This commit changes lockdep splats to begin lines with "WARNING" and
to use pr_warn() instead of printk(). This change eases scripted
analysis of kernel console output.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
CONFIG_PROVE_LOCKING_SMALL shrinks the memory usage of lockdep so the
kernel text, data, and bss fit in the required 32MB limit, but this
option is not set for every config that enables lockdep.
A 4.10 kernel fails to boot with the console output
Kernel: Using 8 locked TLB entries for main kernel image.
hypervisor_tlb_lock[2000000:0:8000000071c007c3:1]: errors with f
Program terminated
with these config options
CONFIG_LOCKDEP=y
CONFIG_LOCK_STAT=y
CONFIG_PROVE_LOCKING=n
To fix, rename CONFIG_PROVE_LOCKING_SMALL to CONFIG_LOCKDEP_SMALL, and
enable this option with CONFIG_LOCKDEP=y so we get the reduced memory
usage every time lockdep is turned on.
Tested that CONFIG_LOCKDEP_SMALL is set to 'y' if and only if
CONFIG_LOCKDEP is set to 'y'. When other lockdep-related config options
that select CONFIG_LOCKDEP are enabled (e.g. CONFIG_LOCK_STAT or
CONFIG_PROVE_LOCKING), verified that CONFIG_LOCKDEP_SMALL is also
enabled.
Fixes: e6b5f1be7a ("config: Adding the new config parameter CONFIG_PROVE_LOCKING_SMALL for sparc")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Babu Moger <babu.moger@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
mark_wakeup_next_waiter() already disables preemption, doing so again
leaves us with an unpaired preempt_disable().
Fixes: 2a1c602994 ("rtmutex: Deboost before waking up the top waiter")
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/1491379707.6538.2.camel@gmx.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There was a pure ->prio comparison left in try_to_wake_rt_mutex(),
convert it to use rt_mutex_waiter_less(), noting that greater-or-equal
is not-less (both in kernel priority view).
This necessitated the introduction of cmp_task() which creates a
pointer to an unnamed stack variable of struct rt_mutex_waiter type to
compare against tasks.
With this, we can now also create and employ rt_mutex_waiter_equal().
Reviewed-and-tested-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.455584638@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
rt_mutex_waiter::prio is a copy of task_struct::prio which is updated
during the PI chain walk, such that the PI chain order isn't messed up
by (asynchronous) task state updates.
Currently rt_mutex_waiter_less() uses task state for deadline tasks;
this is broken, since the task state can, as said above, change
asynchronously, causing the RB tree order to change without actual
tree update -> FAIL.
Fix this by also copying the deadline into the rt_mutex_waiter state
and updating it along with its prio field.
Ideally we would also force PI chain updates whenever DL tasks update
their deadline parameter, but for first approximation this is less
broken than it was.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.403992539@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
With the introduction of SCHED_DEADLINE the whole notion that priority
is a single number is gone, therefore the @prio argument to
rt_mutex_setprio() doesn't make sense anymore.
So rework the code to pass a pi_task instead.
Note this also fixes a problem with pi_top_task caching; previously we
would not set the pointer (call rt_mutex_update_top_task) if the
priority didn't change, this could lead to a stale pointer.
As for the XXX, I think its fine to use pi_task->prio, because if it
differs from waiter->prio, a PI chain update is immenent.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.303827095@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently dl tasks will actually return at the very beginning
of rt_mutex_adjust_prio_chain() in !detect_deadlock cases:
if (waiter->prio == task->prio) {
if (!detect_deadlock)
goto out_unlock_pi; // out here
else
requeue = false;
}
As the deadline value of blocked deadline tasks(waiters) without
changing their sched_class(thus prio doesn't change) never changes,
this seems reasonable, but it actually misses the chance of updating
rt_mutex_waiter's "dl_runtime(period)_copy" if a waiter updates its
deadline parameters(dl_runtime, dl_period) or boosted waiter changes
to !deadline class.
Thus, force deadline task not out by adding the !dl_prio() condition.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/1460633827-345-7-git-send-email-xlpang@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.206577901@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A crash happened while I was playing with deadline PI rtmutex.
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: [<ffffffff810eeb8f>] rt_mutex_get_top_task+0x1f/0x30
PGD 232a75067 PUD 230947067 PMD 0
Oops: 0000 [#1] SMP
CPU: 1 PID: 10994 Comm: a.out Not tainted
Call Trace:
[<ffffffff810b658c>] enqueue_task+0x2c/0x80
[<ffffffff810ba763>] activate_task+0x23/0x30
[<ffffffff810d0ab5>] pull_dl_task+0x1d5/0x260
[<ffffffff810d0be6>] pre_schedule_dl+0x16/0x20
[<ffffffff8164e783>] __schedule+0xd3/0x900
[<ffffffff8164efd9>] schedule+0x29/0x70
[<ffffffff8165035b>] __rt_mutex_slowlock+0x4b/0xc0
[<ffffffff81650501>] rt_mutex_slowlock+0xd1/0x190
[<ffffffff810eeb33>] rt_mutex_timed_lock+0x53/0x60
[<ffffffff810ecbfc>] futex_lock_pi.isra.18+0x28c/0x390
[<ffffffff810ed8b0>] do_futex+0x190/0x5b0
[<ffffffff810edd50>] SyS_futex+0x80/0x180
This is because rt_mutex_enqueue_pi() and rt_mutex_dequeue_pi()
are only protected by pi_lock when operating pi waiters, while
rt_mutex_get_top_task(), will access them with rq lock held but
not holding pi_lock.
In order to tackle it, we introduce new "pi_top_task" pointer
cached in task_struct, and add new rt_mutex_update_top_task()
to update its value, it can be called by rt_mutex_setprio()
which held both owner's pi_lock and rq lock. Thus "pi_top_task"
can be safely accessed by enqueue_task_dl() under rq lock.
Originally-From: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.157682758@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We should deboost before waking the high-priority task, such that we
don't run two tasks with the same "state" (priority, deadline,
sched_class, etc).
In order to make sure the boosting task doesn't start running between
unlock and deboost (due to 'spurious' wakeup), we move the deboost
under the wait_lock, that way its serialized against the wait loop in
__rt_mutex_slowlock().
Doing the deboost early can however lead to priority-inversion if
current would get preempted after the deboost but before waking our
high-prio task, hence we disable preemption before doing deboost, and
enabling it after the wake up is over.
This gets us the right semantic order, but most importantly however;
this change ensures pointer stability for the next patch, where we
have rt_mutex_setprio() cache a pointer to the top-most waiter task.
If we, as before this change, do the wakeup first and then deboost,
this pointer might point into thin air.
[peterz: Changelog + patch munging]
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.110065320@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use a timeout rather than a fixed number of loops to avoid running for
very long periods, such as under the kbuilder VMs.
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170310105733.6444-1-chris@chris-wilson.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When PREEMPT_RT_FULL does the spinlock -> rt_mutex substitution the PI
chain code will (falsely) report a deadlock and BUG.
The problem is that it hold hb->lock (now an rt_mutex) while doing
task_blocks_on_rt_mutex on the futex's pi_state::rtmutex. This, when
interleaved just right with futex_unlock_pi() leads it to believe to see an
AB-BA deadlock.
Task1 (holds rt_mutex, Task2 (does FUTEX_LOCK_PI)
does FUTEX_UNLOCK_PI)
lock hb->lock
lock rt_mutex (as per start_proxy)
lock hb->lock
Which is a trivial AB-BA.
It is not an actual deadlock, because it won't be holding hb->lock by the
time it actually blocks on the rt_mutex, but the chainwalk code doesn't
know that and it would be a nightmare to handle this gracefully.
To avoid this problem, do the same as in futex_unlock_pi() and drop
hb->lock after acquiring wait_lock. This still fully serializes against
futex_unlock_pi(), since adding to the wait_list does the very same lock
dance, and removing it holds both locks.
Aside of solving the RT problem this makes the lock and unlock mechanism
symetric and reduces the hb->lock held time.
Reported-and-tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104152.161341537@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
By changing futex_lock_pi() to use rt_mutex_*_proxy_lock() all wait_list
modifications are done under both hb->lock and wait_lock.
This closes the obvious interleave pattern between futex_lock_pi() and
futex_unlock_pi(), but not entirely so. See below:
Before:
futex_lock_pi() futex_unlock_pi()
unlock hb->lock
lock hb->lock
unlock hb->lock
lock rt_mutex->wait_lock
unlock rt_mutex_wait_lock
-EAGAIN
lock rt_mutex->wait_lock
list_add
unlock rt_mutex->wait_lock
schedule()
lock rt_mutex->wait_lock
list_del
unlock rt_mutex->wait_lock
<idem>
-EAGAIN
lock hb->lock
After:
futex_lock_pi() futex_unlock_pi()
lock hb->lock
lock rt_mutex->wait_lock
list_add
unlock rt_mutex->wait_lock
unlock hb->lock
schedule()
lock hb->lock
unlock hb->lock
lock hb->lock
lock rt_mutex->wait_lock
list_del
unlock rt_mutex->wait_lock
lock rt_mutex->wait_lock
unlock rt_mutex_wait_lock
-EAGAIN
unlock hb->lock
It does however solve the earlier starvation/live-lock scenario which got
introduced with the -EAGAIN since unlike the before scenario; where the
-EAGAIN happens while futex_unlock_pi() doesn't hold any locks; in the
after scenario it happens while futex_unlock_pi() actually holds a lock,
and then it is serialized on that lock.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104152.062785528@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
With the ultimate goal of keeping rt_mutex wait_list and futex_q waiters
consistent it's necessary to split 'rt_mutex_futex_lock()' into finer
parts, such that only the actual blocking can be done without hb->lock
held.
Split split_mutex_finish_proxy_lock() into two parts, one that does the
blocking and one that does remove_waiter() when the lock acquire failed.
When the rtmutex was acquired successfully the waiter can be removed in the
acquisiton path safely, since there is no concurrency on the lock owner.
This means that, except for futex_lock_pi(), all wait_list modifications
are done with both hb->lock and wait_lock held.
[bigeasy@linutronix.de: fix for futex_requeue_pi_signal_restart]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104152.001659630@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Part of what makes futex_unlock_pi() intricate is that
rt_mutex_futex_unlock() -> rt_mutex_slowunlock() can drop
rt_mutex::wait_lock.
This means it cannot rely on the atomicy of wait_lock, which would be
preferred in order to not rely on hb->lock so much.
The reason rt_mutex_slowunlock() needs to drop wait_lock is because it can
race with the rt_mutex fastpath, however futexes have their own fast path.
Since futexes already have a bunch of separate rt_mutex accessors, complete
that set and implement a rt_mutex variant without fastpath for them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104151.702962446@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJYzznuAAoJEHm+PkMAQRiGAzMIAJDBo5otTMMLhg8eKj8Cnab4
2NyaoWDN6mtU427rzEKEfZlTtp3gIBVdFex5x442weIdw6BgRQW0dvF/uwEn08yI
9Wx7VJmIUyH9M8VmhDtkUTFrhwUGr29qb3JhENMd7tv/CiJaehGRHCT3xqo5BDdu
xiyPcwSkwP/NH24TS91G87gV6r0I0oKLSAxu+KifEFESrb8gaZaduslzpEj3m/Ds
o9EPpfzaiGAdW5EdNfPtviYbBk7ZOXwtxdMV+zlvsLcaqtYnFEsJZd2WyZL0zGML
VXBVxaYtlyTeA7Mt8YYUL+rDHELSOtCeN5zLfxUvYt+Yc0Y6LFBLDOE5h8b3eCw=
=uKUo
-----END PGP SIGNATURE-----
BackMerge tag 'v4.11-rc3' into drm-next
Linux 4.11-rc3 as requested by Daniel
Currently each thread starts an acquire context only once, and
performs all its loop iterations under it.
This means that the Wound/Wait relations between threads are fixed.
To make things a little more realistic and cover more of the
functionality with the test, open a new acquire context for each loop.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a PER_CPU struct which contains a spin_lock is statically initialized
via:
DEFINE_PER_CPU(struct foo, bla) = {
.lock = __SPIN_LOCK_UNLOCKED(bla.lock)
};
then lockdep assigns a seperate key to each lock because the logic for
assigning a key to statically initialized locks is to use the address as
the key. With per CPU locks the address is obvioulsy different on each CPU.
That's wrong, because all locks should have the same key.
To solve this the following modifications are required:
1) Extend the is_kernel/module_percpu_addr() functions to hand back the
canonical address of the per CPU address, i.e. the per CPU address
minus the per CPU offset.
2) Check the lock address with these functions and if the per CPU check
matches use the returned canonical address as the lock key, so all per
CPU locks have the same key.
3) Move the static_obj(key) check into look_up_lock_class() so this check
can be avoided for statically initialized per CPU locks. That's
required because the canonical address fails the static_obj(key) check
for obvious reasons.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Merged Dan's fixups for !MODULES and !SMP into this patch. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dan Murphy <dmurphy@ti.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20170227143736.pectaimkjkan5kow@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
f8319483f5 ("locking/lockdep: Provide a type check for lock_is_held")
didn't fully cover rwsems as downgrade_write() was left out.
Introduce lock_downgrade() and use it to add new checks.
See-also: http://marc.info/?l=linux-kernel&m=148581164003149&w=2
Originally-written-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: J. R. Okajima <hooanon05g@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1486053497-9948-3-git-send-email-hooanon05g@gmail.com
[ Rewrote the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Behaviour should not change.
Signed-off-by: J. R. Okajima <hooanon05g@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1486053497-9948-2-git-send-email-hooanon05g@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A simple consolidataion to factor out repeated patterns.
The behaviour should not change.
Signed-off-by: J. R. Okajima <hooanon05g@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1486053497-9948-1-git-send-email-hooanon05g@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We hang if SIGKILL has been sent, but the task is stuck in down_read()
(after do_exit()), even though no task is doing down_write() on the
rwsem in question:
INFO: task libupnp:21868 blocked for more than 120 seconds.
libupnp D 0 21868 1 0x08100008
...
Call Trace:
__schedule()
schedule()
__down_read()
do_exit()
do_group_exit()
__wake_up_parent()
This bug has already been fixed for CONFIG_RWSEM_XCHGADD_ALGORITHM=y in
the following commit:
04cafed7fc ("locking/rwsem: Fix down_write_killable()")
... however, this bug also exists for CONFIG_RWSEM_GENERIC_SPINLOCK=y.
Signed-off-by: Niklas Cassel <niklas.cassel@axis.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Niklas Cassel <niklass@axis.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: d47996082f ("locking/rwsem: Introduce basis for down_write_killable()")
Link: http://lkml.kernel.org/r/1487981873-12649-1-git-send-email-niklass@axis.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The trouble we have is that we can't really test all the shrinker
recursion stuff exhaustively in BAT because any kind of thrashing
stress test just takes too long.
But that leaves a really big gap open, since shrinker recursions are
one of the most annoying bugs. Now lockdep already has support for
checking allocation deadlocks:
- Direct reclaim paths are marked up with
lockdep_set_current_reclaim_state() and
lockdep_clear_current_reclaim_state().
- Any allocation paths are marked with lockdep_trace_alloc().
If we simply mark up our debugfs with the reclaim annotations, any
code and locks taken in there will automatically complete the picture
with any allocation paths we already have, as long as we have a simple
testcase in BAT which throws out a few objects using this interface.
Not stress test or thrashing needed at all.
v2: Need to EXPORT_SYMBOL_GPL to make it compile as a module.
v3: Fixup rebase fail (spotted by Chris).
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://patchwork.freedesktop.org/patch/msgid/20170312205340.16202-1-daniel.vetter@ffwll.ch
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Pull locking fixes from Ingo Molnar:
- Change the new refcount_t warnings from WARN() to WARN_ONCE()
- two ww_mutex fixes
- plus a new lockdep self-consistency check for a bug that triggered in
practice
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/ww_mutex: Adjust the lock number for stress test
locking/lockdep: Add nest_lock integrity test
locking/ww_mutex: Replace cpu_relax() with cond_resched() for tests
locking/refcounts: Change WARN() to WARN_ONCE()
Because there are only 12 bits in held_lock::references, so we only
support 4095 nested lock held in the same time, adjust the lock number
for ww_mutex stress test to kill one lockdep splat:
[ ] [ BUG: bad unlock balance detected! ]
[ ] kworker/u2:0/5 is trying to release lock (ww_class_mutex) at:
[ ] ww_mutex_unlock()
[ ] but there are no more locks to release!
...
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicolai Hähnle <Nicolai.Haehnle@amd.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170301150138.hdixnmafzfsox7nn@tardis.cn.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Boqun reported that hlock->references can overflow. Add a debug test
for that to generate a clear error when this happens.
Without this, lockdep is likely to report a mysterious failure on
unlock.
Reported-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicolai Hähnle <Nicolai.Haehnle@amd.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When busy-spinning on a ww_mutex_trylock(), we depend upon the other
thread advancing and releasing the lock. This can not happen on a single
CPU unless we relinquish it:
[ ] NMI watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [kworker/0:1:18]
...
[ ] Call Trace:
[ ] mutex_trylock()
[ ] test_mutex_work+0x31/0x56
[ ] process_one_work+0x1b4/0x2f9
[ ] worker_thread+0x1b0/0x27c
[ ] kthread+0xd1/0xd3
[ ] ret_from_fork+0x19/0x30
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: f2a5fec173 ("locking/ww_mutex: Begin kselftests for ww_mutex")
Link: http://lkml.kernel.org/r/20170228094011.2595-1-chris@chris-wilson.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/debug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up missing #includes in other places that rely on sched.h doing that for them.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to move scheduler ABI details to <uapi/linux/sched/types.h>,
which will be used from a number of .c files.
Create empty placeholder header that maps to <linux/types.h>.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which
will have to be picked up from other headers and .c files.
Create a trivial placeholder <linux/sched/clock.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/wake_q.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/wake_q.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- Implement wraparound-safe refcount_t and kref_t types based on
generic atomic primitives (Peter Zijlstra)
- Improve and fix the ww_mutex code (Nicolai Hähnle)
- Add self-tests to the ww_mutex code (Chris Wilson)
- Optimize percpu-rwsems with the 'rcuwait' mechanism (Davidlohr
Bueso)
- Micro-optimize the current-task logic all around the core kernel
(Davidlohr Bueso)
- Tidy up after recent optimizations: remove stale code and APIs,
clean up the code (Waiman Long)
- ... plus misc fixes, updates and cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
fork: Fix task_struct alignment
locking/spinlock/debug: Remove spinlock lockup detection code
lockdep: Fix incorrect condition to print bug msgs for MAX_LOCKDEP_CHAIN_HLOCKS
lkdtm: Convert to refcount_t testing
kref: Implement 'struct kref' using refcount_t
refcount_t: Introduce a special purpose refcount type
sched/wake_q: Clarify queue reinit comment
sched/wait, rcuwait: Fix typo in comment
locking/mutex: Fix lockdep_assert_held() fail
locking/rtmutex: Flip unlikely() branch to likely() in __rt_mutex_slowlock()
locking/rwsem: Reinit wake_q after use
locking/rwsem: Remove unnecessary atomic_long_t casts
jump_labels: Move header guard #endif down where it belongs
locking/atomic, kref: Implement kref_put_lock()
locking/ww_mutex: Turn off __must_check for now
locking/atomic, kref: Avoid more abuse
locking/atomic, kref: Use kref_get_unless_zero() more
locking/atomic, kref: Kill kref_sub()
locking/atomic, kref: Add kref_read()
locking/atomic, kref: Add KREF_INIT()
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this (fairly busy) cycle were:
- There was a class of scheduler bugs related to forgetting to update
the rq-clock timestamp which can cause weird and hard to debug
problems, so there's a new debug facility for this: which uncovered
a whole lot of bugs which convinced us that we want to keep the
debug facility.
(Peter Zijlstra, Matt Fleming)
- Various cputime related updates: eliminate cputime and use u64
nanoseconds directly, simplify and improve the arch interfaces,
implement delayed accounting more widely, etc. - (Frederic
Weisbecker)
- Move code around for better structure plus cleanups (Ingo Molnar)
- Move IO schedule accounting deeper into the scheduler plus related
changes to improve the situation (Tejun Heo)
- ... plus a round of sched/rt and sched/deadline fixes, plus other
fixes, updats and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits)
sched/core: Remove unlikely() annotation from sched_move_task()
sched/autogroup: Rename auto_group.[ch] to autogroup.[ch]
sched/topology: Split out scheduler topology code from core.c into topology.c
sched/core: Remove unnecessary #include headers
sched/rq_clock: Consolidate the ordering of the rq_clock methods
delayacct: Include <uapi/linux/taskstats.h>
sched/core: Clean up comments
sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds
sched/clock: Add dummy clear_sched_clock_stable() stub function
sched/cputime: Remove generic asm headers
sched/cputime: Remove unused nsec_to_cputime()
s390, sched/cputime: Remove unused cputime definitions
powerpc, sched/cputime: Remove unused cputime definitions
s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs
ia64, sched/cputime: Remove unused cputime definitions
ia64: Convert vtime to use nsec units directly
ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it
sched/cputime: Remove jiffies based cputime
sched/cputime, vtime: Return nsecs instead of cputime_t to account
sched/cputime: Complete nsec conversion of tick based accounting
...
The current spinlock lockup detection code can sometimes produce false
positives because of the unfairness of the locking algorithm itself.
So the lockup detection code is now removed. Instead, we are relying
on the NMI watchdog to detect potential lockup. We won't have lockup
detection if the watchdog isn't running.
The commented-out read-write lock lockup detection code are also
removed.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1486583208-11038-1-git-send-email-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Bug messages and stack dump for MAX_LOCKDEP_CHAIN_HLOCKS should only
be printed once.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1484275324-28192-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In commit:
659cf9f582 ("locking/ww_mutex: Optimize ww-mutexes by waking at most one waiter for backoff when acquiring the lock")
I replaced a comment with a lockdep_assert_held(). However it turns out
we hide that lock from lockdep for hysterical raisins, which results
in the assertion always firing.
Remove the old debug code as lockdep will easily spot the abuse it was
meant to catch, which will make the lock visible to lockdep and make
the assertion work as intended.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicolai Haehnle <Nicolai.Haehnle@amd.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 659cf9f582 ("locking/ww_mutex: Optimize ww-mutexes by waking at most one waiter for backoff when acquiring the lock")
Link: http://lkml.kernel.org/r/20170117150609.GB32474@worktop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Running my likely/unlikely profiler for 3 weeks on two production
machines, I discovered that the unlikely() test in
__rt_mutex_slowlock() checking if state is TASK_INTERRUPTIBLE is hit
100% of the time, making it a very likely case.
The reason is, on a vanilla kernel, the majority case of calling
rt_mutex() is from the futex code. This code is always called as
TASK_INTERRUPTIBLE. In the -rt patch, this code is commonly called when
PREEMPT_RT is enabled with TASK_UNINTERRUPTIBLE. But that's not the
likely scenario.
The rt_mutex() code should be optimized for the common vanilla case,
and that is from a futex, with TASK_INTERRUPTIBLE as the state.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170119113234.1efeedd1@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit switches RCU suspicious-access splats use pr_err()
instead of the current INFO printk()s. This change makes it easier
to automatically classify splats.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In __rwsem_down_write_failed_common(), the same wake_q variable name
is defined twice, with the inner wake_q hiding the one in outer scope.
We can either use different names for the two wake_q's.
Even better, we can use the same wake_q twice, if necessary.
To enable the latter change, we need to define a new helper function
wake_q_init() to enable reinitalization of wake_q after use.
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1485052415-9611-1-git-send-email-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Check that ww_mutexes can detect cyclic deadlocks (generalised ABBA
cycles) and resolve them by lock reordering.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Nicolai Hähnle <nhaehnle@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161201114711.28697-7-chris@chris-wilson.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Although ww_mutexes degenerate into mutexes, it would be useful to
torture the deadlock handling between multiple ww_mutexes in addition to
torturing the regular mutexes.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Nicolai Hähnle <nhaehnle@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161201114711.28697-3-chris@chris-wilson.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We sometimes end up propagating IO blocking through mutexes; however,
because there currently is no way of annotating mutex sleeps as
iowait, there are cases where iowait and /proc/stat:procs_blocked
report misleading numbers obscuring the actual state of the system.
This patch adds mutex_lock_io() so that mutex sleeps can be marked as
iowait in those cases.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adilger.kernel@dilger.ca
Cc: jack@suse.com
Cc: kernel-team@fb.com
Cc: mingbo@fb.com
Cc: tytso@mit.edu
Link: http://lkml.kernel.org/r/1477673892-28940-4-git-send-email-tj@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Help catch cases where mutex_lock is used directly on w/w mutexes, which
otherwise result in the w/w tasks reading uninitialized data.
Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dri-devel@lists.freedesktop.org
Link: http://lkml.kernel.org/r/1482346000-9927-12-git-send-email-nhaehnle@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lock stealing is less beneficial for w/w mutexes since we may just end up
backing off if we stole from a thread with an earlier acquire stamp that
already holds another w/w mutex that we also need. So don't spin
optimistically unless we are sure that there is no other waiter that might
cause us to back off.
Median timings taken of a contention-heavy GPU workload:
Before:
real 0m52.946s
user 0m7.272s
sys 1m55.964s
After:
real 0m53.086s
user 0m7.360s
sys 1m46.204s
This particular workload still spends 20%-25% of CPU in mutex_spin_on_owner
according to perf, but my attempts to further reduce this spinning based on
various heuristics all lead to an increase in measured wall time despite
the decrease in sys time.
Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dri-devel@lists.freedesktop.org
Link: http://lkml.kernel.org/r/1482346000-9927-11-git-send-email-nhaehnle@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the following scenario, thread #1 should back off its attempt to lock
ww1 and unlock ww2 (assuming the acquire context stamps are ordered
accordingly).
Thread #0 Thread #1
--------- ---------
successfully lock ww2
set ww1->base.owner
attempt to lock ww1
confirm ww1->ctx == NULL
enter mutex_spin_on_owner
set ww1->ctx
What was likely to happen previously is:
attempt to lock ww2
refuse to spin because
ww2->ctx != NULL
schedule()
detect thread #0 is off CPU
stop optimistic spin
return -EDEADLK
unlock ww2
wakeup thread #0
lock ww2
Now, we are more likely to see:
detect ww1->ctx != NULL
stop optimistic spin
return -EDEADLK
unlock ww2
successfully lock ww2
... because thread #1 will stop its optimistic spin as soon as possible.
The whole scenario is quite unlikely, since it requires thread #1 to get
between thread #0 setting the owner and setting the ctx. But since we're
idling here anyway, the additional check is basically free.
Found by inspection.
Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dri-devel@lists.freedesktop.org
Link: http://lkml.kernel.org/r/1482346000-9927-10-git-send-email-nhaehnle@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of inlining __mutex_lock_common() 5 times, once for each
{state,ww} variant. Reduce this to two, ww and !ww.
Then add __always_inline to mutex_optimistic_spin(), so that that will
get inlined all 4 remaining times, for all {waiter,ww} variants.
text data bss dec hex filename
6301 0 0 6301 189d defconfig-build/kernel/locking/mutex.o
4053 0 0 4053 fd5 defconfig-build/kernel/locking/mutex.o
4257 0 0 4257 10a1 defconfig-build/kernel/locking/mutex.o
This reduces total text size and better separates the ww and !ww mutex
code generation.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The wait list is sorted by stamp order, and the only waiting task that may
have to back off is the first waiter with a context.
The regular slow path does not have to wake any other tasks at all, since
all other waiters that would have to back off were either woken up when
the waiter was added to the list, or detected the condition before they
added themselves.
Median timings taken of a contention-heavy GPU workload:
Without this series:
real 0m59.900s
user 0m7.516s
sys 2m16.076s
With changes up to and including this patch:
real 0m52.946s
user 0m7.272s
sys 1m55.964s
Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dri-devel@lists.freedesktop.org
Link: http://lkml.kernel.org/r/1482346000-9927-9-git-send-email-nhaehnle@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While adding our task as a waiter, detect if another task should back off
because of us.
With this patch, we establish the invariant that the wait list contains
at most one (sleeping) waiter with ww_ctx->acquired > 0, and this waiter
will be the first waiter with a context.
Since only waiters with ww_ctx->acquired > 0 have to back off, this allows
us to be much more economical with wakeups.
Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dri-devel@lists.freedesktop.org
Link: http://lkml.kernel.org/r/1482346000-9927-8-git-send-email-nhaehnle@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add regular waiters in stamp order. Keep adding waiters that have no
context in FIFO order and take care not to starve them.
While adding our task as a waiter, back off if we detect that there is
a waiter with a lower stamp in front of us.
Make sure to call lock_contended even when we back off early.
For w/w mutexes, being first in the wait list is only stable when
taking the lock without a context. Therefore, the purpose of the first
flag is split into two: 'first' remains to indicate whether we want to
spin optimistically, while 'handoff' indicates that we should be
prepared to accept a handoff.
For w/w locking with a context, we always accept handoffs after the
first schedule(), to handle the following sequence of events:
1. Task #0 unlocks and hands off to Task #2 which is first in line
2. Task #1 adds itself in front of Task #2
3. Task #2 wakes up and must accept the handoff even though it is no
longer first in line
Signed-off-by: Nicolai Hähnle <nicolai.haehnle@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: =?UTF-8?q?Nicolai=20H=C3=A4hnle?= <Nicolai.Haehnle@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dri-devel@lists.freedesktop.org
Link: http://lkml.kernel.org/r/1482346000-9927-7-git-send-email-nhaehnle@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Keep the documentation in the header file since there is no good place
for it in mutex.c: there are two rather different implementations with
different EXPORT_SYMBOLs for each function.
Signed-off-by: Nicolai Hähnle <nicolai.haehnle@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: =?UTF-8?q?Nicolai=20H=C3=A4hnle?= <Nicolai.Haehnle@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dri-devel@lists.freedesktop.org
Link: http://lkml.kernel.org/r/1482346000-9927-6-git-send-email-nhaehnle@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We will add a new field to struct mutex_waiter. This field must be
initialized for all waiters if any waiter uses the ww_use_ctx path.
So there is a trade-off: Keep ww_mutex locking without a context on
the faster non-use_ww_ctx path, at the cost of adding the
initialization to all mutex locks (including non-ww_mutexes), or avoid
the additional cost for non-ww_mutex locks, at the cost of adding
additional checks to the use_ww_ctx path.
We take the latter choice. It may be worth eliminating the users of
ww_mutex_lock(lock, NULL), but there are a lot of them.
Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dri-devel@lists.freedesktop.org
Link: http://lkml.kernel.org/r/1482346000-9927-5-git-send-email-nhaehnle@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The function will be re-used in subsequent patches.
Signed-off-by: Nicolai Hähnle <Nicolai.Haehnle@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <dev@mblankhorst.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dri-devel@lists.freedesktop.org
Link: http://lkml.kernel.org/r/1482346000-9927-4-git-send-email-nhaehnle@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While reviewing the ww_mutex patches, I noticed that it was still
possible to (incorrectly) succeed for (incorrect) code like:
mutex_lock(&a);
mutex_lock(&a);
This was possible if the second mutex_lock() would block (as expected)
but then receive a spurious wakeup. At that point it would find itself
at the front of the queue, request a handoff and instantly claim
ownership and continue, since owner would point to itself.
Avoid this scenario and simplify the code by introducing a third low
bit to signal handoff pickup. So once we request handoff, unlock
clears the handoff bit and sets the pickup bit along with the new
owner.
This also removes the need for the .handoff argument to
__mutex_trylock(), since that becomes superfluous with PICKUP.
In order to guarantee enough low bits, ensure task_struct alignment is
at least L1_CACHE_BYTES (which seems a good ideal regardless).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9d659ae14b ("locking/mutex: Add lock handoff to avoid starvation")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The use of any kind of wait queue is an overkill for pcpu-rwsems.
While one option would be to use the less heavy simple (swait)
flavor, this is still too much for what pcpu-rwsems needs. For one,
we do not care about any sort of queuing in that the only (rare) time
writers (and readers, for that matter) are queued is when trying to
acquire the regular contended rw_sem. There cannot be any further
queuing as writers are serialized by the rw_sem in the first place.
Given that percpu_down_write() must not be called after exit_notify(),
we can replace the bulky waitqueue with rcuwait such that a writer
can wait for its turn to take the lock. As such, we can avoid the
queue handling and locking overhead.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Link: http://lkml.kernel.org/r/1484148146-14210-3-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a nasty interface and setting the state of a foreign task must
not be done. As of the following commit:
be628be095 ("bcache: Make gc wakeup sane, remove set_task_state()")
... everyone in the kernel calls set_task_state() with current, allowing
the helper to be removed.
However, as the comment indicates, it is still around for those archs
where computing current is more expensive than using a pointer, at least
in theory. An important arch that is affected is arm64, however this has
been addressed now [1] and performance is up to par making no difference
with either calls.
Of all the callers, if any, it's the locking bits that would care most
about this -- ie: we end up passing a tsk pointer to a lot of the lock
slowpath, and setting ->state on that. The following numbers are based
on two tests: a custom ad-hoc microbenchmark that just measures
latencies (for ~65 million calls) between get_task_state() vs
get_current_state().
Secondly for a higher overview, an unlink microbenchmark was used,
which pounds on a single file with open, close,unlink combos with
increasing thread counts (up to 4x ncpus). While the workload is quite
unrealistic, it does contend a lot on the inode mutex or now rwsem.
[1] https://lkml.kernel.org/r/1483468021-8237-1-git-send-email-mark.rutland@arm.com
== 1. x86-64 ==
Avg runtime set_task_state(): 601 msecs
Avg runtime set_current_state(): 552 msecs
vanilla dirty
Hmean unlink1-processes-2 36089.26 ( 0.00%) 38977.33 ( 8.00%)
Hmean unlink1-processes-5 28555.01 ( 0.00%) 29832.55 ( 4.28%)
Hmean unlink1-processes-8 37323.75 ( 0.00%) 44974.57 ( 20.50%)
Hmean unlink1-processes-12 43571.88 ( 0.00%) 44283.01 ( 1.63%)
Hmean unlink1-processes-21 34431.52 ( 0.00%) 38284.45 ( 11.19%)
Hmean unlink1-processes-30 34813.26 ( 0.00%) 37975.17 ( 9.08%)
Hmean unlink1-processes-48 37048.90 ( 0.00%) 39862.78 ( 7.59%)
Hmean unlink1-processes-79 35630.01 ( 0.00%) 36855.30 ( 3.44%)
Hmean unlink1-processes-110 36115.85 ( 0.00%) 39843.91 ( 10.32%)
Hmean unlink1-processes-141 32546.96 ( 0.00%) 35418.52 ( 8.82%)
Hmean unlink1-processes-172 34674.79 ( 0.00%) 36899.21 ( 6.42%)
Hmean unlink1-processes-203 37303.11 ( 0.00%) 36393.04 ( -2.44%)
Hmean unlink1-processes-224 35712.13 ( 0.00%) 36685.96 ( 2.73%)
== 2. ppc64le ==
Avg runtime set_task_state(): 938 msecs
Avg runtime set_current_state: 940 msecs
vanilla dirty
Hmean unlink1-processes-2 19269.19 ( 0.00%) 30704.50 ( 59.35%)
Hmean unlink1-processes-5 20106.15 ( 0.00%) 21804.15 ( 8.45%)
Hmean unlink1-processes-8 17496.97 ( 0.00%) 17243.28 ( -1.45%)
Hmean unlink1-processes-12 14224.15 ( 0.00%) 17240.21 ( 21.20%)
Hmean unlink1-processes-21 14155.66 ( 0.00%) 15681.23 ( 10.78%)
Hmean unlink1-processes-30 14450.70 ( 0.00%) 15995.83 ( 10.69%)
Hmean unlink1-processes-48 16945.57 ( 0.00%) 16370.42 ( -3.39%)
Hmean unlink1-processes-79 15788.39 ( 0.00%) 14639.27 ( -7.28%)
Hmean unlink1-processes-110 14268.48 ( 0.00%) 14377.40 ( 0.76%)
Hmean unlink1-processes-141 14023.65 ( 0.00%) 16271.69 ( 16.03%)
Hmean unlink1-processes-172 13417.62 ( 0.00%) 16067.55 ( 19.75%)
Hmean unlink1-processes-203 15293.08 ( 0.00%) 15440.40 ( 0.96%)
Hmean unlink1-processes-234 13719.32 ( 0.00%) 16190.74 ( 18.01%)
Hmean unlink1-processes-265 16400.97 ( 0.00%) 16115.22 ( -1.74%)
Hmean unlink1-processes-296 14388.60 ( 0.00%) 16216.13 ( 12.70%)
Hmean unlink1-processes-320 15771.85 ( 0.00%) 15905.96 ( 0.85%)
x86-64 (known to be fast for get_current()/this_cpu_read_stable() caching)
and ppc64 (with paca) show similar improvements in the unlink microbenches.
The small delta for ppc64 (2ms), does not represent the gains on the unlink
runs. In the case of x86, there was a decent amount of variation in the
latency runs, but always within a 20 to 50ms increase), ppc was more constant.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Cc: mark.rutland@arm.com
Link: http://lkml.kernel.org/r/1483479794-14013-5-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If prev node is not in running state or its vCPU is preempted, we can give
up our vCPU slices in pv_wait_node() ASAP.
Signed-off-by: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: longman@redhat.com
Link: http://lkml.kernel.org/r/1484035006-6787-1-git-send-email-xinhui.pan@linux.vnet.ibm.com
[ Fixed typos in the changelog, removed ugly linebreak from the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The spin_lock_bh_nested() API is defined but is not used anywhere
in the kernel. So all spin_lock_bh_nested() and related APIs are
now removed.
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1483975612-16447-1-git-send-email-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs updates from Al Viro:
- more ->d_init() stuff (work.dcache)
- pathname resolution cleanups (work.namei)
- a few missing iov_iter primitives - copy_from_iter_full() and
friends. Either copy the full requested amount, advance the iterator
and return true, or fail, return false and do _not_ advance the
iterator. Quite a few open-coded callers converted (and became more
readable and harder to fuck up that way) (work.iov_iter)
- several assorted patches, the big one being logfs removal
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
logfs: remove from tree
vfs: fix put_compat_statfs64() does not handle errors
namei: fold should_follow_link() with the step into not-followed link
namei: pass both WALK_GET and WALK_MORE to should_follow_link()
namei: invert WALK_PUT logics
namei: shift interpretation of LOOKUP_FOLLOW inside should_follow_link()
namei: saner calling conventions for mountpoint_last()
namei.c: get rid of user_path_parent()
switch getfrag callbacks to ..._full() primitives
make skb_add_data,{_nocache}() and skb_copy_to_page_nocache() advance only on success
[iov_iter] new primitives - copy_from_iter_full() and friends
don't open-code file_inode()
ceph: switch to use of ->d_init()
ceph: unify dentry_operations instances
lustre: switch to use of ->d_init()
Contained in this update:
- DAX PMD vaults via iomap infrastructure
- Direct-io support in iomap infrastructure
- removal of now-redundant XFS inode iolock, replaced with VFS i_rwsem
- synchronisation with fixes and changes in userspace libxfs code
- extent tree lookup helpers
- lots of little corruption detection improvements to verifiers
- optimised CRC calculations
- faster buffer cache lookups
- deprecation of barrier/nobarrier mount options - we always use
REQ_FUA/REQ_FLUSH where appropriate for data integrity now
- cleanups to speculative preallocation
- miscellaneous minor bug fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYUgqdAAoJEK3oKUf0dfodQgsP/1dJ4qUc6cRk8kL+f10FoIek
oFzdViRHZj8cROGe2n2YTBJtPa9KjU5DNHnxaxWZBN4ZpItp/uN1sAQhgtNQ4/cN
C3JF6B/+/dIbNSbd7DwvSl0dMWknzmrB+Myfs2ZPpMA1S4GInk1MOJSj7AQdYAvJ
dS0dQWAuIB20cahwuGA4y7zUniYL1IcF/BH8hlmzpcUNUoJ9AkR1hTg5/aVfmga3
w2p1vZyT2E4xs/Ff4FYW5MzPGxLVQMZVNIAXAcJl+c61z46ndXqidSmVHGvc+Tlt
ouxftHy/7KqowZlCFss1pSXg9HlXHhjS+iLbZerfcjO2qldriZS+QqQyASmQzPAz
+PpnMfVOj+yjsXKyIHWuS1G35aV16pPWwdA0ECeU6yv9iZ7tSz5rvSrsPZPLFz4x
RVhcKbmXR3y8DugkmtznU5ozxPt5hbbstEV3leCzxJpZu5reRJThUW7nYkSd0CEJ
ZyT/GP6Aq/MM8O/hOgVutAH409dsrYok8m/lq1J7VbNUt8inylcsMWsBeX/0/AHY
aC7I2Vx8bnbfL+C8wYKYhuShOGSch93O5hDUXdH2K/Sm5cK4y2asWge6MfFsS6Lu
waVYwd5aYBlNbzkvUMm2I5EV4cCCR3YwWYwfBEP7kPYUDxN14huOz6lVXnQPDLQ1
qsV1aNfK9PPiw6Fcaop0
=HwDG
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There is quite a varied bunch of stuff in this update, and some of it
you will have already merged through the ext4 tree which imported the
dax-4.10-iomap-pmd topic branch from the XFS tree.
There is also a new direct IO implementation that uses the iomap
infrastructure. It's much simpler, faster, and has lower IO latency
than the existing direct IO infrastructure.
Summary:
- DAX PMD faults via iomap infrastructure
- Direct-io support in iomap infrastructure
- removal of now-redundant XFS inode iolock, replaced with VFS
i_rwsem
- synchronisation with fixes and changes in userspace libxfs code
- extent tree lookup helpers
- lots of little corruption detection improvements to verifiers
- optimised CRC calculations
- faster buffer cache lookups
- deprecation of barrier/nobarrier mount options - we always use
REQ_FUA/REQ_FLUSH where appropriate for data integrity now
- cleanups to speculative preallocation
- miscellaneous minor bug fixes and cleanups"
* tag 'xfs-for-linus-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (63 commits)
xfs: nuke unused tracepoint definitions
xfs: use GPF_NOFS when allocating btree cursors
xfs: use xfs_vn_setattr_size to check on new size
xfs: deprecate barrier/nobarrier mount option
xfs: Always flush caches when integrity is required
xfs: ignore leaf attr ichdr.count in verifier during log replay
xfs: use rhashtable to track buffer cache
xfs: optimise CRC updates
xfs: make xfs btree stats less huge
xfs: don't cap maximum dedupe request length
xfs: don't allow di_size with high bit set
xfs: error out if trying to add attrs and anextents > 0
xfs: don't crash if reading a directory results in an unexpected hole
xfs: complain if we don't get nextents bmap records
xfs: check for bogus values in btree block headers
xfs: forbid AG btrees with level == 0
xfs: several xattr functions can be void
xfs: handle cow fork in xfs_bmap_trace_exlist
xfs: pass state not whichfork to trace_xfs_extlist
xfs: Move AGI buffer type setting to xfs_read_agi
...
Since commit:
4bcc595ccd ("printk: reinstate KERN_CONT for printing continuation lines")
printk() requires KERN_CONT to continue log messages. Lots of printk()
in lockdep.c and print_ip_sym() don't have it. As the result lockdep
reports are completely messed up.
Add missing KERN_CONT and inline print_ip_sym() where necessary.
Example of a messed up report:
0-rc5+ #41 Not tainted
-------------------------------------------------------
syz-executor0/5036 is trying to acquire lock:
(
rtnl_mutex
){+.+.+.}
, at:
[<ffffffff86b3d6ac>] rtnl_lock+0x1c/0x20
but task is already holding lock:
(
&net->packet.sklist_lock
){+.+...}
, at:
[<ffffffff873541a6>] packet_diag_dump+0x1a6/0x1920
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3
(
&net->packet.sklist_lock
+.+...}
...
Without this patch all scripts that parse kernel bug reports are broken.
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andreyknvl@google.com
Cc: aryabinin@virtuozzo.com
Cc: joe@perches.com
Cc: syzkaller@googlegroups.com
Link: http://lkml.kernel.org/r/1480343083-48731-1-git-send-email-dvyukov@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While debugging the unlock vs. dequeue race which resulted in state
corruption of futexes the lockless nature of rt_mutex_proxy_unlock()
caused some confusion.
Add commentry to explain why it is safe to do this lockless. Add matching
comments to rt_mutex_init_proxy_locked() for completeness sake.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Daney <ddaney@caviumnetworks.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20161130210030.591941927@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a left over from the original rtmutex implementation which used
both bit0 and bit1 in the owner pointer. Commit:
8161239a8b ("rtmutex: Simplify PI algorithm and make highest prio task get lock")
... removed the usage of bit1, but kept the extra mask around. This is
confusing at best.
Remove it and just use RT_MUTEX_HAS_WAITERS for the masking.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Daney <ddaney@caviumnetworks.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20161130210030.509567906@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While debugging the rtmutex unlock vs. dequeue race Will suggested to use
READ_ONCE() in rt_mutex_owner() as it might race against the
cmpxchg_release() in unlock_rt_mutex_safe().
Will: "It's a minor thing which will most likely not matter in practice"
Careful search did not unearth an actual problem in todays code, but it's
better to be safe than surprised.
Suggested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Daney <ddaney@caviumnetworks.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20161130210030.431379999@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
David reported a futex/rtmutex state corruption. It's caused by the
following problem:
CPU0 CPU1 CPU2
l->owner=T1
rt_mutex_lock(l)
lock(l->wait_lock)
l->owner = T1 | HAS_WAITERS;
enqueue(T2)
boost()
unlock(l->wait_lock)
schedule()
rt_mutex_lock(l)
lock(l->wait_lock)
l->owner = T1 | HAS_WAITERS;
enqueue(T3)
boost()
unlock(l->wait_lock)
schedule()
signal(->T2) signal(->T3)
lock(l->wait_lock)
dequeue(T2)
deboost()
unlock(l->wait_lock)
lock(l->wait_lock)
dequeue(T3)
===> wait list is now empty
deboost()
unlock(l->wait_lock)
lock(l->wait_lock)
fixup_rt_mutex_waiters()
if (wait_list_empty(l)) {
owner = l->owner & ~HAS_WAITERS;
l->owner = owner
==> l->owner = T1
}
lock(l->wait_lock)
rt_mutex_unlock(l) fixup_rt_mutex_waiters()
if (wait_list_empty(l)) {
owner = l->owner & ~HAS_WAITERS;
cmpxchg(l->owner, T1, NULL)
===> Success (l->owner = NULL)
l->owner = owner
==> l->owner = T1
}
That means the problem is caused by fixup_rt_mutex_waiters() which does the
RMW to clear the waiters bit unconditionally when there are no waiters in
the rtmutexes rbtree.
This can be fatal: A concurrent unlock can release the rtmutex in the
fastpath because the waiters bit is not set. If the cmpxchg() gets in the
middle of the RMW operation then the previous owner, which just unlocked
the rtmutex is set as the owner again when the write takes place after the
successfull cmpxchg().
The solution is rather trivial: verify that the owner member of the rtmutex
has the waiters bit set before clearing it. This does not require a
cmpxchg() or other atomic operations because the waiters bit can only be
set and cleared with the rtmutex wait_lock held. It's also safe against the
fast path unlock attempt. The unlock attempt via cmpxchg() will either see
the bit set and take the slowpath or see the bit cleared and release it
atomically in the fastpath.
It's remarkable that the test program provided by David triggers on ARM64
and MIPS64 really quick, but it refuses to reproduce on x86-64, while the
problem exists there as well. That refusal might explain that this got not
discovered earlier despite the bug existing from day one of the rtmutex
implementation more than 10 years ago.
Thanks to David for meticulously instrumenting the code and providing the
information which allowed to decode this subtle problem.
Reported-by: David Daney <ddaney@caviumnetworks.com>
Tested-by: David Daney <david.daney@cavium.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@vger.kernel.org
Fixes: 23f78d4a03 ("[PATCH] pi-futex: rt mutex core")
Link: http://lkml.kernel.org/r/20161130210030.351136722@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Christoph requested lockdep_assert_held() variants that distinguish
between held-for-read or held-for-write.
Provide:
int lock_is_held_type(struct lockdep_map *lock, int read)
which takes the same argument as lock_acquire(.read) and matches it to
the held_lock instance.
Use of this function should be gated by the debug_locks variable. When
that is 0 the return value of the lock_is_held_type() function is
undefined. This is done to allow both negative and positive tests for
holding locks.
By default we provide (positive) lockdep_assert_held{,_exclusive,_read}()
macros.
Requested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Jens Axboe <axboe@fb.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
An over-committed guest with more vCPUs than pCPUs has a heavy overload
in osq_lock().
This is because if vCPU-A holds the osq lock and yields out, vCPU-B ends
up waiting for per_cpu node->locked to be set. IOW, vCPU-B waits for
vCPU-A to run and unlock the osq lock.
Use the new vcpu_is_preempted(cpu) interface to detect if a vCPU is
currently running or not, and break out of the spin-loop if so.
test case:
$ perf record -a perf bench sched messaging -g 400 -p && perf report
before patch:
18.09% sched-messaging [kernel.vmlinux] [k] osq_lock
12.28% sched-messaging [kernel.vmlinux] [k] rwsem_spin_on_owner
5.27% sched-messaging [kernel.vmlinux] [k] mutex_unlock
3.89% sched-messaging [kernel.vmlinux] [k] wait_consider_task
3.64% sched-messaging [kernel.vmlinux] [k] _raw_write_lock_irq
3.41% sched-messaging [kernel.vmlinux] [k] mutex_spin_on_owner.is
2.49% sched-messaging [kernel.vmlinux] [k] system_call
after patch:
20.68% sched-messaging [kernel.vmlinux] [k] mutex_spin_on_owner
8.45% sched-messaging [kernel.vmlinux] [k] mutex_unlock
4.12% sched-messaging [kernel.vmlinux] [k] system_call
3.01% sched-messaging [kernel.vmlinux] [k] system_call_common
2.83% sched-messaging [kernel.vmlinux] [k] copypage_power7
2.64% sched-messaging [kernel.vmlinux] [k] rwsem_spin_on_owner
2.00% sched-messaging [kernel.vmlinux] [k] osq_lock
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Tested-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: David.Laight@ACULAB.COM
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: benh@kernel.crashing.org
Cc: bsingharora@gmail.com
Cc: dave@stgolabs.net
Cc: kernellwp@gmail.com
Cc: konrad.wilk@oracle.com
Cc: linuxppc-dev@lists.ozlabs.org
Cc: mpe@ellerman.id.au
Cc: paulmck@linux.vnet.ibm.com
Cc: paulus@samba.org
Cc: rkrcmar@redhat.com
Cc: virtualization@lists.linux-foundation.org
Cc: will.deacon@arm.com
Cc: xen-devel-request@lists.xenproject.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1478077718-37424-3-git-send-email-xinhui.pan@linux.vnet.ibm.com
[ Translated to English. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the wake_q data structure is defined by the WAKE_Q() macro.
This macro, however, looks like a function doing something as "wake" is
a verb. Even checkpatch.pl was confused as it reported warnings like
WARNING: Missing a blank line after declarations
#548: FILE: kernel/futex.c:3665:
+ int ret;
+ WAKE_Q(wake_q);
This patch renames the WAKE_Q() macro to DEFINE_WAKE_Q() which clarifies
what the macro is doing and eliminates the checkpatch.pl warnings.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1479401198-1765-1-git-send-email-longman@redhat.com
[ Resolved conflict and added missing rename. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reduce the size of data structure for lockdep entries by half if
PROVE_LOCKING_SMALL if defined. This is used only for sparc.
Signed-off-by: Babu Moger <babu.moger@oracle.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
With the s390 special case of a yielding cpu_relax() implementation gone,
we can now remove all users of cpu_relax_lowlatency() and replace them
with cpu_relax().
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1477386195-32736-5-git-send-email-borntraeger@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'class' parameter is not used, remove it.
n
Signed-off-by: Tahsin Erdogan <tahsin@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1478592127-4376-1-git-send-email-tahsin@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch makes the waiter that sets the HANDOFF flag start spinning
instead of sleeping until the handoff is complete or the owner
sleeps. Otherwise, the handoff will cause the optimistic spinners to
abort spinning as the handed-off owner may not be running.
Tested-by: Jason Low <jason.low2@hpe.com>
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: Imre Deak <imre.deak@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <Will.Deacon@arm.com>
Link: http://lkml.kernel.org/r/1472254509-27508-2-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch removes some of the redundant ww_mutex code in
__mutex_lock_common().
Tested-by: Jason Low <jason.low2@hpe.com>
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: Imre Deak <imre.deak@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <Will.Deacon@arm.com>
Link: http://lkml.kernel.org/r/1472254509-27508-1-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Doesn't really matter yet, but pull the HANDOFF and trylock out from
under the wait_lock.
The intention is to add an optimistic spin loop here, which requires
we do not hold the wait_lock, so shuffle code around in preparation.
Also clarify the purpose of taking the wait_lock in the wait loop, its
tempting to want to avoid it altogether, but the cancellation cases
need to to avoid losing wakeups.
Suggested-by: Waiman Long <waiman.long@hpe.com>
Tested-by: Jason Low <jason.low2@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implement lock handoff to avoid lock starvation.
Lock starvation is possible because mutex_lock() allows lock stealing,
where a running (or optimistic spinning) task beats the woken waiter
to the acquire.
Lock stealing is an important performance optimization because waiting
for a waiter to wake up and get runtime can take a significant time,
during which everyboy would stall on the lock.
The down-side is of course that it allows for starvation.
This patch has the waiter requesting a handoff if it fails to acquire
the lock upon waking. This re-introduces some of the wait time,
because once we do a handoff we have to wait for the waiter to wake up
again.
A future patch will add a round of optimistic spinning to attempt to
alleviate this penalty, but if that turns out to not be enough, we can
add a counter and only request handoff after multiple failed wakeups.
There are a few tricky implementation details:
- accepting a handoff must only be done in the wait-loop. Since the
handoff condition is owner == current, it can easily cause
recursive locking trouble.
- accepting the handoff must be careful to provide the ACQUIRE
semantics.
- having the HANDOFF bit set on unlock requires care, we must not
clear the owner.
- we must be careful to not leave HANDOFF set after we've acquired
the lock. The tricky scenario is setting the HANDOFF bit on an
unlocked mutex.
Tested-by: Jason Low <jason.low2@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Waiman Long <Waiman.Long@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current mutex implementation has an atomic lock word and a
non-atomic owner field.
This disparity leads to a number of issues with the current mutex code
as it means that we can have a locked mutex without an explicit owner
(because the owner field has not been set, or already cleared).
This leads to a number of weird corner cases, esp. between the
optimistic spinning and debug code. Where the optimistic spinning
code needs the owner field updated inside the lock region, the debug
code is more relaxed because the whole lock is serialized by the
wait_lock.
Also, the spinning code itself has a few corner cases where we need to
deal with a held lock without an owner field.
Furthermore, it becomes even more of a problem when trying to fix
starvation cases in the current code. We end up stacking special case
on special case.
To solve this rework the basic mutex implementation to be a single
atomic word that contains the owner and uses the low bits for extra
state.
This matches how PI futexes and rt_mutex already work. By having the
owner an integral part of the lock state a lot of the problems
dissapear and we get a better option to deal with starvation cases,
direct owner handoff.
Changing the basic mutex does however invalidate all the arch specific
mutex code; this patch leaves that unused in-place, a later patch will
remove that.
Tested-by: Jason Low <jason.low2@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is now unused, remove it before someone else thinks its a good idea
to use this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
stop_two_cpus() and stop_cpus() use stop_cpus_lock to avoid the deadlock,
we need to ensure that the stopper functions can't be queued "backwards"
from one another. This doesn't look nice; if we use lglock then we do not
really need stopper->lock, cpu_stop_queue_work() could use lg_local_lock()
under local_irq_save().
OTOH it would be even better to avoid lglock in stop_machine.c and remove
lg_double_lock(). This patch adds "bool stop_cpus_in_progress" set/cleared
by queue_stop_cpus_work(), and changes cpu_stop_queue_two_works() to busy
wait until it is cleared.
queue_stop_cpus_work() sets stop_cpus_in_progress = T lockless, but after
it queues a work on CPU1 it must be visible to stop_two_cpus(CPU1, CPU2)
which checks it under the same lock. And since stop_two_cpus() holds the
2nd lock too, queue_stop_cpus_work() can not clear stop_cpus_in_progress
if it is also going to queue a work on CPU2, it needs to take that 2nd
lock to do this.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20151121181148.GA433@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When wanting to wakeup readers, __rwsem_mark_wakeup() currently
iterates the wait_list twice while looking to wakeup the first N
queued reader-tasks. While this can be quite inefficient, it was
there such that a awoken reader would be first and foremost
acknowledged by the lock counter.
Keeping the same logic, we can further benefit from the use of
wake_qs and avoid entirely the first wait_list iteration that sets
the counter as wake_up_process() isn't going to occur right away,
and therefore we maintain the counter->list order of going about
things.
Other than saving cycles with O(n) "scanning", this change also
nicely cleans up a good chunk of __rwsem_mark_wakeup(); both
visually and less tedious to read.
For example, the following improvements where seen on some will
it scale microbenchmarks, on a 48-core Haswell:
v4.7 v4.7-rwsem-v1
Hmean signal1-processes-8 5792691.42 ( 0.00%) 5771971.04 ( -0.36%)
Hmean signal1-processes-12 6081199.96 ( 0.00%) 6072174.38 ( -0.15%)
Hmean signal1-processes-21 3071137.71 ( 0.00%) 3041336.72 ( -0.97%)
Hmean signal1-processes-48 3712039.98 ( 0.00%) 3708113.59 ( -0.11%)
Hmean signal1-processes-79 4464573.45 ( 0.00%) 4682798.66 ( 4.89%)
Hmean signal1-processes-110 4486842.01 ( 0.00%) 4633781.71 ( 3.27%)
Hmean signal1-processes-141 4611816.83 ( 0.00%) 4692725.38 ( 1.75%)
Hmean signal1-processes-172 4638157.05 ( 0.00%) 4714387.86 ( 1.64%)
Hmean signal1-processes-203 4465077.80 ( 0.00%) 4690348.07 ( 5.05%)
Hmean signal1-processes-224 4410433.74 ( 0.00%) 4687534.43 ( 6.28%)
Stddev signal1-processes-8 6360.47 ( 0.00%) 8455.31 ( 32.94%)
Stddev signal1-processes-12 4004.98 ( 0.00%) 9156.13 (128.62%)
Stddev signal1-processes-21 3273.14 ( 0.00%) 5016.80 ( 53.27%)
Stddev signal1-processes-48 28420.25 ( 0.00%) 26576.22 ( -6.49%)
Stddev signal1-processes-79 22038.34 ( 0.00%) 18992.70 (-13.82%)
Stddev signal1-processes-110 23226.93 ( 0.00%) 17245.79 (-25.75%)
Stddev signal1-processes-141 6358.98 ( 0.00%) 7636.14 ( 20.08%)
Stddev signal1-processes-172 9523.70 ( 0.00%) 4824.75 (-49.34%)
Stddev signal1-processes-203 13915.33 ( 0.00%) 9326.33 (-32.98%)
Stddev signal1-processes-224 15573.94 ( 0.00%) 10613.82 (-31.85%)
Other runs that saw improvements include context_switch and pipe; and
as expected, this is particularly highlighted on larger thread counts
as it becomes more expensive to walk the list twice.
No change in wakeup ordering or semantics.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman.Long@hp.com
Cc: dave@stgolabs.net
Cc: jason.low2@hpe.com
Cc: wanpeng.li@hotmail.com
Link: http://lkml.kernel.org/r/1470384285-32163-4-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Our rwsem code (xadd, at least) is rather well documented, but
there are a few really annoying comments in there that serve
no purpose and we shouldn't bother with them.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman.Long@hp.com
Cc: dave@stgolabs.net
Cc: jason.low2@hpe.com
Cc: wanpeng.li@hotmail.com
Link: http://lkml.kernel.org/r/1470384285-32163-3-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We currently return a rw_semaphore structure, which is the
same lock we passed to the function's argument in the first
place. While there are several functions that choose this
return value, the callers use it, for example, for things
like ERR_PTR. This is not the case for __rwsem_mark_wake(),
and in addition this function is really about the lock
waiters (which we know there are at this point), so its
somewhat odd to be returning the sem structure.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman.Long@hp.com
Cc: dave@stgolabs.net
Cc: jason.low2@hpe.com
Cc: wanpeng.li@hotmail.com
Link: http://lkml.kernel.org/r/1470384285-32163-2-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the percpu-rwsem switches to (global) atomic ops while a
writer is waiting; which could be quite a while and slows down
releasing the readers.
This patch cures this problem by ordering the reader-state vs
reader-count (see the comments in __percpu_down_read() and
percpu_down_write()). This changes a global atomic op into a full
memory barrier, which doesn't have the global cacheline contention.
This also enables using the percpu-rwsem with rcu_sync disabled in order
to bias the implementation differently, reducing the writer latency by
adding some cost to readers.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
[ Fixed modular build. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>