As we are about to be lazy with saving and restoring the timer
registers, we prepare by moving all possible timer configuration logic
out of the hyp code. All virtual timer registers can be programmed from
EL1 and since the arch timer is always a level triggered interrupt we
can safely do this with interrupts disabled in the host kernel on the
way to the guest without taking vtimer interrupts in the host kernel
(yet).
The downside is that the cntvoff register can only be programmed from
hyp mode, so we jump into hyp mode and back to program it. This is also
safe, because the host kernel doesn't use the virtual timer in the KVM
code. It may add a little performance performance penalty, but only
until following commits where we move this operation to vcpu load/put.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Should kvm_reboot() be invoked while guest is running, an IPI
wil be issued, forcing the guest to exit and HYP being reset to
the stubs. We will then try to reenter the guest, only to get
an error (HVC_STUB_ERR).
This patch allows this case to be gracefully handled by exiting
the run loop.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We are now able to use the hyp stub to reset HYP mode. Time to
kiss __kvm_hyp_reset goodbye, and use __hyp_reset_vectors.
Tested-by: Keerthy <j-keerthy@ti.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We don't have to save/restore the VMCR on every entry to/from the guest,
since on GICv2 we can access the control interface from EL1 and on VHE
systems with GICv3 we can access the control interface from KVM running
in EL2.
GICv3 systems without VHE becomes the rare case, which has to
save/restore the register on each round trip.
Note that userspace accesses may see out-of-date values if the VCPU is
running while accessing the VGIC state via the KVM device API, but this
is already the case and it is up to userspace to quiesce the CPUs before
reading the CPU registers from the GIC for an up-to-date view.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Architecturally, TLBs are private to the (physical) CPU they're
associated with. But when multiple vcpus from the same VM are
being multiplexed on the same CPU, the TLBs are not private
to the vcpus (and are actually shared across the VMID).
Let's consider the following scenario:
- vcpu-0 maps PA to VA
- vcpu-1 maps PA' to VA
If run on the same physical CPU, vcpu-1 can hit TLB entries generated
by vcpu-0 accesses, and access the wrong physical page.
The solution to this is to keep a per-VM map of which vcpu ran last
on each given physical CPU, and invalidate local TLBs when switching
to a different vcpu from the same VM.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch allows to build and use vgic-v3 in 32-bit mode.
Unfortunately, it can not be split in several steps without extra
stubs to keep patches independent and bisectable. For instance,
virt/kvm/arm/vgic/vgic-v3.c uses function from vgic-v3-sr.c, handling
access to GICv3 cpu interface from the guest requires vgic_v3.vgic_sre
to be already defined.
It is how support has been done:
* handle SGI requests from the guest
* report configured SRE on access to GICv3 cpu interface from the guest
* required vgic-v3 macros are provided via uapi.h
* static keys are used to select GIC backend
* to make vgic-v3 build KVM_ARM_VGIC_V3 guard is removed along with
the static inlines
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
An asynchronous abort can also be triggered whilst running at EL2.
But instead of making that a new error code, we need to communicate
it to the rest of KVM together with the exit reason.
So let's hijack a single bit that allows the exception code to be
tagged with a "pending Abort" information.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
So far, KVM was getting in the way of kexec on 32bit (and the arm64
kexec hackers couldn't be bothered to fix it on 32bit...).
With simpler page tables, tearing KVM down becomes very easy, so
let's just do it.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture requires
break-before-make in such cases to avoid TLB conflicts but that's not
always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked to
the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is provided
by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this allows
uaccess functions (get_user etc.) to be implemented using LDTR/STTR
instructions. Such instructions, when run by the kernel, perform
unprivileged accesses adding an extra level of protection. The
set_fs() macro is used to "upgrade" such instruction to privileged
accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the sigcontext
information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
LepccTgykiUBqW5TRzPz
=/oS+
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Here are the main arm64 updates for 4.6. There are some relatively
intrusive changes to support KASLR, the reworking of the kernel
virtual memory layout and initial page table creation.
Summary:
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture
requires break-before-make in such cases to avoid TLB conflicts but
that's not always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked
to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
of the vmalloc space, allowing the kernel to be loaded (nearly)
anywhere in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is
provided by UEFI (efi_get_random_bytes() patches merged via the
arm64 tree, acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
but actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this
allows uaccess functions (get_user etc.) to be implemented using
LDTR/STTR instructions. Such instructions, when run by the kernel,
perform unprivileged accesses adding an extra level of protection.
The set_fs() macro is used to "upgrade" such instruction to
privileged accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the
sigcontext information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
arm64: kasan: Use actual memory node when populating the kernel image shadow
arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
arm64: Fix misspellings in comments.
arm64: efi: add missing frame pointer assignment
arm64: make mrs_s prefixing implicit in read_cpuid
arm64: enable CONFIG_DEBUG_RODATA by default
arm64: Rework valid_user_regs
arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
arm64: KVM: Move kvm_call_hyp back to its original localtion
arm64: mm: treat memstart_addr as a signed quantity
arm64: mm: list kernel sections in order
arm64: lse: deal with clobbered IP registers after branch via PLT
arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
arm64: kconfig: add submenu for 8.2 architectural features
arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
arm64: Add support for Half precision floating point
arm64: Remove fixmap include fragility
arm64: Add workaround for Cavium erratum 27456
arm64: mm: Mark .rodata as RO
...
I have no idea what these were for - probably a leftover from an
early implementation. Good bye!
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Just like on arm64, having the CP15 registers expressed as a set
of #defines has been very conflict-prone. Let's turn it into an
enum, which should make it more manageable.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we now have hooks to setup VTCR from C code, let's drop the
original VTCR setup and reimplement it as part of the HYP code.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that we've unified the way we refer to the HYP text between
arm and arm64, drop __kvm_hyp_code_start/end, and just use the
__hyp_text_start/end symbols.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to be able to spread the HYP code into multiple compilation
units, adopt a layout similar to that of arm64:
- the HYP text is emited in its own section (.hyp.text)
- two linker generated symbols are use to identify the boundaries
of that section
No functionnal change.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
KVM on arm64 uses a fixed offset between the linear mapping at EL1 and
the HYP mapping at EL2. Before we can move the kernel virtual mapping
out of the linear mapping, we have to make sure that references to kernel
symbols that are accessed via the HYP mapping are translated to their
linear equivalent.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds ARMv7 architecture TLB Flush function.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
In some cases the mcrr and mrrc instructions in combination with the ldrd
and strd instructions need to deal with 64bit value in memory. The ldrd
and strd instructions already handle endianness within word (register)
boundaries but to get effect of the whole 64bit value represented correctly,
rr_lo_hi macro is introduced and is used to swap registers positions when
the mcrr and mrrc instructions are used. That has the effect of swapping
two words.
Signed-off-by: Victor Kamensky <victor.kamensky@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
HCR.TVM traps (among other things) accesses to AMAIR0 and AMAIR1.
In order to minimise the amount of surprise a guest could generate by
trying to access these registers with caches off, add them to the
list of registers we switch/handle.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds support for running Cortex-A7 guests on Cortex-A7 hosts.
As Cortex-A7 is architecturally compatible with A15, this patch is largely just
generalising existing code. Areas where 'implementation defined' behaviour
is identical for A7 and A15 is moved to allow it to be used by both cores.
The check to ensure that coprocessor register tables are sorted correctly is
also moved in to 'common' code to avoid each new cpu doing its own check
(and possibly forgetting to do so!)
Signed-off-by: Jonathan Austin <jonathan.austin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Not saving PAR is an unfortunate oversight. If the guest performs
an AT* operation and gets scheduled out before reading the result
of the translation from PAR, it could become corrupted by another
guest or the host.
Saving this register is made slightly more complicated as KVM also
uses it on the permission fault handling path, leading to an ugly
"stash and restore" sequence. Fortunately, this is already a slow
path so we don't really care. Also, Linux doesn't do any AT*
operation, so Linux guests are not impacted by this bug.
[ Slightly tweaked to use an even register as first operand to ldrd
and strd operations in interrupts_head.S - Christoffer ]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
__kvm_tlb_flush_vmid has been renamed to __kvm_tlb_flush_vmid_ipa,
and the old prototype should have been removed when the code was
modified.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
v8 is capable of invalidating Stage-2 by IPA, but v7 is not.
Change kvm_tlb_flush_vmid() to take an IPA parameter, which is
then ignored by the invalidation code (and nuke the whole TLB
as it always did).
This allows v8 to implement a more optimized strategy.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Do the necessary save/restore dance for the timers in the world
switch code. In the process, allow the guest to read the physical
counter, which is useful for its own clock_event_device.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Handles the guest faults in KVM by mapping in corresponding user pages
in the 2nd stage page tables.
We invalidate the instruction cache by MVA whenever we map a page to the
guest (no, we cannot only do it when we have an iabt because the guest
may happily read/write a page before hitting the icache) if the hardware
uses VIPT or PIPT. In the latter case, we can invalidate only that
physical page. In the first case, all bets are off and we simply must
invalidate the whole affair. Not that VIVT icaches are tagged with
vmids, and we are out of the woods on that one. Alexander Graf was nice
enough to remind us of this massive pain.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
This commit introduces the framework for guest memory management
through the use of 2nd stage translation. Each VM has a pointer
to a level-1 table (the pgd field in struct kvm_arch) which is
used for the 2nd stage translations. Entries are added when handling
guest faults (later patch) and the table itself can be allocated and
freed through the following functions implemented in
arch/arm/kvm/arm_mmu.c:
- kvm_alloc_stage2_pgd(struct kvm *kvm);
- kvm_free_stage2_pgd(struct kvm *kvm);
Each entry in TLBs and caches are tagged with a VMID identifier in
addition to ASIDs. The VMIDs are assigned consecutively to VMs in the
order that VMs are executed, and caches and tlbs are invalidated when
the VMID space has been used to allow for more than 255 simultaenously
running guests.
The 2nd stage pgd is allocated in kvm_arch_init_vm(). The table is
freed in kvm_arch_destroy_vm(). Both functions are called from the main
KVM code.
We pre-allocate page table memory to be able to synchronize using a
spinlock and be called under rcu_read_lock from the MMU notifiers. We
steal the mmu_memory_cache implementation from x86 and adapt for our
specific usage.
We support MMU notifiers (thanks to Marc Zyngier) through
kvm_unmap_hva and kvm_set_spte_hva.
Finally, define kvm_phys_addr_ioremap() to map a device at a guest IPA,
which is used by VGIC support to map the virtual CPU interface registers
to the guest. This support is added by Marc Zyngier.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Sets up KVM code to handle all exceptions taken to Hyp mode.
When the kernel is booted in Hyp mode, calling an hvc instruction with r0
pointing to the new vectors, the HVBAR is changed to the the vector pointers.
This allows subsystems (like KVM here) to execute code in Hyp-mode with the
MMU disabled.
We initialize other Hyp-mode registers and enables the MMU for Hyp-mode from
the id-mapped hyp initialization code. Afterwards, the HVBAR is changed to
point to KVM Hyp vectors used to catch guest faults and to switch to Hyp mode
to perform a world-switch into a KVM guest.
Also provides memory mapping code to map required code pages, data structures,
and I/O regions accessed in Hyp mode at the same virtual address as the host
kernel virtual addresses, but which conforms to the architectural requirements
for translations in Hyp mode. This interface is added in arch/arm/kvm/arm_mmu.c
and comprises:
- create_hyp_mappings(from, to);
- create_hyp_io_mappings(from, to, phys_addr);
- free_hyp_pmds();
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Targets KVM support for Cortex A-15 processors.
Contains all the framework components, make files, header files, some
tracing functionality, and basic user space API.
Only supported core is Cortex-A15 for now.
Most functionality is in arch/arm/kvm/* or arch/arm/include/asm/kvm_*.h.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>