Commit Graph

6 Commits

Author SHA1 Message Date
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Paul Mackerras
01c9348c76 powerpc: Use hardware RNG for arch_get_random_seed_* not arch_get_random_*
The hardware RNG on POWER8 and POWER7+ can be relatively slow, since
it can only supply one 64-bit value per microsecond.  Currently we
read it in arch_get_random_long(), but that slows down reading from
/dev/urandom since the code in random.c calls arch_get_random_long()
for every longword read from /dev/urandom.

Since the hardware RNG supplies high-quality entropy on every read, it
matches the semantics of arch_get_random_seed_long() better than those
of arch_get_random_long().  Therefore this commit makes the code use
the POWER8/7+ hardware RNG only for arch_get_random_seed_{long,int}
and not for arch_get_random_{long,int}.

This won't affect any other PowerPC-based platforms because none of
them currently support a hardware RNG.  To make it clear that the
ppc_md function pointer is used for arch_get_random_seed_*, we rename
it from get_random_long to get_random_seed.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-07-23 19:52:03 +10:00
Michael Ellerman
e928e9cb36 KVM: PPC: Book3S HV: Add fast real-mode H_RANDOM implementation.
Some PowerNV systems include a hardware random-number generator.
This HWRNG is present on POWER7+ and POWER8 chips and is capable of
generating one 64-bit random number every microsecond.  The random
numbers are produced by sampling a set of 64 unstable high-frequency
oscillators and are almost completely entropic.

PAPR defines an H_RANDOM hypercall which guests can use to obtain one
64-bit random sample from the HWRNG.  This adds a real-mode
implementation of the H_RANDOM hypercall.  This hypercall was
implemented in real mode because the latency of reading the HWRNG is
generally small compared to the latency of a guest exit and entry for
all the threads in the same virtual core.

Userspace can detect the presence of the HWRNG and the H_RANDOM
implementation by querying the KVM_CAP_PPC_HWRNG capability.  The
H_RANDOM hypercall implementation will only be invoked when the guest
does an H_RANDOM hypercall if userspace first enables the in-kernel
H_RANDOM implementation using the KVM_CAP_PPC_ENABLE_HCALL capability.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:29 +02:00
H. Peter Anvin
7b878d4b48 random: Add arch_has_random[_seed]()
Add predicate functions for having arch_get_random[_seed]*().  The
only current use is to avoid the loop in arch_random_refill() when
arch_get_random_seed_long() is unavailable.

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2014-03-19 22:24:08 -04:00
H. Peter Anvin
d20f78d252 x86, random: Enable the RDSEED instruction
Upcoming Intel silicon adds a new RDSEED instruction, which is similar
to RDRAND but provides a stronger guarantee: unlike RDRAND, RDSEED
will always reseed the PRNG from the true random number source between
each read.  Thus, the output of RDSEED is guaranteed to be 100%
entropic, unlike RDRAND which is only architecturally guaranteed to be
1/512 entropic (although in practice is much more.)

The RDSEED instruction takes the same time to execute as RDRAND, but
RDSEED unlike RDRAND can legitimately return failure (CF=0) due to
entropy exhaustion if too many threads on too many cores are hammering
the RDSEED instruction at the same time.  Therefore, we have to be
more conservative and only use it in places where we can tolerate
failures.

This patch introduces the primitives arch_get_random_seed_{int,long}()
but does not use it yet.

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2014-03-19 22:22:06 -04:00
Michael Ellerman
a4da0d50b2 powerpc: Implement arch_get_random_long/int() for powernv
Add the plumbing to implement arch_get_random_long/int(). It didn't seem
worth adding an extra ppc_md hook for int, so we reuse the one for long.

Add an implementation for powernv based on the hwrng found in power7+
systems. We whiten the output of the hwrng, and the result passes all
the dieharder tests.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-11 16:50:19 +11:00