates that the arch
supports huge KVA mappings for ioremap().  User may specify a new kernel
option "nohugeiomap" to disable the huge I/O mapping capability of
ioremap() when necessary.

Patch 1-4 change common files to support huge I/O mappings.  There is no
change in the functinalities unless HAVE_ARCH_HUGE_VMAP is defined on the
architecture of the system.

Patch 5-6 implement the HAVE_ARCH_HUGE_VMAP funcs on x86, and set
HAVE_ARCH_HUGE_VMAP on x86.

This patch (of 6):

__get_vm_area_node() takes unsigned long size, which is a 64-bit value on
a 64-bit kernel.  However, fls(size) simply ignores the upper 32-bit.
Change to use fls_long() to handle the size properly.

Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Robert Elliott <Elliott@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:04 -07:00
Andrey Ryabinin
a5af5aa8b6 kasan, module, vmalloc: rework shadow allocation for modules
Current approach in handling shadow memory for modules is broken.

Shadow memory could be freed only after memory shadow corresponds it is no
longer used.  vfree() called from interrupt context could use memory its
freeing to store 'struct llist_node' in it:

    void vfree(const void *addr)
    {
    ...
        if (unlikely(in_interrupt())) {
            struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
            if (llist_add((struct llist_node *)addr, &p->list))
                    schedule_work(&p->wq);

Later this list node used in free_work() which actually frees memory.
Currently module_memfree() called in interrupt context will free shadow
before freeing module's memory which could provoke kernel crash.

So shadow memory should be freed after module's memory.  However, such
deallocation order could race with kasan_module_alloc() in module_alloc().

Free shadow right before releasing vm area.  At this point vfree()'d
memory is not used anymore and yet not available for other allocations.
New VM_KASAN flag used to indicate that vm area has dynamically allocated
shadow memory so kasan frees shadow only if it was previously allocated.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
Andrey Ryabinin
cb9e3c292d mm: vmalloc: pass additional vm_flags to __vmalloc_node_range()
For instrumenting global variables KASan will shadow memory backing memory
for modules.  So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().

__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area.  Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole.  So we could fail to allocate shadow
for module_alloc().

Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into
__vmalloc_node_range().  Add new parameter 'vm_flags' to
__vmalloc_node_range() function.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:42 -08:00
Andrey Ryabinin
71394fe501 mm: vmalloc: add flag preventing guard hole allocation
For instrumenting global variables KASan will shadow memory backing memory
for modules.  So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().

__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area.  Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole.  So we could fail to allocate shadow
for module_alloc().

Add a new vm_struct flag 'VM_NO_GUARD' indicating that vm area doesn't
have a guard hole.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:42 -08:00
Dmitry Vyukov
7e5b528b4c mm/vmalloc.c: fix memory ordering bug
Read memory barriers must follow the read operations.

Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Pintu Kumar
0cbc8533b7 mm/vmalloc.c: replace printk with pr_warn
This patch replaces printk(KERN_WARNING..) with pr_warn.
Thus it also reduces one line extra because of formatting.

Signed-off-by: Pintu Kumar <pintu.k@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:05 -08:00
Rob Jones
703394c100 mm/vmalloc.c: use seq_open_private() instead of seq_open()
Using seq_open_private() removes boilerplate code from vmalloc_open().

The resultant code is shorter and easier to follow.

However, please note that seq_open_private() call kzalloc() rather than
kmalloc() which may affect timing due to the memory initialisation
overhead.

Signed-off-by: Rob Jones <rob.jones@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:56 -04:00
WANG Chao
f6f8ed4735 mm/vmalloc.c: clean up map_vm_area third argument
Currently map_vm_area() takes (struct page *** pages) as third argument,
and after mapping, it moves (*pages) to point to (*pages +
nr_mappped_pages).

It looks like this kind of increment is useless to its caller these
days.  The callers don't care about the increments and actually they're
trying to avoid this by passing another copy to map_vm_area().

The caller can always guarantee all the pages can be mapped into vm_area
as specified in first argument and the caller only cares about whether
map_vm_area() fails or not.

This patch cleans up the pointer movement in map_vm_area() and updates
its callers accordingly.

Signed-off-by: WANG Chao <chaowang@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:19 -07:00
David Rientjes
930f036b4f mm, vmalloc: constify allocation mask
tmp_mask in the __vmalloc_area_node() iteration never changes so it can
be moved into function scope and marked with const.  This causes the
movl and orl to only be done once per call rather than area->nr_pages
times.

nested_gfp can also be marked const.

Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:18 -07:00
Eric Dumazet
660654f90e mm/vmalloc.c: add a schedule point to vmalloc()
It is not uncommon on busy servers to get stuck hundred of ms in
vmalloc() calls (like file descriptor expansions).

Add a cond_resched() to __vmalloc_area_node() to be gentle to
other tasks.

[akpm@linux-foundation.org: only do it for __GFP_WAIT, per David]
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:18 -07:00
Joonsoo Kim
474750aba8 vmalloc: use rcu list iterator to reduce vmap_area_lock contention
Richard Yao reported a month ago that his system have a trouble with
vmap_area_lock contention during performance analysis by /proc/meminfo.
Andrew asked why his analysis checks /proc/meminfo stressfully, but he
didn't answer it.

  https://lkml.org/lkml/2014/4/10/416

Although I'm not sure that this is right usage or not, there is a
solution reducing vmap_area_lock contention with no side-effect.  That
is just to use rcu list iterator in get_vmalloc_info().

rcu can be used in this function because all RCU protocol is already
respected by writers, since Nick Piggin commit db64fe0225 ("mm:
rewrite vmap layer") back in linux-2.6.28

Specifically :
   insertions use list_add_rcu(),
   deletions use list_del_rcu() and kfree_rcu().

Note the rb tree is not used from rcu reader (it would not be safe),
only the vmap_area_list has full RCU protection.

Note that __purge_vmap_area_lazy() already uses this rcu protection.

        rcu_read_lock();
        list_for_each_entry_rcu(va, &vmap_area_list, list) {
                if (va->flags & VM_LAZY_FREE) {
                        if (va->va_start < *start)
                                *start = va->va_start;
                        if (va->va_end > *end)
                                *end = va->va_end;
                        nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
                        list_add_tail(&va->purge_list, &valist);
                        va->flags |= VM_LAZY_FREEING;
                        va->flags &= ~VM_LAZY_FREE;
                }
        }
        rcu_read_unlock();

Peter:

: While rcu list traversal over the vmap_area_list is safe, this may
: arrive at different results than the spinlocked version. The rcu list
: traversal version will not be a 'snapshot' of a single, valid instant
: of the entire vmap_area_list, but rather a potential amalgam of
: different list states.

Joonsoo:

: Yes, you are right, but I don't think that we should be strict here.
: Meminfo is already not a 'snapshot' at specific time.  While we try to get
: certain stats, the other stats can change.  And, although we may arrive at
: different results than the spinlocked version, the difference would not be
: large and would not make serious side-effect.

[edumazet@google.com: add more commit description]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Richard Yao <ryao@gentoo.org>
Acked-by: Eric Dumazet <edumazet@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Zhang Yanfei <zhangyanfei.yes@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:15 -07:00
Minchan Kim
93ef6d6ca1 mm/vmalloc.c: export unmap_kernel_range()
zsmalloc needs exported unmap_kernel_range for building as a module.  See
https://lkml.org/lkml/2013/1/18/487

I didn't send a patch to make unmap_kernel_range exportable at that time
because zram was staging stuff and I thought VM function exporting for
staging stuff makes no sense.

Now zsmalloc was promoted.  If we can't build zsmalloc as module, it means
we can't build zram as module, either.  Additionally, buddy map_vm_area is
already exported so let's export unmap_kernel_range to help his buddy.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:14 -07:00
Fabian Frederick
f4527c9086 mm/vmalloc.c: replace seq_printf by seq_puts
Replace seq_printf where possible

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:04 -07:00
Christoph Lameter
7c8e0181e6 mm: replace __get_cpu_var uses with this_cpu_ptr
Replace places where __get_cpu_var() is used for an address calculation
with this_cpu_ptr().

Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:03 -07:00
Gioh Kim
3643763834 mm/vmalloc.c: enhance vm_map_ram() comment
vm_map_ram() has a fragmentation problem when it cannot purge a
chunk(ie, 4M address space) if there is a pinning object in that
addresss space.  So it could consume all VMALLOC address space easily.

We can fix the fragmentation problem by using vmap instead of
vm_map_ram() but vmap() is known to be slow compared to vm_map_ram().
Minchan said vm_map_ram is 5 times faster than vmap in his tests.  So I
thought we should fix fragment problem of vm_map_ram because our
proprietary GPU driver has used it heavily.

On second thought, it's not an easy because we should reuse freed space
for solving the problem and it could make more IPI and bitmap operation
for searching hole.  It could mitigate API's goal which is very fast
mapping.  And even fragmentation problem wouldn't show in 64 bit
machine.

Another option is that the user should separate long-life and short-life
object and use vmap for long-life but vm_map_ram for short-life.  If we
inform the user about the characteristic of vm_map_ram the user can
choose one according to the page lifetime.

Let's add some notice messages to user.

[akpm@linux-foundation.org: tweak comment text]
Signed-off-by: Gioh Kim <gioh.kim@lge.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:55 -07:00
Gideon Israel Dsouza
3b32123d73 mm: use macros from compiler.h instead of __attribute__((...))
To increase compiler portability there is <linux/compiler.h> which
provides convenience macros for various gcc constructs.  Eg: __weak for
__attribute__((weak)).  I've replaced all instances of gcc attributes with
the right macro in the memory management (/mm) subsystem.

[akpm@linux-foundation.org: while-we're-there consistency tweaks]
Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:54 -07:00
malc
add688fbd3 Revert "mm/vmalloc: interchage the implementation of vmalloc_to_{pfn,page}"
Revert commit ece86e222d, which was intended as a small performance
improvement.

Despite the claim that the patch doesn't introduce any functional
changes in fact it does.

The "no page" path behaves different now.  Originally, vmalloc_to_page
might return NULL under some conditions, with new implementation it
returns pfn_to_page(0) which is not the same as NULL.

Simple test shows the difference.

test.c

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>

int __init myi(void)
{
	struct page *p;
	void *v;

	v = vmalloc(PAGE_SIZE);
	/* trigger the "no page" path in vmalloc_to_page*/
	vfree(v);

	p = vmalloc_to_page(v);

	pr_err("expected val = NULL, returned val = %p", p);

	return -EBUSY;
}

void __exit mye(void)
{

}
module_init(myi)
module_exit(mye)

Before interchange:
expected val = NULL, returned val =   (null)

After interchange:
expected val = NULL, returned val = c7ebe000

Signed-off-by: Vladimir Murzin <murzin.v@gmail.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-27 21:02:39 -08:00
Jianyu Zhan
ece86e222d mm/vmalloc: interchage the implementation of vmalloc_to_{pfn,page}
Currently we are implementing vmalloc_to_pfn() as a wrapper around
vmalloc_to_page(), which is implemented as follow:

 1. walks the page talbes to generates the corresponding pfn,
 2. then converts the pfn to struct page,
 3. returns it.

And vmalloc_to_pfn() re-wraps vmalloc_to_page() to get the pfn.

This seems too circuitous, so this patch reverses the way: implement
vmalloc_to_page() as a wrapper around vmalloc_to_pfn().  This makes
vmalloc_to_pfn() and vmalloc_to_page() slightly more efficient.

No functional change.

Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Cc: Vladimir Murzin <murzin.v@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Catalin Marinas
7f88f88f83 mm: kmemleak: avoid false negatives on vmalloc'ed objects
Commit 248ac0e194 ("mm/vmalloc: remove guard page from between vmap
blocks") had the side effect of making vmap_area.va_end member point to
the next vmap_area.va_start.  This was creating an artificial reference
to vmalloc'ed objects and kmemleak was rarely reporting vmalloc() leaks.

This patch marks the vmap_area containing pointers explicitly and
reduces the min ref_count to 2 as vm_struct still contains a reference
to the vmalloc'ed object.  The kmemleak add_scan_area() function has
been improved to allow a SIZE_MAX argument covering the rest of the
object (for simpler calling sites).

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:07 +09:00
Wanpeng Li
b82225f3ff revert mm/vmalloc.c: emit the failure message before return
Don't warn twice in __vmalloc_area_node and __vmalloc_node_range if
__vmalloc_area_node allocation failure.  This patch reverts commit
46c001a275 ("mm/vmalloc.c: emit the failure message before return").

Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:05 +09:00
Wanpeng Li
af12346cda mm/vmalloc: revert "mm/vmalloc.c: check VM_UNINITIALIZED flag in s_show instead of show_numa_info"
The VM_UNINITIALIZED/VM_UNLIST flag introduced by f5252e009d ("mm:
avoid null pointer access in vm_struct via /proc/vmallocinfo") is used
to avoid accessing the pages field with unallocated page when
show_numa_info() is called.

This patch moves the check just before show_numa_info in order that some
messages still can be dumped via /proc/vmallocinfo.  This patch reverts
commit d157a55815 ("mm/vmalloc.c: check VM_UNINITIALIZED flag in
s_show instead of show_numa_info");

Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:05 +09:00
Wanpeng Li
c2ce8c142c mm/vmalloc: fix show vmap_area information race with vmap_area tear down
There is a race window between vmap_area tear down and show vmap_area
information.

	A                                                B

remove_vm_area
spin_lock(&vmap_area_lock);
va->vm = NULL;
va->flags &= ~VM_VM_AREA;
spin_unlock(&vmap_area_lock);
						spin_lock(&vmap_area_lock);
						if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEZING))
							return 0;
						if (!(va->flags & VM_VM_AREA)) {
							seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
								(void *)va->va_start, (void *)va->va_end,
								va->va_end - va->va_start);
							return 0;
						}
free_unmap_vmap_area(va);
	flush_cache_vunmap
	free_unmap_vmap_area_noflush
		unmap_vmap_area
		free_vmap_area_noflush
			va->flags |= VM_LAZY_FREE

The assumption !VM_VM_AREA represents vm_map_ram allocation is
introduced by d4033afdf8 ("mm, vmalloc: iterate vmap_area_list,
instead of vmlist, in vmallocinfo()").

However, !VM_VM_AREA also represents vmap_area is being tear down in
race window mentioned above.  This patch fix it by don't dump any
information for !VM_VM_AREA case and also remove (VM_LAZY_FREE |
VM_LAZY_FREEING) check since they are not possible for !VM_VM_AREA case.

Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:05 +09:00
Wanpeng Li
3722e13cff mm/vmalloc: don't set area->caller twice
The caller address has already been set in set_vmalloc_vm(), there's no
need to set it again in __vmalloc_area_node.

Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:05 +09:00
Jianguo Wu
4b90951c0b mm/vmalloc: use NUMA_NO_NODE
Use more appropriate "if (node == NUMA_NO_NODE)" instead of "if (node < 0)"

Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:02 +09:00
Wanpeng Li
762216ab4e mm/vmalloc: use wrapper function get_vm_area_size to caculate size of vm area
Use wrapper function get_vm_area_size to calculate size of vm area.

Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:58:02 -07:00
Joonsoo Kim
b136be5e0b mm, vmalloc: use well-defined find_last_bit() func
Our intention in here is to find last_bit within the region to flush.
There is well-defined function, find_last_bit() for this purpose and its
performance may be slightly better than current implementation.  So change
it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:34 -07:00
Joonsoo Kim
6b70f7dff8 mm, vmalloc: remove useless variable in vmap_block
vbq in vmap_block isn't used. So remove it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:33 -07:00
Zhang Yanfei
bcb615a81b mm/vmalloc.c: fix an overflow bug in alloc_vmap_area()
When searching a vmap area in the vmalloc space, we use (addr + size -
1) to check if the value is less than addr, which is an overflow.  But
we assign (addr + size) to vmap_area->va_end.

So if we come across the below case:

  (addr + size - 1) : not overflow
  (addr + size)     : overflow

we will assign an overflow value (e.g 0) to vmap_area->va_end, And this
will trigger BUG in __insert_vmap_area, causing system panic.

So using (addr + size) to check the overflow should be the correct
behaviour, not (addr + size - 1).

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reported-by: Ghennadi Procopciuc <unix140@gmail.com>
Tested-by: Daniel Baluta <dbaluta@ixiacom.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:23 -07:00
Oleg Nesterov
59d3132f8a vfree: don't schedule free_work() if llist_add() returns false
vfree() only needs schedule_work(&p->wq) if p->list was empty, otherwise
vfree_deferred->wq is already pending or it is running and didn't do
llist_del_all() yet.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:22 -07:00
Zhang Yanfei
d157a55815 mm/vmalloc.c: check VM_UNINITIALIZED flag in s_show instead of show_numa_info
We should check the VM_UNITIALIZED flag in s_show().  If this flag is
set, that said, the vm_struct is not fully initialized.  So it is
unnecessary to try to show the information contained in vm_struct.

We checked this flag in show_numa_info(), but I think it's better to
check it earlier.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:21 -07:00
Zhang Yanfei
20fc02b477 mm/vmalloc.c: rename VM_UNLIST to VM_UNINITIALIZED
VM_UNLIST was used to indicate that the vm_struct is not listed in
vmlist.

But after commit 4341fa4547 ("mm, vmalloc: remove list management of
vmlist after initializing vmalloc"), the meaning of this flag changed.
It now means the vm_struct is not fully initialized.  So renaming it to
VM_UNINITIALIZED seems more reasonable.

Also change clear_vm_unlist to clear_vm_uninitialized_flag.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:21 -07:00
Zhang Yanfei
46c001a275 mm/vmalloc.c: emit the failure message before return
Use goto to jump to the fail label to give a failure message before
returning NULL.  This makes the failure handling in this function
consistent.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:21 -07:00
Zhang Yanfei
b8e748b6c3 mm/vmalloc.c: remove alloc_map from vmap_block
As we have removed the dead code in the vb_alloc, it seems there is no
place to use the alloc_map.  So there is no reason to maintain the
alloc_map in vmap_block.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:21 -07:00
Zhang Yanfei
9da3f59fbd mm/vmalloc.c: remove unused purge_fragmented_blocks_thiscpu
This function is nowhere used now, so remove it.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:21 -07:00
Zhang Yanfei
3fcd76e802 mm/vmalloc.c: remove dead code in vb_alloc
Space in a vmap block that was once allocated is considered dirty and
not made available for allocation again before the whole block is
recycled.  The result is that free space within a vmap block is always
contiguous.

So if a vmap block has enough free space for allocation, the allocation
is impossible to fail.  Thus, the fragmented block purging was never
invoked from vb_alloc().  So remove this dead code.

[ Same patches also sent by:

    Chanho Min <chanho.min@lge.com>
    Johannes Weiner <hannes@cmpxchg.org>

  but git doesn't do "multiple authors" ]

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:20 -07:00
Dan Carpenter
ab15d9b4cb mm/vmalloc.c: unbreak __vunmap()
There is an extra semi-colon so the function always returns.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:20 -07:00
Zhang Yanfei
0f2d4a8e27 mm, vmalloc: use clamp() to simplify code
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:40 -07:00
Zhang Yanfei
f6d480059b mm, vmalloc: remove insert_vmalloc_vm()
Now this function is nowhere used, we can remove it directly.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:40 -07:00
Zhang Yanfei
3645cb4a4e mm, vmalloc: call setup_vmalloc_vm() instead of insert_vmalloc_vm()
Here we pass flags with only VM_ALLOC bit set, it is unnecessary to call
clear_vm_unlist to clear VM_UNLIST bit.  So use setup_vmalloc_vm instead
of insert_vmalloc_vm.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:40 -07:00
Zhang Yanfei
d82b1d8576 mm, vmalloc: only call setup_vmalloc_vm() only in __get_vm_area_node()
Now for insert_vmalloc_vm, it only calls the two functions:

 - setup_vmalloc_vm: fill vm_struct and vmap_area instances
 - clear_vm_unlist: clear VM_UNLIST bit in vm_struct->flags

So in __get_vm_area_node(), if VM_UNLIST bit unset in flags, that is the
else branch here, we don't need to clear VM_UNLIST bit for vm->flags since
this bit is obviously not set.  That is to say, we could only call
setup_vmalloc_vm instead of insert_vmalloc_vm here.  And then we could
even remove the if test here.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:40 -07:00
HATAYAMA Daisuke
e69e9d4aee vmalloc: introduce remap_vmalloc_range_partial
We want to allocate ELF note segment buffer on the 2nd kernel in vmalloc
space and remap it to user-space in order to reduce the risk that memory
allocation fails on system with huge number of CPUs and so with huge ELF
note segment that exceeds 11-order block size.

Although there's already remap_vmalloc_range for the purpose of
remapping vmalloc memory to user-space, we need to specify user-space
range via vma.
 Mmap on /proc/vmcore needs to remap range across multiple objects, so
the interface that requires vma to cover full range is problematic.

This patch introduces remap_vmalloc_range_partial that receives user-space
range as a pair of base address and size and can be used for mmap on
/proc/vmcore case.

remap_vmalloc_range is rewritten using remap_vmalloc_range_partial.

[akpm@linux-foundation.org: use PAGE_ALIGNED()]
Signed-off-by: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Lisa Mitchell <lisa.mitchell@hp.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:30 -07:00
HATAYAMA Daisuke
cef2ac3f6c vmalloc: make find_vm_area check in range
Currently, __find_vmap_area searches for the kernel VM area starting at
a given address.  This patch changes this behavior so that it searches
for the kernel VM area to which the address belongs.  This change is
needed by remap_vmalloc_range_partial to be introduced in later patch
that receives any position of kernel VM area as target address.

This patch changes the condition (addr > va->va_start) to the equivalent
(addr >= va->va_end) by taking advantage of the fact that each kernel VM
area is non-overlapping.

Signed-off-by: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Lisa Mitchell <lisa.mitchell@hp.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:30 -07:00
Andrew Morton
c9fcee5132 mm/vmalloc.c: add vfree comment
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-07 18:38:27 -07:00
Linus Torvalds
20b4fb4852 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull VFS updates from Al Viro,

Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).

7kloc removed.

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
  don't bother with deferred freeing of fdtables
  proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
  proc: Make the PROC_I() and PDE() macros internal to procfs
  proc: Supply a function to remove a proc entry by PDE
  take cgroup_open() and cpuset_open() to fs/proc/base.c
  ppc: Clean up scanlog
  ppc: Clean up rtas_flash driver somewhat
  hostap: proc: Use remove_proc_subtree()
  drm: proc: Use remove_proc_subtree()
  drm: proc: Use minor->index to label things, not PDE->name
  drm: Constify drm_proc_list[]
  zoran: Don't print proc_dir_entry data in debug
  reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
  proc: Supply an accessor for getting the data from a PDE's parent
  airo: Use remove_proc_subtree()
  rtl8192u: Don't need to save device proc dir PDE
  rtl8187se: Use a dir under /proc/net/r8180/
  proc: Add proc_mkdir_data()
  proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
  proc: Move PDE_NET() to fs/proc/proc_net.c
  ...
2013-05-01 17:51:54 -07:00
Atsushi Kumagai
13ba3fcbbe kexec, vmalloc: export additional vmalloc layer information
Now, vmap_area_list is exported as VMCOREINFO for makedumpfile to get
the start address of vmalloc region (vmalloc_start).  The address which
contains vmalloc_start value is represented as below:

  vmap_area_list.next - OFFSET(vmap_area.list) + OFFSET(vmap_area.va_start)

However, both OFFSET(vmap_area.va_start) and OFFSET(vmap_area.list)
aren't exported as VMCOREINFO.

So this patch exports them externally with small cleanup.

[akpm@linux-foundation.org: vmalloc.h should include list.h for list_head]
Signed-off-by: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:34 -07:00
Joonsoo Kim
4341fa4547 mm, vmalloc: remove list management of vmlist after initializing vmalloc
Now, there is no need to maintain vmlist after initializing vmalloc.  So
remove related code and data structure.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:34 -07:00
Joonsoo Kim
f1c4069e1d mm, vmalloc: export vmap_area_list, instead of vmlist
Although our intention is to unexport internal structure entirely, but
there is one exception for kexec.  kexec dumps address of vmlist and
makedumpfile uses this information.

We are about to remove vmlist, then another way to retrieve information
of vmalloc layer is needed for makedumpfile.  For this purpose, we
export vmap_area_list, instead of vmlist.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:34 -07:00
Joonsoo Kim
d4033afdf8 mm, vmalloc: iterate vmap_area_list, instead of vmlist, in vmallocinfo()
This patch is a preparatory step for removing vmlist entirely.  For
above purpose, we change iterating a vmap_list codes to iterating a
vmap_area_list.  It is somewhat trivial change, but just one thing
should be noticed.

Using vmap_area_list in vmallocinfo() introduce ordering problem in SMP
system.  In s_show(), we retrieve some values from vm_struct.
vm_struct's values is not fully setup when va->vm is assigned.  Full
setup is notified by removing VM_UNLIST flag without holding a lock.
When we see that VM_UNLIST is removed, it is not ensured that vm_struct
has proper values in view of other CPUs.  So we need smp_[rw]mb for
ensuring that proper values is assigned when we see that VM_UNLIST is
removed.

Therefore, this patch not only change a iteration list, but also add a
appropriate smp_[rw]mb to right places.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:34 -07:00
Joonsoo Kim
f98782ddd3 mm, vmalloc: iterate vmap_area_list in get_vmalloc_info()
This patch is a preparatory step for removing vmlist entirely.  For
above purpose, we change iterating a vmap_list codes to iterating a
vmap_area_list.  It is somewhat trivial change, but just one thing
should be noticed.

vmlist is lack of information about some areas in vmalloc address space.
For example, vm_map_ram() allocate area in vmalloc address space, but it
doesn't make a link with vmlist.  To provide full information about
vmalloc address space is better idea, so we don't use va->vm and use
vmap_area directly.  This makes get_vmalloc_info() more precise.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:34 -07:00
Joonsoo Kim
e81ce85f96 mm, vmalloc: iterate vmap_area_list, instead of vmlist in vread/vwrite()
Now, when we hold a vmap_area_lock, va->vm can't be discarded.  So we can
safely access to va->vm when iterating a vmap_area_list with holding a
vmap_area_lock.  With this property, change iterating vmlist codes in
vread/vwrite() to iterating vmap_area_list.

There is a little difference relate to lock, because vmlist_lock is mutex,
but, vmap_area_lock is spin_lock.  It may introduce a spinning overhead
during vread/vwrite() is executing.  But, these are debug-oriented
functions, so this overhead is not real problem for common case.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:34 -07:00
Joonsoo Kim
c69480adee mm, vmalloc: protect va->vm by vmap_area_lock
Inserting and removing an entry to vmlist is linear time complexity, so
it is inefficient.  Following patches will try to remove vmlist
entirely.  This patch is preparing step for it.

For removing vmlist, iterating vmlist codes should be changed to
iterating a vmap_area_list.  Before implementing that, we should make
sure that when we iterate a vmap_area_list, accessing to va->vm doesn't
cause a race condition.  This patch ensure that when iterating a
vmap_area_list, there is no race condition for accessing to vm_struct.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:33 -07:00
Joonsoo Kim
db3808c1ba mm, vmalloc: move get_vmalloc_info() to vmalloc.c
Now get_vmalloc_info() is in fs/proc/mmu.c.  There is no reason that this
code must be here and it's implementation needs vmlist_lock and it iterate
a vmlist which may be internal data structure for vmalloc.

It is preferable that vmlist_lock and vmlist is only used in vmalloc.c
for maintainability. So move the code to vmalloc.c

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:33 -07:00
Al Viro
32fcfd4071 make vfree() safe to call from interrupt contexts
A bunch of RCU callbacks want to be able to do vfree() and end up with
rather kludgy schemes.  Just let vfree() do the right thing - put the
victim on llist and schedule actual __vunmap() via schedule_work(), so
that it runs from non-interrupt context.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-03-10 21:18:21 -04:00
David Rientjes
00ef2d2f84 mm: use NUMA_NO_NODE
Make a sweep through mm/ and convert code that uses -1 directly to using
the more appropriate NUMA_NO_NODE.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:21 -08:00
Kirill A. Shutemov
e5adfffc85 mm: use IS_ENABLED(CONFIG_NUMA) instead of NUMA_BUILD
We don't need custom NUMA_BUILD anymore, since we have handy
IS_ENABLED().

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11 17:22:22 -08:00
Kees Cook
45ec16908e mm: use %pK for /proc/vmallocinfo
In the paranoid case of sysctl kernel.kptr_restrict=2, mask the kernel
virtual addresses in /proc/vmallocinfo too.

Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Brad Spengler <spender@grsecurity.net>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:23:03 +09:00
Konstantin Khlebnikov
314e51b985 mm: kill vma flag VM_RESERVED and mm->reserved_vm counter
A long time ago, in v2.4, VM_RESERVED kept swapout process off VMA,
currently it lost original meaning but still has some effects:

 | effect                 | alternative flags
-+------------------------+---------------------------------------------
1| account as reserved_vm | VM_IO
2| skip in core dump      | VM_IO, VM_DONTDUMP
3| do not merge or expand | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP
4| do not mlock           | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP

This patch removes reserved_vm counter from mm_struct.  Seems like nobody
cares about it, it does not exported into userspace directly, it only
reduces total_vm showed in proc.

Thus VM_RESERVED can be replaced with VM_IO or pair VM_DONTEXPAND | VM_DONTDUMP.

remap_pfn_range() and io_remap_pfn_range() set VM_IO|VM_DONTEXPAND|VM_DONTDUMP.
remap_vmalloc_range() set VM_DONTEXPAND | VM_DONTDUMP.

[akpm@linux-foundation.org: drivers/vfio/pci/vfio_pci.c fixup]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:19 +09:00
Jan Kara
aa91c4d898 mm: make vb_alloc() more foolproof
If someone calls vb_alloc() (or vm_map_ram() for that matter) to allocate
0 bytes (0 pages), get_order() returns BITS_PER_LONG - PAGE_CACHE_SHIFT
and interesting stuff happens.  So make debugging such problems easier and
warn about 0-size allocation.

[akpm@linux-foundation.org: use WARN_ON-return-value feature]
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:39 -07:00
Hong zhi guo
92ca922f0a vmalloc: walk vmap_areas by sorted list instead of rb_next()
There's a walk by repeating rb_next to find a suitable hole.  Could be
simply replaced by walk on the sorted vmap_area_list.  More simpler and
efficient.

Mutation of the list and tree only happens in pair within
__insert_vmap_area and __free_vmap_area, under protection of
vmap_area_lock.  The patch code is also under vmap_area_lock, so the list
walk is safe, and consistent with the tree walk.

Tested on SMP by repeating batch of vmalloc anf vfree for random sizes and
rounds for hours.

Signed-off-by: Hong Zhiguo <honkiko@gmail.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:39 -07:00
Linus Torvalds
6f51f51582 Merge branch 'for-linus-for-3.6-rc1' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping
Pull DMA-mapping updates from Marek Szyprowski:
 "Those patches are continuation of my earlier work.

  They contains extensions to DMA-mapping framework to remove limitation
  of the current ARM implementation (like limited total size of DMA
  coherent/write combine buffers), improve performance of buffer sharing
  between devices (attributes to skip cpu cache operations or creation
  of additional kernel mapping for some specific use cases) as well as
  some unification of the common code for dma_mmap_attrs() and
  dma_mmap_coherent() functions.  All extensions have been implemented
  and tested for ARM architecture."

* 'for-linus-for-3.6-rc1' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping:
  ARM: dma-mapping: add support for DMA_ATTR_SKIP_CPU_SYNC attribute
  common: DMA-mapping: add DMA_ATTR_SKIP_CPU_SYNC attribute
  ARM: dma-mapping: add support for dma_get_sgtable()
  common: dma-mapping: introduce dma_get_sgtable() function
  ARM: dma-mapping: add support for DMA_ATTR_NO_KERNEL_MAPPING attribute
  common: DMA-mapping: add DMA_ATTR_NO_KERNEL_MAPPING attribute
  common: dma-mapping: add support for generic dma_mmap_* calls
  ARM: dma-mapping: fix error path for memory allocation failure
  ARM: dma-mapping: add more sanity checks in arm_dma_mmap()
  ARM: dma-mapping: remove custom consistent dma region
  mm: vmalloc: use const void * for caller argument
  scatterlist: add sg_alloc_table_from_pages function
2012-07-30 10:11:31 -07:00
Marek Szyprowski
e9da6e9905 ARM: dma-mapping: remove custom consistent dma region
This patch changes dma-mapping subsystem to use generic vmalloc areas
for all consistent dma allocations. This increases the total size limit
of the consistent allocations and removes platform hacks and a lot of
duplicated code.

Atomic allocations are served from special pool preallocated on boot,
because vmalloc areas cannot be reliably created in atomic context.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Kyungmin Park <kyungmin.park@samsung.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
2012-07-30 12:25:45 +02:00
Marek Szyprowski
5e6cafc83e mm: vmalloc: use const void * for caller argument
'const void *' is a safer type for caller function type. This patch
updates all references to caller function type.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Kyungmin Park <kyungmin.park@samsung.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
2012-07-30 12:25:44 +02:00
Cong Wang
a8e5202d09 vmalloc: remove KM_USER0 from comments
Signed-off-by: Cong Wang <amwang@redhat.com>
2012-07-24 15:27:33 +08:00
KyongHo
dbda591d92 mm: fix faulty initialization in vmalloc_init()
The transfer of ->flags causes some of the static mapping virtual
addresses to be prematurely freed (before the mapping is removed) because
VM_LAZY_FREE gets "set" if tmp->flags has VM_IOREMAP set.  This might
cause subsequent vmalloc/ioremap calls to fail because it might allocate
one of the freed virtual address ranges that aren't unmapped.

va->flags has different types of flags from tmp->flags.  If a region with
VM_IOREMAP set is registered with vm_area_add_early(), it will be removed
by __purge_vmap_area_lazy().

Fix vmalloc_init() to correctly initialize vmap_area for the given
vm_struct.

Also initialise va->vm.  If it is not set, find_vm_area() for the early
vm regions will always fail.

Signed-off-by: KyongHo Cho <pullip.cho@samsung.com>
Cc: "Olav Haugan" <ohaugan@codeaurora.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:24 -07:00
Thomas Meyer
4d67d86053 mm: use kcalloc() instead of kzalloc() to allocate array
The advantage of kcalloc is, that will prevent integer overflows which
could result from the multiplication of number of elements and size and
it is also a bit nicer to read.

The semantic patch that makes this change is available in
https://lkml.org/lkml/2011/11/25/107

Signed-off-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:19 -07:00
Cong Wang
9b04c5fec4 mm: remove the second argument of k[un]map_atomic()
Signed-off-by: Cong Wang <amwang@redhat.com>
2012-03-20 21:48:27 +08:00
Kautuk Consul
f1db7afd91 mm/vmalloc.c: eliminate extra loop in pcpu_get_vm_areas error path
If either of the vas or vms arrays are not properly kzalloced, then the
code jumps to the err_free label.

The err_free label runs a loop to check and free each of the array members
of the vas and vms arrays which is not required for this situation as none
of the array members have been allocated till this point.

Eliminate the extra loop we have to go through by introducing a new label
err_free2 and then jumping to it.

[akpm@linux-foundation.org: remove now-unneeded tests]
Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Minchan Kim
db1aecafef mm/vmalloc.c: change void* into explict vm_struct*
vmap_area->private is void* but we don't use the field for various purpose
but use only for vm_struct.  So change it to a vm_struct* with naming to
improve for readability and type checking.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:46 -08:00
Russell King
2e0e943436 Merge branch 'devel-stable' into for-linus
Conflicts:
	arch/arm/kernel/setup.c
	arch/arm/mach-shmobile/board-kota2.c
2012-01-05 13:24:33 +00:00
Kautuk Consul
0006526d78 mm/vmalloc.c: remove static declaration of va from __get_vm_area_node
Static storage is not required for the struct vmap_area in
__get_vm_area_node.

Removing "static" to store this variable on the stack instead.

Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-20 10:25:04 -08:00
Mel Gorman
1368edf064 mm: vmalloc: check for page allocation failure before vmlist insertion
Commit f5252e00 ("mm: avoid null pointer access in vm_struct via
/proc/vmallocinfo") adds newly allocated vm_structs to the vmlist after
it is fully initialised.  Unfortunately, it did not check that
__vmalloc_area_node() successfully populated the area.  In the event of
allocation failure, the vmalloc area is freed but the pointer to freed
memory is inserted into the vmlist leading to a a crash later in
get_vmalloc_info().

This patch adds a check for ____vmalloc_area_node() failure within
__vmalloc_node_range.  It does not use "goto fail" as in the previous
error path as a warning was already displayed by __vmalloc_area_node()
before it called vfree in its failure path.

Credit goes to Luciano Chavez for doing all the real work of identifying
exactly where the problem was.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Luciano Chavez <lnx1138@linux.vnet.ibm.com>
Tested-by: Luciano Chavez <lnx1138@linux.vnet.ibm.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>		[3.1.x+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-09 07:50:29 -08:00
Russell King
73829af71f Merge branch 'vmalloc' of git://git.linaro.org/people/nico/linux into devel-stable 2011-12-05 23:27:59 +00:00
Nicolas Pitre
be9b7335e7 mm: add vm_area_add_early()
The existing vm_area_register_early() allows for early vmalloc space
allocation.  However upcoming cleanups in the ARM architecture require
that some fixed locations in the vmalloc area be reserved also very early.

The name "vm_area_register_early" would have been a good name for the
reservation part without the allocation.  Since it is already in use with
different semantics, let's create vm_area_add_early() instead.

Both vm_area_register_early() and vm_area_add_early() can be used together
meaning that the former is now implemented using the later where it is
ensured that no conflicting areas are added, but no attempt is made to
make the allocation scheme in vm_area_register_early() more sophisticated.
After all, you must know what you're doing when using those functions.

Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
2011-11-18 13:51:22 -05:00
David Vrabel
cd12909cb5 xen: map foreign pages for shared rings by updating the PTEs directly
When mapping a foreign page with xenbus_map_ring_valloc() with the
GNTTABOP_map_grant_ref hypercall, set the GNTMAP_contains_pte flag and
pass a pointer to the PTE (in init_mm).

After the page is mapped, the usual fault mechanism can be used to
update additional MMs.  This allows the vmalloc_sync_all() to be
removed from alloc_vm_area().

Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
[v1: Squashed fix by Michal for no-mmu case]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Michal Simek <monstr@monstr.eu>
2011-11-16 12:13:08 -05:00
Joe Perches
de7d2b567d mm/vmalloc.c: report more vmalloc failures
Some vmalloc failure paths do not report OOM conditions.

Add warn_alloc_failed, which also does a dump_stack, to those failure
paths.

This allows more site specific vmalloc failure logging message printks to
be removed.

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:48 -07:00
Joe Perches
3ee9a4f086 mm: neaten warn_alloc_failed
Add __attribute__((format (printf...) to the function to validate format
and arguments.  Use vsprintf extension %pV to avoid any possible message
interleaving.  Coalesce format string.  Convert printks/pr_warning to
pr_warn.

[akpm@linux-foundation.org: use the __printf() macro]
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:48 -07:00
Mitsuo Hayasaka
f5252e009d mm: avoid null pointer access in vm_struct via /proc/vmallocinfo
The /proc/vmallocinfo shows information about vmalloc allocations in
vmlist that is a linklist of vm_struct.  It, however, may access pages
field of vm_struct where a page was not allocated.  This results in a null
pointer access and leads to a kernel panic.

Why this happens: In __vmalloc_node_range() called from vmalloc(), newly
allocated vm_struct is added to vmlist at __get_vm_area_node() and then,
some fields of vm_struct such as nr_pages and pages are set at
__vmalloc_area_node().  In other words, it is added to vmlist before it is
fully initialized.  At the same time, when the /proc/vmallocinfo is read,
it accesses the pages field of vm_struct according to the nr_pages field
at show_numa_info().  Thus, a null pointer access happens.

The patch adds the newly allocated vm_struct to the vmlist *after* it is
fully initialized.  So, it can avoid accessing the pages field with
unallocated page when show_numa_info() is called.

Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:47 -07:00
David Vrabel
461ae488ec mm: sync vmalloc address space page tables in alloc_vm_area()
Xen backend drivers (e.g., blkback and netback) would sometimes fail to
map grant pages into the vmalloc address space allocated with
alloc_vm_area().  The GNTTABOP_map_grant_ref would fail because Xen could
not find the page (in the L2 table) containing the PTEs it needed to
update.

(XEN) mm.c:3846:d0 Could not find L1 PTE for address fbb42000

netback and blkback were making the hypercall from a kernel thread where
task->active_mm != &init_mm and alloc_vm_area() was only updating the page
tables for init_mm.  The usual method of deferring the update to the page
tables of other processes (i.e., after taking a fault) doesn't work as a
fault cannot occur during the hypercall.

This would work on some systems depending on what else was using vmalloc.

Fix this by reverting ef691947d8 ("vmalloc: remove vmalloc_sync_all()
from alloc_vm_area()") and add a comment to explain why it's needed.

Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Ian Campbell <Ian.Campbell@citrix.com>
Cc: Keir Fraser <keir.xen@gmail.com>
Cc: <stable@kernel.org>		[3.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-14 18:09:38 -07:00
Clemens Ladisch
f982f91516 mm: fix wrong vmap address calculations with odd NR_CPUS values
Commit db64fe0225 ("mm: rewrite vmap layer") introduced code that does
address calculations under the assumption that VMAP_BLOCK_SIZE is a
power of two.  However, this might not be true if CONFIG_NR_CPUS is not
set to a power of two.

Wrong vmap_block index/offset values could lead to memory corruption.
However, this has never been observed in practice (or never been
diagnosed correctly); what caught this was the BUG_ON in vb_alloc() that
checks for inconsistent vmap_block indices.

To fix this, ensure that VMAP_BLOCK_SIZE always is a power of two.

BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=31572
Reported-by: Pavel Kysilka <goldenfish@linuxsoft.cz>
Reported-by: Matias A. Fonzo <selk@dragora.org>
Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Krzysztof Helt <krzysztof.h1@poczta.fm>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: 2.6.28+ <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-14 12:32:52 -07:00
Arun Sharma
60063497a9 atomic: use <linux/atomic.h>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>

Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 16:49:47 -07:00
Lai Jiangshan
22a3c7d188 vmalloc,rcu: Convert call_rcu(rcu_free_vb) to kfree_rcu()
The rcu callback rcu_free_vb() just calls a kfree(),
so we use kfree_rcu() instead of the call_rcu(rcu_free_vb).

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-07-20 14:10:18 -07:00
Lai Jiangshan
14769de93f vmalloc,rcu: Convert call_rcu(rcu_free_va) to kfree_rcu()
The rcu callback rcu_free_va() just calls a kfree(),
so we use kfree_rcu() instead of the call_rcu(rcu_free_va).

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-07-20 14:10:17 -07:00
Linus Torvalds
dc7acbb251 Merge branch 'upstream/tidy-xen-mmu-2.6.39' of git://git.kernel.org/pub/scm/linux/kernel/git/jeremy/xen
* 'upstream/tidy-xen-mmu-2.6.39' of git://git.kernel.org/pub/scm/linux/kernel/git/jeremy/xen:
  xen: fix compile without CONFIG_XEN_DEBUG_FS
  Use arbitrary_virt_to_machine() to deal with ioremapped pud updates.
  Use arbitrary_virt_to_machine() to deal with ioremapped pmd updates.
  xen/mmu: remove all ad-hoc stats stuff
  xen: use normal virt_to_machine for ptes
  xen: make a pile of mmu pvop functions static
  vmalloc: remove vmalloc_sync_all() from alloc_vm_area()
  xen: condense everything onto xen_set_pte
  xen: use mmu_update for xen_set_pte_at()
  xen: drop all the special iomap pte paths.
2011-05-26 19:01:15 -07:00
Dave Hansen
22943ab116 mm: print vmalloc() state after allocation failures
I was tracking down a page allocation failure that ended up in vmalloc().
Since vmalloc() uses 0-order pages, if somebody asks for an insane amount
of memory, we'll still get a warning with "order:0" in it.  That's not
very useful.

During recovery, vmalloc() also nicely frees all of the memory that it got
up to the point of the failure.  That is wonderful, but it also quickly
hides any issues.  We have a much different sitation if vmalloc()
repeatedly fails 10GB in to:

	vmalloc(100 * 1<<30);

versus repeatedly failing 4096 bytes in to a:

	vmalloc(8192);

This patch will print out messages that look like this:

[   68.123503] vmalloc: allocation failure, allocated 6680576 of 13426688 bytes
[   68.124218] bash: page allocation failure: order:0, mode:0xd2
[   68.124811] Pid: 3770, comm: bash Not tainted 2.6.39-rc3-00082-g85f2e68-dirty #333
[   68.125579] Call Trace:
[   68.125853]  [<ffffffff810f6da6>] warn_alloc_failed+0x146/0x170
[   68.126464]  [<ffffffff8107e05c>] ? printk+0x6c/0x70
[   68.126791]  [<ffffffff8112b5d4>] ? alloc_pages_current+0x94/0xe0
[   68.127661]  [<ffffffff8111ed37>] __vmalloc_node_range+0x237/0x290
...

The 'order' variable is added for clarity when calling warn_alloc_failed()
to avoid having an unexplained '0' as an argument.

The 'tmp_mask' is because adding an open-coded '| __GFP_NOWARN' would take
us over 80 columns for the alloc_pages_node() call.  If we are going to
add a line, it might as well be one that makes the sucker easier to read.

As a side issue, I also noticed that ctl_ioctl() does vmalloc() based
solely on an unverified value passed in from userspace.  Granted, it's
under CAP_SYS_ADMIN, but it still frightens me a bit.

Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:22 -07:00
Johannes Weiner
248ac0e194 mm/vmalloc: remove guard page from between vmap blocks
The vmap allocator is used to, among other things, allocate per-cpu vmap
blocks, where each vmap block is naturally aligned to its own size.
Obviously, leaving a guard page after each vmap area forbids packing vmap
blocks efficiently and can make the kernel run out of possible vmap blocks
long before overall vmap space is exhausted.

The new interface to map a user-supplied page array into linear vmalloc
space (vm_map_ram) insists on allocating from a vmap block (instead of
falling back to a custom area) when the area size is below a certain
threshold.  With heavy users of this interface (e.g.  XFS) and limited
vmalloc space on 32-bit, vmap block exhaustion is a real problem.

Remove the guard page from the core vmap allocator.  vmalloc and the old
vmap interface enforce a guard page on their own at a higher level.

Note that without this patch, we had accidental guard pages after those
vm_map_ram areas that happened to be at the end of a vmap block, but not
between every area.  This patch removes this accidental guard page only.

If we want guard pages after every vm_map_ram area, this should be done
separately.  And just like with vmalloc and the old interface on a
different level, not in the core allocator.

Mel pointed out: "If necessary, the guard page could be reintroduced as a
debugging-only option (CONFIG_DEBUG_PAGEALLOC?).  Otherwise it seems
reasonable."

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Dave Chinner <david@fromorbit.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:11 -07:00
Jeremy Fitzhardinge
ef691947d8 vmalloc: remove vmalloc_sync_all() from alloc_vm_area()
There's no need for it: it will get faulted into the current pagetable
as needed.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2011-05-20 14:14:32 -07:00
Namhyung Kim
a42931bf9c vmalloc: remove confusing comment on vwrite()
KM_USER1 is never used for vwrite() path so the caller doesn't need to
guarantee it is not used.  Only the caller should guarantee is KM_USER0
and it is commented already.

Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 17:44:09 -07:00