Commit Graph

127 Commits

Author SHA1 Message Date
Jiri Kosina
ec527c3180 x86/power: Fix 'nosmt' vs hibernation triple fault during resume
As explained in

	0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")

we always, no matter what, have to bring up x86 HT siblings during boot at
least once in order to avoid first MCE bringing the system to its knees.

That means that whenever 'nosmt' is supplied on the kernel command-line,
all the HT siblings are as a result sitting in mwait or cpudile after
going through the online-offline cycle at least once.

This causes a serious issue though when a kernel, which saw 'nosmt' on its
commandline, is going to perform resume from hibernation: if the resume
from the hibernated image is successful, cr3 is flipped in order to point
to the address space of the kernel that is being resumed, which in turn
means that all the HT siblings are all of a sudden mwaiting on address
which is no longer valid.

That results in triple fault shortly after cr3 is switched, and machine
reboots.

Fix this by always waking up all the SMT siblings before initiating the
'restore from hibernation' process; this guarantees that all the HT
siblings will be properly carried over to the resumed kernel waiting in
resume_play_dead(), and acted upon accordingly afterwards, based on the
target kernel configuration.

Symmetricaly, the resumed kernel has to push the SMT siblings to mwait
again in case it has SMT disabled; this means it has to online all
the siblings when resuming (so that they come out of hlt) and offline
them again to let them reach mwait.

Cc: 4.19+ <stable@vger.kernel.org> # v4.19+
Debugged-by: Thomas Gleixner <tglx@linutronix.de>
Fixes: 0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Pavel Machek <pavel@ucw.cz>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-06-03 12:02:03 +02:00
Linus Torvalds
fa4bff1650 Merge branch 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MDS mitigations from Thomas Gleixner:
 "Microarchitectural Data Sampling (MDS) is a hardware vulnerability
  which allows unprivileged speculative access to data which is
  available in various CPU internal buffers. This new set of misfeatures
  has the following CVEs assigned:

     CVE-2018-12126  MSBDS  Microarchitectural Store Buffer Data Sampling
     CVE-2018-12130  MFBDS  Microarchitectural Fill Buffer Data Sampling
     CVE-2018-12127  MLPDS  Microarchitectural Load Port Data Sampling
     CVE-2019-11091  MDSUM  Microarchitectural Data Sampling Uncacheable Memory

  MDS attacks target microarchitectural buffers which speculatively
  forward data under certain conditions. Disclosure gadgets can expose
  this data via cache side channels.

  Contrary to other speculation based vulnerabilities the MDS
  vulnerability does not allow the attacker to control the memory target
  address. As a consequence the attacks are purely sampling based, but
  as demonstrated with the TLBleed attack samples can be postprocessed
  successfully.

  The mitigation is to flush the microarchitectural buffers on return to
  user space and before entering a VM. It's bolted on the VERW
  instruction and requires a microcode update. As some of the attacks
  exploit data structures shared between hyperthreads, full protection
  requires to disable hyperthreading. The kernel does not do that by
  default to avoid breaking unattended updates.

  The mitigation set comes with documentation for administrators and a
  deeper technical view"

* 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  x86/speculation/mds: Fix documentation typo
  Documentation: Correct the possible MDS sysfs values
  x86/mds: Add MDSUM variant to the MDS documentation
  x86/speculation/mds: Add 'mitigations=' support for MDS
  x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off
  x86/speculation/mds: Fix comment
  x86/speculation/mds: Add SMT warning message
  x86/speculation: Move arch_smt_update() call to after mitigation decisions
  x86/speculation/mds: Add mds=full,nosmt cmdline option
  Documentation: Add MDS vulnerability documentation
  Documentation: Move L1TF to separate directory
  x86/speculation/mds: Add mitigation mode VMWERV
  x86/speculation/mds: Add sysfs reporting for MDS
  x86/speculation/mds: Add mitigation control for MDS
  x86/speculation/mds: Conditionally clear CPU buffers on idle entry
  x86/kvm/vmx: Add MDS protection when L1D Flush is not active
  x86/speculation/mds: Clear CPU buffers on exit to user
  x86/speculation/mds: Add mds_clear_cpu_buffers()
  x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
  x86/speculation/mds: Add BUG_MSBDS_ONLY
  ...
2019-05-14 07:57:29 -07:00
Linus Torvalds
5a2bf1abbf Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug updates from Ingo Molnar:
 "Two changes in this cycle:

   - Make the /sys/devices/system/cpu/smt/* files available on all
     arches, so user space has a consistent way to detect whether SMT is
     enabled.

   - Sparse annotation fix"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  smpboot: Place the __percpu annotation correctly
  cpu/hotplug: Create SMT sysfs interface for all arches
2019-05-06 14:44:49 -07:00
Linus Torvalds
e00d413575 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle were:

   - Make nohz housekeeping processing more permissive and less
     intrusive to isolated CPUs

   - Decouple CPU-bound workqueue acconting from the scheduler and move
     it into the workqueue code.

   - Optimize topology building

   - Better handle quota and period overflows

   - Add more RCU annotations

   - Comment updates, misc cleanups"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
  nohz_full: Allow the boot CPU to be nohz_full
  sched/isolation: Require a present CPU in housekeeping mask
  kernel/cpu: Allow non-zero CPU to be primary for suspend / kexec freeze
  power/suspend: Add function to disable secondaries for suspend
  sched/core: Allow the remote scheduler tick to be started on CPU0
  sched/nohz: Run NOHZ idle load balancer on HK_FLAG_MISC CPUs
  sched/debug: Fix spelling mistake "logaritmic" -> "logarithmic"
  sched/topology: Update init_sched_domains() comment
  cgroup/cpuset: Update stale generate_sched_domains() comments
  sched/core: Check quota and period overflow at usec to nsec conversion
  sched/core: Handle overflow in cpu_shares_write_u64
  sched/rt: Check integer overflow at usec to nsec conversion
  sched/core: Fix typo in comment
  sched/core: Make some functions static
  sched/core: Unify p->on_rq updates
  sched/core: Remove ttwu_activate()
  sched/core, workqueues: Distangle worker accounting from rq lock
  sched/fair: Remove unneeded prototype of capacity_of()
  sched/topology: Skip duplicate group rewrites in build_sched_groups()
  sched/topology: Fix build_sched_groups() comment
  ...
2019-05-06 14:31:50 -07:00
Nicholas Piggin
9ca12ac04b kernel/cpu: Allow non-zero CPU to be primary for suspend / kexec freeze
This patch provides an arch option, ARCH_SUSPEND_NONZERO_CPU, to
opt-in to allowing suspend to occur on one of the housekeeping CPUs
rather than hardcoded CPU0.

This will allow CPU0 to be a nohz_full CPU with a later change.

It may be possible for platforms with hardware/firmware restrictions
on suspend/wake effectively support this by handing off the final
stage to CPU0 when kernel housekeeping is no longer required. Another
option is to make housekeeping / nohz_full mask dynamic at runtime,
but the complexity could not be justified at this time.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20190411033448.20842-4-npiggin@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-03 19:42:58 +02:00
Nicholas Piggin
2f1a6fbbef power/suspend: Add function to disable secondaries for suspend
This adds a function to disable secondary CPUs for suspend that are
not necessarily non-zero / non-boot CPUs. Platforms will be able to
use this to suspend using non-zero CPUs.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20190411033448.20842-3-npiggin@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-03 19:42:41 +02:00
Thomas Gleixner
e9fee6fe08 Merge branch 'core/speculation' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git
Pull in the command line updates from the tip tree so the MDS parts can be
added.
2019-04-17 21:55:31 +02:00
Josh Poimboeuf
98af845294 cpu/speculation: Add 'mitigations=' cmdline option
Keeping track of the number of mitigations for all the CPU speculation
bugs has become overwhelming for many users.  It's getting more and more
complicated to decide which mitigations are needed for a given
architecture.  Complicating matters is the fact that each arch tends to
have its own custom way to mitigate the same vulnerability.

Most users fall into a few basic categories:

a) they want all mitigations off;

b) they want all reasonable mitigations on, with SMT enabled even if
   it's vulnerable; or

c) they want all reasonable mitigations on, with SMT disabled if
   vulnerable.

Define a set of curated, arch-independent options, each of which is an
aggregation of existing options:

- mitigations=off: Disable all mitigations.

- mitigations=auto: [default] Enable all the default mitigations, but
  leave SMT enabled, even if it's vulnerable.

- mitigations=auto,nosmt: Enable all the default mitigations, disabling
  SMT if needed by a mitigation.

Currently, these options are placeholders which don't actually do
anything.  They will be fleshed out in upcoming patches.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86)
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com
2019-04-17 21:37:28 +02:00
Josh Poimboeuf
de7b77e5bb cpu/hotplug: Create SMT sysfs interface for all arches
Make the /sys/devices/system/cpu/smt/* files available on all arches, so
user space has a consistent way to detect whether SMT is enabled.

The 'control' file now shows 'notimplemented' for architectures which
don't yet have CONFIG_HOTPLUG_SMT.

[ tglx: Make notimplemented a real state ]

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Link: https://lkml.kernel.org/r/469c2b98055f2c41e75748e06447d592a64080c9.1553635520.git.jpoimboe@redhat.com
2019-04-02 12:36:56 +02:00
Thomas Gleixner
8a4b06d391 x86/speculation/mds: Add sysfs reporting for MDS
Add the sysfs reporting file for MDS. It exposes the vulnerability and
mitigation state similar to the existing files for the other speculative
hardware vulnerabilities.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
2019-03-06 21:52:14 +01:00
Josh Poimboeuf
b284909aba cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVM
With the following commit:

  73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")

... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled.  However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.

The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case.  So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.

Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:

  1) /sys/devices/system/cpu/smt/control showed "on" instead of
     "notsupported"; and

  2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.

I'd propose that we instead consider #1 above to not actually be a
problem.  Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later.  So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).

The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.

So fix it by:

  a) reverting the original "fix" and its followup fix:

     73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
     bc2d8d262c ("cpu/hotplug: Fix SMT supported evaluation")

     and

  b) changing vmx_vm_init() to query the actual current SMT state --
     instead of the sysfs control value -- to determine whether the L1TF
     warning is needed.  This also requires the 'sched_smt_present'
     variable to exported, instead of 'cpu_smt_control'.

Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
2019-01-30 19:27:00 +01:00
Linus Torvalds
b018fc9800 Power management updates for 4.19-rc1
- Add a new framework for CPU idle time injection (Daniel Lezcano).
 
  - Add AVS support to the armada-37xx cpufreq driver (Gregory CLEMENT).
 
  - Add support for current CPU frequency reporting to the ACPI CPPC
    cpufreq driver (George Cherian).
 
  - Rework the cooling device registration in the imx6q/thermal
    driver (Bastian Stender).
 
  - Make the pcc-cpufreq driver refuse to work with dynamic
    scaling governors on systems with many CPUs to avoid
    scalability issues with it (Rafael Wysocki).
 
  - Fix the intel_pstate driver to report different maximum CPU
    frequencies on systems where they really are different and to
    ignore the turbo active ratio if hardware-managend P-states (HWP)
    are in use; make it use the match_string() helper (Xie Yisheng,
    Srinivas Pandruvada).
 
  - Fix a minor deferred probe issue in the qcom-kryo cpufreq
    driver (Niklas Cassel).
 
  - Add a tracepoint for the tracking of frequency limits changes
    (from Andriod) to the cpufreq core (Ruchi Kandoi).
 
  - Fix a circular lock dependency between CPU hotplug and sysfs
    locking in the cpufreq core reported by lockdep (Waiman Long).
 
  - Avoid excessive error reports on driver registration failures
    in the ARM cpuidle driver (Sudeep Holla).
 
  - Add a new device links flag to the driver core to make links go
    away automatically on supplier driver removal (Vivek Gautam).
 
  - Eliminate potential race condition between system-wide power
    management transitions and system shutdown (Pingfan Liu).
 
  - Add a quirk to save NVS memory on system suspend for the ASUS
    1025C laptop (Willy Tarreau).
 
  - Make more systems use suspend-to-idle (instead of ACPI S3) by
    default (Tristian Celestin).
 
  - Get rid of stack VLA usage in the low-level hibernation code on
    64-bit x86 (Kees Cook).
 
  - Fix error handling in the hibernation core and mark an expected
    fall-through switch in it (Chengguang Xu, Gustavo Silva).
 
  - Extend the generic power domains (genpd) framework to support
    attaching a device to a power domain by name (Ulf Hansson).
 
  - Fix device reference counting and user limits initialization in
    the devfreq core (Arvind Yadav, Matthias Kaehlcke).
 
  - Fix a few issues in the rk3399_dmc devfreq driver and improve its
    documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
 
  - Drop a redundant error message from the exynos-ppmu devfreq driver
    (Markus Elfring).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJbcqOqAAoJEILEb/54YlRxOxMP/2ZFvnXU0pey/VX/+TelLMS7
 /ROVGQ+s75QP1c9P/3BjvnXc0dsMRLRFPog+7wyoG/2DbEIV25COyAYsmSE0TRni
 XUaZO6YAx4/e3pm2AfamYbLCPvjw85eucHg5QJQ4b1mSVRNJOsNv+fUo6lmxwvnm
 j9kHvfttFeIhoa/3wa7hbhPKLln46atnpVSxCIceY7L5EFNhkKBvQt6B5yx9geb9
 QMY6ohgkyN+bnK9QySXX+trcWpzx1uGX0apI07NkX7n9QGFdU4lCW8lsAf8jMC3g
 PPValTsUQsdRONUJJsrgqBioq4tvtgQWibyS2tfRrOGXYvHpJNpGmHVplfsrf/SE
 cvlsciR47YbmrXZuqg/r8hql+qefNN16/rnZIZ9VnbcG806VBy2z8IzI5wcdWR7p
 vzxhbCqVqOHcEdEwRwvuM2io67MWvkGtKsbCP+33DBh8SubpsECpKN4nIDboa3SE
 CJ15RUqXnF6enmmfCKOoHZeu7iXWDz6Pi71XmRzaj9DqbITVV281IerqLgV3rbal
 BVa53+202iD0IP+2b7KedGe/5ALlI97ffN0gB+L/eB832853DKSZQKzcvvpRhEN7
 Iv2crnUwuQED9ns8P7hzp1Bk9CFCAOLW8UM43YwZRPWnmdeSsPJusJ5lzkAf7bss
 wfsFoUE3RaY4msnuHyCh
 =kv2M
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "These add a new framework for CPU idle time injection, to be used by
  all of the idle injection code in the kernel in the future, fix some
  issues and add a number of relatively small extensions in multiple
  places.

  Specifics:

   - Add a new framework for CPU idle time injection (Daniel Lezcano).

   - Add AVS support to the armada-37xx cpufreq driver (Gregory
     CLEMENT).

   - Add support for current CPU frequency reporting to the ACPI CPPC
     cpufreq driver (George Cherian).

   - Rework the cooling device registration in the imx6q/thermal driver
     (Bastian Stender).

   - Make the pcc-cpufreq driver refuse to work with dynamic scaling
     governors on systems with many CPUs to avoid scalability issues
     with it (Rafael Wysocki).

   - Fix the intel_pstate driver to report different maximum CPU
     frequencies on systems where they really are different and to
     ignore the turbo active ratio if hardware-managend P-states (HWP)
     are in use; make it use the match_string() helper (Xie Yisheng,
     Srinivas Pandruvada).

   - Fix a minor deferred probe issue in the qcom-kryo cpufreq driver
     (Niklas Cassel).

   - Add a tracepoint for the tracking of frequency limits changes (from
     Andriod) to the cpufreq core (Ruchi Kandoi).

   - Fix a circular lock dependency between CPU hotplug and sysfs
     locking in the cpufreq core reported by lockdep (Waiman Long).

   - Avoid excessive error reports on driver registration failures in
     the ARM cpuidle driver (Sudeep Holla).

   - Add a new device links flag to the driver core to make links go
     away automatically on supplier driver removal (Vivek Gautam).

   - Eliminate potential race condition between system-wide power
     management transitions and system shutdown (Pingfan Liu).

   - Add a quirk to save NVS memory on system suspend for the ASUS 1025C
     laptop (Willy Tarreau).

   - Make more systems use suspend-to-idle (instead of ACPI S3) by
     default (Tristian Celestin).

   - Get rid of stack VLA usage in the low-level hibernation code on
     64-bit x86 (Kees Cook).

   - Fix error handling in the hibernation core and mark an expected
     fall-through switch in it (Chengguang Xu, Gustavo Silva).

   - Extend the generic power domains (genpd) framework to support
     attaching a device to a power domain by name (Ulf Hansson).

   - Fix device reference counting and user limits initialization in the
     devfreq core (Arvind Yadav, Matthias Kaehlcke).

   - Fix a few issues in the rk3399_dmc devfreq driver and improve its
     documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).

   - Drop a redundant error message from the exynos-ppmu devfreq driver
     (Markus Elfring)"

* tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (35 commits)
  PM / reboot: Eliminate race between reboot and suspend
  PM / hibernate: Mark expected switch fall-through
  cpufreq: intel_pstate: Ignore turbo active ratio in HWP
  cpufreq: Fix a circular lock dependency problem
  cpu/hotplug: Add a cpus_read_trylock() function
  x86/power/hibernate_64: Remove VLA usage
  cpufreq: trace frequency limits change
  cpufreq: intel_pstate: Show different max frequency with turbo 3 and HWP
  cpufreq: pcc-cpufreq: Disable dynamic scaling on many-CPU systems
  cpufreq: qcom-kryo: Silently error out on EPROBE_DEFER
  cpufreq / CPPC: Add cpuinfo_cur_freq support for CPPC
  cpufreq: armada-37xx: Add AVS support
  dt-bindings: marvell: Add documentation for the Armada 3700 AVS binding
  PM / devfreq: rk3399_dmc: Fix duplicated opp table on reload.
  PM / devfreq: Init user limits from OPP limits, not viceversa
  PM / devfreq: rk3399_dmc: fix spelling mistakes.
  PM / devfreq: rk3399_dmc: do not print error when get supply and clk defer.
  dt-bindings: devfreq: rk3399_dmc: move interrupts to be optional.
  PM / devfreq: rk3399_dmc: remove wait for dcf irq event.
  dt-bindings: clock: add rk3399 DDR3 standard speed bins.
  ...
2018-08-14 13:12:24 -07:00
Linus Torvalds
958f338e96 Merge branch 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner:
 "L1TF, aka L1 Terminal Fault, is yet another speculative hardware
  engineering trainwreck. It's a hardware vulnerability which allows
  unprivileged speculative access to data which is available in the
  Level 1 Data Cache when the page table entry controlling the virtual
  address, which is used for the access, has the Present bit cleared or
  other reserved bits set.

  If an instruction accesses a virtual address for which the relevant
  page table entry (PTE) has the Present bit cleared or other reserved
  bits set, then speculative execution ignores the invalid PTE and loads
  the referenced data if it is present in the Level 1 Data Cache, as if
  the page referenced by the address bits in the PTE was still present
  and accessible.

  While this is a purely speculative mechanism and the instruction will
  raise a page fault when it is retired eventually, the pure act of
  loading the data and making it available to other speculative
  instructions opens up the opportunity for side channel attacks to
  unprivileged malicious code, similar to the Meltdown attack.

  While Meltdown breaks the user space to kernel space protection, L1TF
  allows to attack any physical memory address in the system and the
  attack works across all protection domains. It allows an attack of SGX
  and also works from inside virtual machines because the speculation
  bypasses the extended page table (EPT) protection mechanism.

  The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646

  The mitigations provided by this pull request include:

   - Host side protection by inverting the upper address bits of a non
     present page table entry so the entry points to uncacheable memory.

   - Hypervisor protection by flushing L1 Data Cache on VMENTER.

   - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
     by offlining the sibling CPU threads. The knobs are available on
     the kernel command line and at runtime via sysfs

   - Control knobs for the hypervisor mitigation, related to L1D flush
     and SMT control. The knobs are available on the kernel command line
     and at runtime via sysfs

   - Extensive documentation about L1TF including various degrees of
     mitigations.

  Thanks to all people who have contributed to this in various ways -
  patches, review, testing, backporting - and the fruitful, sometimes
  heated, but at the end constructive discussions.

  There is work in progress to provide other forms of mitigations, which
  might be less horrible performance wise for a particular kind of
  workloads, but this is not yet ready for consumption due to their
  complexity and limitations"

* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
  x86/microcode: Allow late microcode loading with SMT disabled
  tools headers: Synchronise x86 cpufeatures.h for L1TF additions
  x86/mm/kmmio: Make the tracer robust against L1TF
  x86/mm/pat: Make set_memory_np() L1TF safe
  x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
  x86/speculation/l1tf: Invert all not present mappings
  cpu/hotplug: Fix SMT supported evaluation
  KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
  x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
  x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
  Documentation/l1tf: Remove Yonah processors from not vulnerable list
  x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
  x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
  x86: Don't include linux/irq.h from asm/hardirq.h
  x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
  x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
  x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
  x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
  x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
  cpu/hotplug: detect SMT disabled by BIOS
  ...
2018-08-14 09:46:06 -07:00
Linus Torvalds
b5b1404d08 init: rename and re-order boot_cpu_state_init()
This is purely a preparatory patch for upcoming changes during the 4.19
merge window.

We have a function called "boot_cpu_state_init()" that isn't really
about the bootup cpu state: that is done much earlier by the similarly
named "boot_cpu_init()" (note lack of "state" in name).

This function initializes some hotplug CPU state, and needs to run after
the percpu data has been properly initialized.  It even has a comment to
that effect.

Except it _doesn't_ actually run after the percpu data has been properly
initialized.  On x86 it happens to do that, but on at least arm and
arm64, the percpu base pointers are initialized by the arch-specific
'smp_prepare_boot_cpu()' hook, which ran _after_ boot_cpu_state_init().

This had some unexpected results, and in particular we have a patch
pending for the merge window that did the obvious cleanup of using
'this_cpu_write()' in the cpu hotplug init code:

  -       per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
  +       this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);

which is obviously the right thing to do.  Except because of the
ordering issue, it actually failed miserably and unexpectedly on arm64.

So this just fixes the ordering, and changes the name of the function to
be 'boot_cpu_hotplug_init()' to make it obvious that it's about cpu
hotplug state, because the core CPU state was supposed to have already
been done earlier.

Marked for stable, since the (not yet merged) patch that will show this
problem is marked for stable.

Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Mian Yousaf Kaukab <yousaf.kaukab@suse.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-12 12:19:42 -07:00
Thomas Gleixner
bc2d8d262c cpu/hotplug: Fix SMT supported evaluation
Josh reported that the late SMT evaluation in cpu_smt_state_init() sets
cpu_smt_control to CPU_SMT_NOT_SUPPORTED in case that 'nosmt' was supplied
on the kernel command line as it cannot differentiate between SMT disabled
by BIOS and SMT soft disable via 'nosmt'. That wreckages the state and
makes the sysfs interface unusable.

Rework this so that during bringup of the non boot CPUs the availability of
SMT is determined in cpu_smt_allowed(). If a newly booted CPU is not a
'primary' thread then set the local cpu_smt_available marker and evaluate
this explicitely right after the initial SMP bringup has finished.

SMT evaulation on x86 is a trainwreck as the firmware has all the
information _before_ booting the kernel, but there is no interface to query
it.

Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-08-07 12:25:30 +02:00
Waiman Long
6f4ceee930 cpu/hotplug: Add a cpus_read_trylock() function
There are use cases where it can be useful to have a cpus_read_trylock()
function to work around circular lock dependency problem involving
the cpu_hotplug_lock.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-07-26 10:37:36 +02:00
Thomas Gleixner
fee0aede6f cpu/hotplug: Set CPU_SMT_NOT_SUPPORTED early
The CPU_SMT_NOT_SUPPORTED state is set (if the processor does not support
SMT) when the sysfs SMT control file is initialized.

That was fine so far as this was only required to make the output of the
control file correct and to prevent writes in that case.

With the upcoming l1tf command line parameter, this needs to be set up
before the L1TF mitigation selection and command line parsing happens.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.121795971@linutronix.de
2018-07-13 16:29:56 +02:00
Jiri Kosina
8e1b706b6e cpu/hotplug: Expose SMT control init function
The L1TF mitigation will gain a commend line parameter which allows to set
a combination of hypervisor mitigation and SMT control.

Expose cpu_smt_disable() so the command line parser can tweak SMT settings.

[ tglx: Split out of larger patch and made it preserve an already existing
  	force off state ]

Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.039715135@linutronix.de
2018-07-13 16:29:55 +02:00
Thomas Gleixner
05736e4ac1 cpu/hotplug: Provide knobs to control SMT
Provide a command line and a sysfs knob to control SMT.

The command line options are:

 'nosmt':	Enumerate secondary threads, but do not online them
 		
 'nosmt=force': Ignore secondary threads completely during enumeration
 		via MP table and ACPI/MADT.

The sysfs control file has the following states (read/write):

 'on':		 SMT is enabled. Secondary threads can be freely onlined
 'off':		 SMT is disabled. Secondary threads, even if enumerated
 		 cannot be onlined
 'forceoff':	 SMT is permanentely disabled. Writes to the control
 		 file are rejected.
 'notsupported': SMT is not supported by the CPU

The command line option 'nosmt' sets the sysfs control to 'off'. This
can be changed to 'on' to reenable SMT during runtime.

The command line option 'nosmt=force' sets the sysfs control to
'forceoff'. This cannot be changed during runtime.

When SMT is 'on' and the control file is changed to 'off' then all online
secondary threads are offlined and attempts to online a secondary thread
later on are rejected.

When SMT is 'off' and the control file is changed to 'on' then secondary
threads can be onlined again. The 'off' -> 'on' transition does not
automatically online the secondary threads.

When the control file is set to 'forceoff', the behaviour is the same as
setting it to 'off', but the operation is irreversible and later writes to
the control file are rejected.

When the control status is 'notsupported' then writes to the control file
are rejected.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
2018-06-21 14:20:58 +02:00
Andi Kleen
17dbca1193 x86/speculation/l1tf: Add sysfs reporting for l1tf
L1TF core kernel workarounds are cheap and normally always enabled, However
they still should be reported in sysfs if the system is vulnerable or
mitigated. Add the necessary CPU feature/bug bits.

- Extend the existing checks for Meltdowns to determine if the system is
  vulnerable. All CPUs which are not vulnerable to Meltdown are also not
  vulnerable to L1TF

- Check for 32bit non PAE and emit a warning as there is no practical way
  for mitigation due to the limited physical address bits

- If the system has more than MAX_PA/2 physical memory the invert page
  workarounds don't protect the system against the L1TF attack anymore,
  because an inverted physical address will also point to valid
  memory. Print a warning in this case and report that the system is
  vulnerable.

Add a function which returns the PFN limit for the L1TF mitigation, which
will be used in follow up patches for sanity and range checks.

[ tglx: Renamed the CPU feature bit to L1TF_PTEINV ]

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-20 19:10:00 +02:00
Konrad Rzeszutek Wilk
c456442cd3 x86/bugs: Expose /sys/../spec_store_bypass
Add the sysfs file for the new vulerability. It does not do much except
show the words 'Vulnerable' for recent x86 cores.

Intel cores prior to family 6 are known not to be vulnerable, and so are
some Atoms and some Xeon Phi.

It assumes that older Cyrix, Centaur, etc. cores are immune.

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
2018-05-03 13:55:47 +02:00
Linus Torvalds
40548c6b6c Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Thomas Gleixner:
 "This contains:

   - a PTI bugfix to avoid setting reserved CR3 bits when PCID is
     disabled. This seems to cause issues on a virtual machine at least
     and is incorrect according to the AMD manual.

   - a PTI bugfix which disables the perf BTS facility if PTI is
     enabled. The BTS AUX buffer is not globally visible and causes the
     CPU to fault when the mapping disappears on switching CR3 to user
     space. A full fix which restores BTS on PTI is non trivial and will
     be worked on.

   - PTI bugfixes for EFI and trusted boot which make sure that the user
     space visible page table entries have the NX bit cleared

   - removal of dead code in the PTI pagetable setup functions

   - add PTI documentation

   - add a selftest for vsyscall to verify that the kernel actually
     implements what it advertises.

   - a sysfs interface to expose vulnerability and mitigation
     information so there is a coherent way for users to retrieve the
     status.

   - the initial spectre_v2 mitigations, aka retpoline:

      + The necessary ASM thunk and compiler support

      + The ASM variants of retpoline and the conversion of affected ASM
        code

      + Make LFENCE serializing on AMD so it can be used as speculation
        trap

      + The RSB fill after vmexit

   - initial objtool support for retpoline

  As I said in the status mail this is the most of the set of patches
  which should go into 4.15 except two straight forward patches still on
  hold:

   - the retpoline add on of LFENCE which waits for ACKs

   - the RSB fill after context switch

  Both should be ready to go early next week and with that we'll have
  covered the major holes of spectre_v2 and go back to normality"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
  x86,perf: Disable intel_bts when PTI
  security/Kconfig: Correct the Documentation reference for PTI
  x86/pti: Fix !PCID and sanitize defines
  selftests/x86: Add test_vsyscall
  x86/retpoline: Fill return stack buffer on vmexit
  x86/retpoline/irq32: Convert assembler indirect jumps
  x86/retpoline/checksum32: Convert assembler indirect jumps
  x86/retpoline/xen: Convert Xen hypercall indirect jumps
  x86/retpoline/hyperv: Convert assembler indirect jumps
  x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
  x86/retpoline/entry: Convert entry assembler indirect jumps
  x86/retpoline/crypto: Convert crypto assembler indirect jumps
  x86/spectre: Add boot time option to select Spectre v2 mitigation
  x86/retpoline: Add initial retpoline support
  objtool: Allow alternatives to be ignored
  objtool: Detect jumps to retpoline thunks
  x86/pti: Make unpoison of pgd for trusted boot work for real
  x86/alternatives: Fix optimize_nops() checking
  sysfs/cpu: Fix typos in vulnerability documentation
  x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
  ...
2018-01-14 09:51:25 -08:00
Thomas Gleixner
87590ce6e3 sysfs/cpu: Add vulnerability folder
As the meltdown/spectre problem affects several CPU architectures, it makes
sense to have common way to express whether a system is affected by a
particular vulnerability or not. If affected the way to express the
mitigation should be common as well.

Create /sys/devices/system/cpu/vulnerabilities folder and files for
meltdown, spectre_v1 and spectre_v2.

Allow architectures to override the show function.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180107214913.096657732@linutronix.de
2018-01-08 11:10:33 +01:00
Linus Torvalds
7d58e1c905 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp/hotplug updates from Thomas Gleixner:
 "No functional changes, just removal of obsolete and outdated defines,
  macros and documentation"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  cpu/hotplug: Get rid of CPU hotplug notifier leftovers
  cpu/hotplug: Remove obsolete notifier macros
2017-11-13 18:23:19 -08:00
Thomas Gleixner
f4c09f87ad cpu/hotplug: Get rid of CPU hotplug notifier leftovers
The CPU hotplug notifiers are history. Remove the last reminders.

Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-11-13 10:03:53 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Yanjiang Jin
c6cd924efe cpu/hotplug: Remove obsolete notifier macros
commit 530e9b76ae ("cpu/hotplug: Remove obsolete cpu hotplug
register/unregister functions")' removed the below macros:

- #define CPU_UP_CANCELED 0x0004 /* CPU (unsigned)v NOT coming up */
- #define CPU_DOWN_PREPARE 0x0005 /* CPU (unsigned)v going down */
- #define CPU_DOWN_FAILED 0x0006 /* CPU (unsigned)v NOT going down */

But "CPU_UP_CANCELED_FROZEN, CPU_DOWN_PREPARE_FROZEN and
CPU_DOWN_FAILED_FROZEN" still refer to them, and nobody uses these "FROZEN"
macros now, so remove them too.

Signed-off-by: Yanjiang Jin <yanjiang.jin@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Cc: bigeasy@linutronix.de
Cc: jinyanjiang@gmail.com
Link: https://lkml.kernel.org/r/20171024062341.179678-1-yanjiang.jin@windriver.com
2017-10-24 10:43:52 +02:00
Thomas Gleixner
fc8dffd379 cpu/hotplug: Convert hotplug locking to percpu rwsem
There are no more (known) nested calls to get_online_cpus() and all
observed lock ordering problems have been addressed.

Replace the magic nested 'rwsem' hackery with a percpu-rwsem.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170524081549.447014063@linutronix.de
2017-05-26 10:10:46 +02:00
Thomas Gleixner
ade3f680a7 cpu/hotplug: Provide lockdep_assert_cpus_held()
Provide a stub function which can be used in places where existing
get_online_cpus() calls are moved to call sites.

This stub is going to be filled by the final conversion of the hotplug
locking mechanism to a percpu rwsem.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170524081547.161282442@linutronix.de
2017-05-26 10:10:35 +02:00
Thomas Gleixner
8f553c498e cpu/hotplug: Provide cpus_read|write_[un]lock()
The counting 'rwsem' hackery of get|put_online_cpus() is going to be
replaced by percpu rwsem.

Rename the functions to make it clear that it's locking and not some
refcount style interface. These new functions will be used for the
preparatory patches which make the code ready for the percpu rwsem
conversion.

Rename all instances in the cpu hotplug code while at it.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170524081547.080397752@linutronix.de
2017-05-26 10:10:34 +02:00
Ingo Molnar
1777e46355 sched/headers: Prepare to move _init() prototypes from <linux/sched.h> to <linux/sched/init.h>
But first introduce a trivial header and update usage sites.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:40 +01:00
Thomas Gleixner
530e9b76ae cpu/hotplug: Remove obsolete cpu hotplug register/unregister functions
hotcpu_notifier(), cpu_notifier(), __hotcpu_notifier(), __cpu_notifier(),
register_hotcpu_notifier(), register_cpu_notifier(),
__register_hotcpu_notifier(), __register_cpu_notifier(),
unregister_hotcpu_notifier(), unregister_cpu_notifier(),
__unregister_hotcpu_notifier(), __unregister_cpu_notifier()

are unused now. Remove them and all related code.

Remove also the now pointless cpu notifier error injection mechanism. The
states can be executed step by step and error rollback is the same as cpu
down, so any state transition can be tested w/o requiring the notifier
error injection.

Some CPU hotplug states are kept as they are (ab)used for hotplug state
tracking.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20161221192112.005642358@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-25 10:47:43 +01:00
Linus Torvalds
7b9dc3f75f Power management material for v4.10-rc1
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
    for it (Markus Mayer).
 
  - Support for ARM Integrator/AP and Integrator/CP in the generic
    DT cpufreq driver and elimination of the old Integrator cpufreq
    driver (Linus Walleij).
 
  - Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
    and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
    Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik).
 
  - cpufreq core fix to eliminate races that may lead to using
    inactive policy objects and related cleanups (Rafael Wysocki).
 
  - cpufreq schedutil governor update to make it use SCHED_FIFO
    kernel threads (instead of regular workqueues) for doing delayed
    work (to reduce the response latency in some cases) and related
    cleanups (Viresh Kumar).
 
  - New cpufreq sysfs attribute for resetting statistics (Markus
    Mayer).
 
  - cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
    Viresh Kumar).
 
  - Support for using generic cpufreq governors in the intel_pstate
    driver (Rafael Wysocki).
 
  - Support for per-logical-CPU P-state limits and the EPP/EPB
    (Energy Performance Preference/Energy Performance Bias) knobs
    in the intel_pstate driver (Srinivas Pandruvada).
 
  - New CPU ID for Knights Mill in intel_pstate (Piotr Luc).
 
  - intel_pstate driver modification to use the P-state selection
    algorithm based on CPU load on platforms with the system profile
    in the ACPI tables set to "mobile" (Srinivas Pandruvada).
 
  - intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
    Srinivas Pandruvada).
 
  - cpufreq powernv driver updates including fast switching support
    (for the schedutil governor), fixes and cleanus (Akshay Adiga,
    Andrew Donnellan, Denis Kirjanov).
 
  - acpi-cpufreq driver rework to switch it over to the new CPU
    offline/online state machine (Sebastian Andrzej Siewior).
 
  - Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
    Prakash).
 
  - Idle injection rework (to make it use the regular idle path
    instead of a home-grown custom one) and related powerclamp
    thermal driver updates (Peter Zijlstra, Jacob Pan, Petr Mladek,
    Sebastian Andrzej Siewior).
 
  - New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
    Shevchenko, Piotr Luc).
 
  - intel_idle driver cleanups and switch over to using the new CPU
    offline/online state machine (Anna-Maria Gleixner, Sebastian
    Andrzej Siewior).
 
  - cpuidle DT driver update to support suspend-to-idle properly
    (Sudeep Holla).
 
  - cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
    Rafael Wysocki).
 
  - Preliminary support for power domains including CPUs in the
    generic power domains (genpd) framework and related DT bindings
    (Lina Iyer).
 
  - Assorted fixes and cleanups in the generic power domains (genpd)
    framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven).
 
  - Preliminary support for devices with multiple voltage regulators
    and related fixes and cleanups in the Operating Performance Points
    (OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd).
 
  - System sleep state selection interface rework to make it easier
    to support suspend-to-idle as the default system suspend method
    (Rafael Wysocki).
 
  - PM core fixes and cleanups, mostly related to the interactions
    between the system suspend and runtime PM frameworks (Ulf Hansson,
    Sahitya Tummala, Tony Lindgren).
 
  - Latency tolerance PM QoS framework imorovements (Andrew
    Lutomirski).
 
  - New Knights Mill CPU ID for the Intel RAPL power capping driver
    (Piotr Luc).
 
  - Intel RAPL power capping driver fixes, cleanups and switch over
    to using the new CPU offline/online state machine (Jacob Pan,
    Thomas Gleixner, Sebastian Andrzej Siewior).
 
  - Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
    rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
    Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh
    Kumar).
 
  - Fix for false-positive KASAN warnings during resume from ACPI S3
    (suspend-to-RAM) on x86 (Josh Poimboeuf).
 
  - Memory map verification during resume from hibernation on x86 to
    ensure a consistent address space layout (Chen Yu).
 
  - Wakeup sources debugging enhancement (Xing Wei).
 
  - rockchip-io AVS driver cleanup (Shawn Lin).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJYTx4+AAoJEILEb/54YlRx9f8P/2SlNHUENW5qh6FtCw00oC2u
 UqJerQJ2L38UgbgxbE/0VYblma9rFABDWC1eO2xN2XdcdW5UPBKPVvNcOgNe1Clh
 gjy3RxZXVpmjfzt2kGfsTLEuGnHqwvx51hTUkeA2LwvkOal45xb8ZESmy8opCtiv
 iG4LwmPHoxdX5Za5nA9ItFKzxyO1EoyNSnBYAVwALDHxmNOfxEcRevfurASt/0M9
 brCCZJA0/sZxeL0lBdy8fNQPIBTUfCoTJG/MtmzGrObJ9wMFvEDfXrVEyZiWs/zA
 AAZ4kQL77enrIKgrLN8e0G6LzTLHoVcvn38Xjf24dKUqhd7ACBhYcnW+jK3+7EAd
 gjZ8efObQsiuyK/EDLUNw35tt96CHOqfrQCj2tIwRVvk9EekLqAGXdIndTCr2kYW
 RpefmP5kMljnm/nQFOVLwMEUQMuVkvUE7EgxADy7DoDmepBFC4ICRDWPye70R2kC
 0O1Tn2PAQq4Fd1tyI9TYYz0YQQkRoaRb5rfYUSzbRbeCdsphUopp4Vhsiyn6IcnF
 XnLbg6pRAat82MoS9n4pfO/VCo8vkErKA8tut9G7TDakkrJoEE7l31PdKW0hP3f6
 sBo6xXy6WTeivU/o/i8TbM6K4mA37pBaj78ooIkWLgg5fzRaS2+0xSPVy2H9x1m5
 LymHcobCK9rSZ1l208Fe
 =vhxI
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "Again, cpufreq gets more changes than the other parts this time (one
  new driver, one old driver less, a bunch of enhancements of the
  existing code, new CPU IDs, fixes, cleanups)

  There also are some changes in cpuidle (idle injection rework, a
  couple of new CPU IDs, online/offline rework in intel_idle, fixes and
  cleanups), in the generic power domains framework (mostly related to
  supporting power domains containing CPUs), and in the Operating
  Performance Points (OPP) library (mostly related to supporting devices
  with multiple voltage regulators)

  In addition to that, the system sleep state selection interface is
  modified to make it easier for distributions with unchanged user space
  to support suspend-to-idle as the default system suspend method, some
  issues are fixed in the PM core, the latency tolerance PM QoS
  framework is improved a bit, the Intel RAPL power capping driver is
  cleaned up and there are some fixes and cleanups in the devfreq
  subsystem

  Specifics:

   - New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
     for it (Markus Mayer)

   - Support for ARM Integrator/AP and Integrator/CP in the generic DT
     cpufreq driver and elimination of the old Integrator cpufreq driver
     (Linus Walleij)

   - Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
     and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
     Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik)

   - cpufreq core fix to eliminate races that may lead to using inactive
     policy objects and related cleanups (Rafael Wysocki)

   - cpufreq schedutil governor update to make it use SCHED_FIFO kernel
     threads (instead of regular workqueues) for doing delayed work (to
     reduce the response latency in some cases) and related cleanups
     (Viresh Kumar)

   - New cpufreq sysfs attribute for resetting statistics (Markus Mayer)

   - cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
     Viresh Kumar)

   - Support for using generic cpufreq governors in the intel_pstate
     driver (Rafael Wysocki)

   - Support for per-logical-CPU P-state limits and the EPP/EPB (Energy
     Performance Preference/Energy Performance Bias) knobs in the
     intel_pstate driver (Srinivas Pandruvada)

   - New CPU ID for Knights Mill in intel_pstate (Piotr Luc)

   - intel_pstate driver modification to use the P-state selection
     algorithm based on CPU load on platforms with the system profile in
     the ACPI tables set to "mobile" (Srinivas Pandruvada)

   - intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
     Srinivas Pandruvada)

   - cpufreq powernv driver updates including fast switching support
     (for the schedutil governor), fixes and cleanus (Akshay Adiga,
     Andrew Donnellan, Denis Kirjanov)

   - acpi-cpufreq driver rework to switch it over to the new CPU
     offline/online state machine (Sebastian Andrzej Siewior)

   - Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
     Prakash)

   - Idle injection rework (to make it use the regular idle path instead
     of a home-grown custom one) and related powerclamp thermal driver
     updates (Peter Zijlstra, Jacob Pan, Petr Mladek, Sebastian Andrzej
     Siewior)

   - New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
     Shevchenko, Piotr Luc)

   - intel_idle driver cleanups and switch over to using the new CPU
     offline/online state machine (Anna-Maria Gleixner, Sebastian
     Andrzej Siewior)

   - cpuidle DT driver update to support suspend-to-idle properly
     (Sudeep Holla)

   - cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
     Rafael Wysocki)

   - Preliminary support for power domains including CPUs in the generic
     power domains (genpd) framework and related DT bindings (Lina Iyer)

   - Assorted fixes and cleanups in the generic power domains (genpd)
     framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven)

   - Preliminary support for devices with multiple voltage regulators
     and related fixes and cleanups in the Operating Performance Points
     (OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd)

   - System sleep state selection interface rework to make it easier to
     support suspend-to-idle as the default system suspend method
     (Rafael Wysocki)

   - PM core fixes and cleanups, mostly related to the interactions
     between the system suspend and runtime PM frameworks (Ulf Hansson,
     Sahitya Tummala, Tony Lindgren)

   - Latency tolerance PM QoS framework imorovements (Andrew Lutomirski)

   - New Knights Mill CPU ID for the Intel RAPL power capping driver
     (Piotr Luc)

   - Intel RAPL power capping driver fixes, cleanups and switch over to
     using the new CPU offline/online state machine (Jacob Pan, Thomas
     Gleixner, Sebastian Andrzej Siewior)

   - Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
     rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
     Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh Kumar)

   - Fix for false-positive KASAN warnings during resume from ACPI S3
     (suspend-to-RAM) on x86 (Josh Poimboeuf)

   - Memory map verification during resume from hibernation on x86 to
     ensure a consistent address space layout (Chen Yu)

   - Wakeup sources debugging enhancement (Xing Wei)

   - rockchip-io AVS driver cleanup (Shawn Lin)"

* tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (127 commits)
  devfreq: rk3399_dmc: Don't use OPP structures outside of RCU locks
  devfreq: rk3399_dmc: Remove dangling rcu_read_unlock()
  devfreq: exynos: Don't use OPP structures outside of RCU locks
  Documentation: intel_pstate: Document HWP energy/performance hints
  cpufreq: intel_pstate: Support for energy performance hints with HWP
  cpufreq: intel_pstate: Add locking around HWP requests
  PM / sleep: Print active wakeup sources when blocking on wakeup_count reads
  PM / core: Fix bug in the error handling of async suspend
  PM / wakeirq: Fix dedicated wakeirq for drivers not using autosuspend
  PM / Domains: Fix compatible for domain idle state
  PM / OPP: Don't WARN on multiple calls to dev_pm_opp_set_regulators()
  PM / OPP: Allow platform specific custom set_opp() callbacks
  PM / OPP: Separate out _generic_set_opp()
  PM / OPP: Add infrastructure to manage multiple regulators
  PM / OPP: Pass struct dev_pm_opp_supply to _set_opp_voltage()
  PM / OPP: Manage supply's voltage/current in a separate structure
  PM / OPP: Don't use OPP structure outside of rcu protected section
  PM / OPP: Reword binding supporting multiple regulators per device
  PM / OPP: Fix incorrect cpu-supply property in binding
  cpuidle: Add a kerneldoc comment to cpuidle_use_deepest_state()
  ..
2016-12-13 10:41:53 -08:00
Michal Hocko
777c6e0dae hotplug: Make register and unregister notifier API symmetric
Yu Zhao has noticed that __unregister_cpu_notifier only unregisters its
notifiers when HOTPLUG_CPU=y while the registration might succeed even
when HOTPLUG_CPU=n if MODULE is enabled. This means that e.g. zswap
might keep a stale notifier on the list on the manual clean up during
the pool tear down and thus corrupt the list. Resulting in the following

[  144.964346] BUG: unable to handle kernel paging request at ffff880658a2be78
[  144.971337] IP: [<ffffffffa290b00b>] raw_notifier_chain_register+0x1b/0x40
<snipped>
[  145.122628] Call Trace:
[  145.125086]  [<ffffffffa28e5cf8>] __register_cpu_notifier+0x18/0x20
[  145.131350]  [<ffffffffa2a5dd73>] zswap_pool_create+0x273/0x400
[  145.137268]  [<ffffffffa2a5e0fc>] __zswap_param_set+0x1fc/0x300
[  145.143188]  [<ffffffffa2944c1d>] ? trace_hardirqs_on+0xd/0x10
[  145.149018]  [<ffffffffa2908798>] ? kernel_param_lock+0x28/0x30
[  145.154940]  [<ffffffffa2a3e8cf>] ? __might_fault+0x4f/0xa0
[  145.160511]  [<ffffffffa2a5e237>] zswap_compressor_param_set+0x17/0x20
[  145.167035]  [<ffffffffa2908d3c>] param_attr_store+0x5c/0xb0
[  145.172694]  [<ffffffffa290848d>] module_attr_store+0x1d/0x30
[  145.178443]  [<ffffffffa2b2b41f>] sysfs_kf_write+0x4f/0x70
[  145.183925]  [<ffffffffa2b2a5b9>] kernfs_fop_write+0x149/0x180
[  145.189761]  [<ffffffffa2a99248>] __vfs_write+0x18/0x40
[  145.194982]  [<ffffffffa2a9a412>] vfs_write+0xb2/0x1a0
[  145.200122]  [<ffffffffa2a9a732>] SyS_write+0x52/0xa0
[  145.205177]  [<ffffffffa2ff4d97>] entry_SYSCALL_64_fastpath+0x12/0x17

This can be even triggered manually by changing
/sys/module/zswap/parameters/compressor multiple times.

Fix this issue by making unregister APIs symmetric to the register so
there are no surprises.

Fixes: 47e627bc8c ("[PATCH] hotplug: Allow modules to use the cpu hotplug notifiers even if !CONFIG_HOTPLUG_CPU")
Reported-and-tested-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Link: http://lkml.kernel.org/r/20161207135438.4310-1-mhocko@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-08 10:08:41 +01:00
Peter Zijlstra
c1de45ca83 sched/idle: Add support for tasks that inject idle
Idle injection drivers such as Intel powerclamp and ACPI PAD drivers use
realtime tasks to take control of CPU then inject idle. There are two
issues with this approach:

 1. Low efficiency: injected idle task is treated as busy so sched ticks
    do not stop during injected idle period, the result of these
    unwanted wakeups can be ~20% loss in power savings.

 2. Idle accounting: injected idle time is presented to user as busy.

This patch addresses the issues by introducing a new PF_IDLE flag which
allows any given task to be treated as idle task while the flag is set.
Therefore, idle injection tasks can run through the normal flow of NOHZ
idle enter/exit to get the correct accounting as well as tick stop when
possible.

The implication is that idle task is then no longer limited to PID == 0.

Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-29 14:02:21 +01:00
Chris Metcalf
6727ad9e20 nmi_backtrace: generate one-line reports for idle cpus
When doing an nmi backtrace of many cores, most of which are idle, the
output is a little overwhelming and very uninformative.  Suppress
messages for cpus that are idling when they are interrupted and just
emit one line, "NMI backtrace for N skipped: idling at pc 0xNNN".

We do this by grouping all the cpuidle code together into a new
.cpuidle.text section, and then checking the address of the interrupted
PC to see if it lies within that section.

This commit suitably tags x86 and tile idle routines, and only adds in
the minimal framework for other architectures.

Link: http://lkml.kernel.org/r/1472487169-14923-5-git-send-email-cmetcalf@mellanox.com
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org> [arm]
Tested-by: Petr Mladek <pmladek@suse.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:30 -07:00
Linus Torvalds
597f03f9d1 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug updates from Thomas Gleixner:
 "Yet another batch of cpu hotplug core updates and conversions:

   - Provide core infrastructure for multi instance drivers so the
     drivers do not have to keep custom lists.

   - Convert custom lists to the new infrastructure. The block-mq custom
     list conversion comes through the block tree and makes the diffstat
     tip over to more lines removed than added.

   - Handle unbalanced hotplug enable/disable calls more gracefully.

   - Remove the obsolete CPU_STARTING/DYING notifier support.

   - Convert another batch of notifier users.

   The relayfs changes which conflicted with the conversion have been
   shipped to me by Andrew.

   The remaining lot is targeted for 4.10 so that we finally can remove
   the rest of the notifiers"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
  cpufreq: Fix up conversion to hotplug state machine
  blk/mq: Reserve hotplug states for block multiqueue
  x86/apic/uv: Convert to hotplug state machine
  s390/mm/pfault: Convert to hotplug state machine
  mips/loongson/smp: Convert to hotplug state machine
  mips/octeon/smp: Convert to hotplug state machine
  fault-injection/cpu: Convert to hotplug state machine
  padata: Convert to hotplug state machine
  cpufreq: Convert to hotplug state machine
  ACPI/processor: Convert to hotplug state machine
  virtio scsi: Convert to hotplug state machine
  oprofile/timer: Convert to hotplug state machine
  block/softirq: Convert to hotplug state machine
  lib/irq_poll: Convert to hotplug state machine
  x86/microcode: Convert to hotplug state machine
  sh/SH-X3 SMP: Convert to hotplug state machine
  ia64/mca: Convert to hotplug state machine
  ARM/OMAP/wakeupgen: Convert to hotplug state machine
  ARM/shmobile: Convert to hotplug state machine
  arm64/FP/SIMD: Convert to hotplug state machine
  ...
2016-10-03 19:43:08 -07:00
Thomas Gleixner
ee1e714b94 cpu/hotplug: Remove CPU_STARTING and CPU_DYING notifier
All users are converted to state machine, remove CPU_STARTING and the
corresponding CPU_DYING.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160818125731.27256-2-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-06 18:30:19 +02:00
James Morse
d391e55229 cpu/hotplug: Allow suspend/resume CPU to be specified
disable_nonboot_cpus() assumes that the lowest numbered online CPU is
the boot CPU, and that this is the correct CPU to run any power
management code on.

On x86 this is always correct, as CPU0 cannot (easily) by taken offline.

On arm64 CPU0 can be taken offline. For hibernate/resume this means we
may hibernate on a CPU other than CPU0. If the system is rebooted with
kexec 'CPU0' will be assigned to a different physical CPU. This
complicates hibernate/resume as now we can't trust the CPU numbers.
Arch code can find the correct physical CPU, and ensure it is online
before resume from hibernate begins, but also needs to influence
disable_nonboot_cpus()s choice of CPU.

Rename disable_nonboot_cpus() as freeze_secondary_cpus() and add an
argument indicating which CPU should be left standing. Follow the logic
in migrate_to_reboot_cpu() to use the lowest numbered online CPU if the
requested CPU is not online.
Add disable_nonboot_cpus() as an inline function that has the existing
behaviour.

Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-08-26 11:20:11 +01:00
Thomas Gleixner
7ee681b252 workqueue: Convert to state machine callbacks
Get rid of the prio ordering of the separate notifiers and use a proper state
callback pair.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153335.197083890@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-14 09:34:43 +02:00
Thomas Gleixner
89ab9cb169 perf/core: Remove perf CPU notifier code
All users converted to state machine callbacks.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153335.115333381@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-14 09:34:42 +02:00
Thomas Gleixner
f2785ddb53 sched/hotplug: Move migration CPU_DYING to sched_cpu_dying()
Remove the hotplug notifier and make it an explicit state.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.502222097@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:25 +02:00
Thomas Gleixner
40190a78f8 sched/hotplug: Convert cpu_[in]active notifiers to state machine
Now that we reduced everything into single notifiers, it's simple to move them
into the hotplug state machine space.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:24 +02:00
Thomas Gleixner
135fb3e197 sched: Consolidate the notifier maze
We can maintain the ordering of the scheduler cpu hotplug functionality nicely
in one notifer. Get rid of the maze.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:23 +02:00
Thomas Gleixner
27d50c7eeb rcu: Make CPU_DYING_IDLE an explicit call
Make the RCU CPU_DYING_IDLE callback an explicit function call, so it gets
invoked at the proper place.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.870167933@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-03-01 20:36:58 +01:00
Thomas Gleixner
e69aab1311 cpu/hotplug: Make wait for dead cpu completion based
Kill the busy spinning on the control side and just wait for the hotplugged
cpu to tell that it reached the dead state.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.776157858@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-03-01 20:36:58 +01:00
Thomas Gleixner
931ef16330 cpu/hotplug: Unpark smpboot threads from the state machine
Handle the smpboot threads in the state machine.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.295777684@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-03-01 20:36:56 +01:00
Thomas Gleixner
cff7d378d3 cpu/hotplug: Convert to a state machine for the control processor
Move the split out steps into a callback array and let the cpu_up/down
code iterate through the array functions. For now most of the
callbacks are asymmetric to resemble the current hotplug maze.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182340.671816690@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-03-01 20:36:54 +01:00
Thomas Gleixner
090e77c391 cpu/hotplug: Restructure FROZEN state handling
There are only a few callbacks which really care about FROZEN
vs. !FROZEN. No need to have extra states for this.

Publish the frozen state in an extra variable which is updated under
the hotplug lock and let the users interested deal with it w/o
imposing that extra state checks on everyone.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182340.334912357@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-03-01 20:36:53 +01:00
Paul E. McKenney
02ef3c4a2a cpu: Remove try_get_online_cpus()
Now that synchronize_sched_expedited() no longer uses it, there are
no users of try_get_online_cpus() in mainline.  This commit therefore
removes it.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
2015-10-07 16:02:49 -07:00