mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 20:29:44 +07:00
1292 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Michal Hocko
|
dcda9b0471 |
mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to the page allocator. This has been true but only for allocations requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always ignored for smaller sizes. This is a bit unfortunate because there is no way to express the same semantic for those requests and they are considered too important to fail so they might end up looping in the page allocator for ever, similarly to GFP_NOFAIL requests. Now that the whole tree has been cleaned up and accidental or misled usage of __GFP_REPEAT flag has been removed for !costly requests we can give the original flag a better name and more importantly a more useful semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user that the allocator would try really hard but there is no promise of a success. This will work independent of the order and overrides the default allocator behavior. Page allocator users have several levels of guarantee vs. cost options (take GFP_KERNEL as an example) - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_ attempt to free memory at all. The most light weight mode which even doesn't kick the background reclaim. Should be used carefully because it might deplete the memory and the next user might hit the more aggressive reclaim - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic allocation without any attempt to free memory from the current context but can wake kswapd to reclaim memory if the zone is below the low watermark. Can be used from either atomic contexts or when the request is a performance optimization and there is another fallback for a slow path. - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) - non sleeping allocation with an expensive fallback so it can access some portion of memory reserves. Usually used from interrupt/bh context with an expensive slow path fallback. - GFP_KERNEL - both background and direct reclaim are allowed and the _default_ page allocator behavior is used. That means that !costly allocation requests are basically nofail but there is no guarantee of that behavior so failures have to be checked properly by callers (e.g. OOM killer victim is allowed to fail currently). - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior and all allocation requests fail early rather than cause disruptive reclaim (one round of reclaim in this implementation). The OOM killer is not invoked. - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator behavior and all allocation requests try really hard. The request will fail if the reclaim cannot make any progress. The OOM killer won't be triggered. - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior and all allocation requests will loop endlessly until they succeed. This might be really dangerous especially for larger orders. Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL because they already had their semantic. No new users are added. __alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if there is no progress and we have already passed the OOM point. This means that all the reclaim opportunities have been exhausted except the most disruptive one (the OOM killer) and a user defined fallback behavior is more sensible than keep retrying in the page allocator. [akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c] [mhocko@suse.com: semantic fix] Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz [mhocko@kernel.org: address other thing spotted by Vlastimil] Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Belits <alex.belits@cavium.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David Daney <david.daney@cavium.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: NeilBrown <neilb@suse.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Thomas Gleixner
|
3f906ba236 |
mm/memory-hotplug: switch locking to a percpu rwsem
Andrey reported a potential deadlock with the memory hotplug lock and the cpu hotplug lock. The reason is that memory hotplug takes the memory hotplug lock and then calls stop_machine() which calls get_online_cpus(). That's the reverse lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c The problem has been there forever. The reason why this was never reported is that the cpu hotplug locking had this homebrewn recursive reader writer semaphore construct which due to the recursion evaded the full lock dep coverage. The memory hotplug code copied that construct verbatim and therefor has similar issues. Three steps to fix this: 1) Convert the memory hotplug locking to a per cpu rwsem so the potential issues get reported proper by lockdep. 2) Lock the online cpus in mem_hotplug_begin() before taking the memory hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc code to avoid recursive locking. 3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this by invoking lru_add_drain_all_cpuslocked() instead. Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rasmus Villemoes
|
b002529d25 |
mm/page_alloc.c: eliminate unsigned confusion in __rmqueue_fallback
Since current_order starts as MAX_ORDER-1 and is then only decremented, the second half of the loop condition seems superfluous. However, if order is 0, we may decrement current_order past 0, making it UINT_MAX. This is obviously too subtle ([1], [2]). Since we need to add some comment anyway, change the two variables to signed, making the counting-down for loop look more familiar, and apparently also making gcc generate slightly smaller code. [1] https://lkml.org/lkml/2016/6/20/493 [2] https://lkml.org/lkml/2017/6/19/345 [akpm@linux-foundation.org: fix up reject fixupping] Link: http://lkml.kernel.org/r/20170621185529.2265-1-linux@rasmusvillemoes.dk Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Reported-by: Hao Lee <haolee.swjtu@gmail.com> Acked-by: Wei Yang <weiyang@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
7a8f58f391 |
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit
|
||
Michal Hocko
|
f70029bbaa |
mm, memory_hotplug: drop CONFIG_MOVABLE_NODE
Commit
|
||
Johannes Weiner
|
385386cff4 |
mm: vmstat: move slab statistics from zone to node counters
Patch series "mm: per-lruvec slab stats" Josef is working on a new approach to balancing slab caches and the page cache. For this to work, he needs slab cache statistics on the lruvec level. These patches implement that by adding infrastructure that allows updating and reading generic VM stat items per lruvec, then switches some existing VM accounting sites, including the slab accounting ones, to this new cgroup-aware API. I'll follow up with more patches on this, because there is actually substantial simplification that can be done to the memory controller when we replace private memcg accounting with making the existing VM accounting sites cgroup-aware. But this is enough for Josef to base his slab reclaim work on, so here goes. This patch (of 5): To re-implement slab cache vs. page cache balancing, we'll need the slab counters at the lruvec level, which, ever since lru reclaim was moved from the zone to the node, is the intersection of the node, not the zone, and the memcg. We could retain the per-zone counters for when the page allocator dumps its memory information on failures, and have counters on both levels - which on all but NUMA node 0 is usually redundant. But let's keep it simple for now and just move them. If anybody complains we can restore the per-zone counters. [hannes@cmpxchg.org: fix oops] Link: http://lkml.kernel.org/r/20170605183511.GA8915@cmpxchg.org Link: http://lkml.kernel.org/r/20170530181724.27197-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
04ec6264f2 |
mm, page_alloc: pass preferred nid instead of zonelist to allocator
The main allocator function __alloc_pages_nodemask() takes a zonelist pointer as one of its parameters. All of its callers directly or indirectly obtain the zonelist via node_zonelist() using a preferred node id and gfp_mask. We can make the code a bit simpler by doing the zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node id instead (gfp_mask is already another parameter). There are some code size benefits thanks to removal of inlined node_zonelist(): bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952) This will also make things simpler if we proceed with converting cpusets to zonelists. Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
902b62810a |
mm, page_alloc: fix more premature OOM due to race with cpuset update
I would like to stress that this patchset aims to fix issues and cleanup
the code *within the existing documented semantics*, i.e. patch 1
ignores mempolicy restrictions if the set of allowed nodes has no
intersection with set of nodes allowed by cpuset. I believe discussing
potential changes of the semantics can be better done once we have a
baseline with no known bugs of the current semantics.
I've recently summarized the cpuset/mempolicy issues in a LSF/MM
proposal [1] and the discussion itself [2]. I've been trying to rewrite
the handling as proposed, with the idea that changing semantics to make
all mempolicies static wrt cpuset updates (and discarding the relative
and default modes) can be tried on top, as there's a high risk of being
rejected/reverted because somebody might still care about the removed
modes.
However I haven't yet figured out how to properly:
1) make mempolicies swappable instead of rebinding in place. I thought
mbind() already works that way and uses refcounting to avoid
use-after-free of the old policy by a parallel allocation, but turns
out true refcounting is only done for shared (shmem) mempolicies, and
the actual protection for mbind() comes from mmap_sem. Extending the
refcounting means more overhead in allocator hot path. Also swapping
whole mempolicies means that we have to allocate the new ones, which
can fail, and reverting of the partially done work also means
allocating (note that mbind() doesn't care and will just leave part
of the range updated and part not updated when returning -ENOMEM...).
2) make cpuset's task->mems_allowed also swappable (after converting it
from nodemask to zonelist, which is the easy part) for mostly the
same reasons.
The good news is that while trying to do the above, I've at least
figured out how to hopefully close the remaining premature OOM's, and do
a buch of cleanups on top, removing quite some of the code that was also
supposed to prevent the cpuset update races, but doesn't work anymore
nowadays. This should fix the most pressing concerns with this topic
and give us a better baseline before either proceeding with the original
proposal, or pushing a change of semantics that removes the problem 1)
above. I'd be then fine with trying to change the semantic first and
rewrite later.
Patchset has been tested with the LTP cpuset01 stress test.
[1] https://lkml.kernel.org/r/4c44a589-5fd8-08d0-892c-e893bb525b71@suse.cz
[2] https://lwn.net/Articles/717797/
[3] https://marc.info/?l=linux-mm&m=149191957922828&w=2
This patch (of 6):
Commit
|
||
Matthias Kaehlcke
|
d73d3c9f69 |
mm/page_alloc.c: mark bad_range() and meminit_pfn_in_nid() as __maybe_unused
The functions are not used in some configurations. Adding the attribute fixes the following warnings when building with clang: mm/page_alloc.c:409:19: error: function 'bad_range' is not needed and will not be emitted [-Werror,-Wunneeded-internal-declaration] mm/page_alloc.c:1106:30: error: unused function 'meminit_pfn_in_nid' [-Werror,-Wunused-function] Link: http://lkml.kernel.org/r/20170518182030.165633-1-mka@chromium.org Signed-off-by: Matthias Kaehlcke <mka@chromium.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pavel Tatashin
|
9017217b6f |
mm: adaptive hash table scaling
Allow hash tables to scale with memory but at slower pace, when HASH_ADAPT is provided every time memory quadruples the sizes of hash tables will only double instead of quadrupling as well. This algorithm starts working only when memory size reaches a certain point, currently set to 64G. This is example of dentry hash table size, before and after four various memory configurations: MEMORY SCALE HASH_SIZE old new old new 8G 13 13 8M 8M 16G 13 13 16M 16M 32G 13 13 32M 32M 64G 13 13 64M 64M 128G 13 14 128M 64M 256G 13 14 256M 128M 512G 13 15 512M 128M 1024G 13 15 1024M 256M 2048G 13 16 2048M 256M 4096G 13 16 4096M 512M 8192G 13 17 8192M 512M 16384G 13 17 16384M 1024M 32768G 13 18 32768M 1024M 65536G 13 18 65536M 2048M The effect of this change on runtime is undetectable as filesystem growth is not proportional to machine memory size as is currently assumed. The change effects only large memory machine. Additional tuning might be needed, but that can be done by the clients of the kmem_cache_create interface, not the generic cache allocator itself. The adaptive hashing is disabled on 32 bit systems to avoid confusion of whether base should be different for smaller systems, and to avoid overflows. [mhocko@suse.com: drop HASH_ADAPT] Link: http://lkml.kernel.org/r/20170509094607.GG6481@dhcp22.suse.cz [pasha.tatashin@oracle.com: UL -> ULL fix] Link: http://lkml.kernel.org/r/1495300013-653283-2-git-send-email-pasha.tatashin@oracle.com [pasha.tatashin@oracle.com: disable adaptive hash on 32 bit systems] Link: http://lkml.kernel.org/r/1495469329-755807-2-git-send-email-pasha.tatashin@oracle.com Link: http://lkml.kernel.org/r/1488432825-92126-5-git-send-email-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Miller <davem@davemloft.net> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Babu Moger <babu.moger@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pavel Tatashin
|
3749a8f008 |
mm: zero hash tables in allocator
Add a new flag HASH_ZERO which when provided grantees that the hash table that is returned by alloc_large_system_hash() is zeroed. In most cases that is what is needed by the caller. Use page level allocator's __GFP_ZERO flags to zero the memory. It is using memset() which is efficient method to zero memory and is optimized for most platforms. Link: http://lkml.kernel.org/r/1488432825-92126-3-git-send-email-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Babu Moger <babu.moger@oracle.com> Cc: David Miller <davem@davemloft.net> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
2d070eab2e |
mm: consider zone which is not fully populated to have holes
__pageblock_pfn_to_page has two users currently, set_zone_contiguous which checks whether the given zone contains holes and pageblock_pfn_to_page which then carefully returns a first valid page from the given pfn range for the given zone. This doesn't handle zones which are not fully populated though. Memory pageblocks can be offlined or might not have been onlined yet. In such a case the zone should be considered to have holes otherwise pfn walkers can touch and play with offline pages. Current callers of pageblock_pfn_to_page in compaction seem to work properly right now because they only isolate PageBuddy (isolate_freepages_block) or PageLRU resp. __PageMovable (isolate_migratepages_block) which will be always false for these pages. It would be safer to skip these pages altogether, though. In order to do this patch adds a new memory section state (SECTION_IS_ONLINE) which is set in memory_present (during boot time) or in online_pages_range during the memory hotplug. Similarly offline_mem_sections clears the bit and it is called when the memory range is offlined. pfn_to_online_page helper is then added which check the mem section and only returns a page if it is onlined already. Use the new helper in __pageblock_pfn_to_page and skip the whole page block in such a case. [mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil), mark sections online after all struct pages are initialized in online_pages_range (Vlastimil)] Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
dc0bbf3b7f |
mm: remove return value from init_currently_empty_zone
Patch series "mm: make movable onlining suck less", v4. Movable onlining is a real hack with many downsides - mainly reintroduction of lowmem/highmem issues we used to have on 32b systems - but it is the only way to make the memory hotremove more reliable which is something that people are asking for. The current semantic of memory movable onlinening is really cumbersome, however. The main reason for this is that the udev driven approach is basically unusable because udev races with the memory probing while only the last memory block or the one adjacent to the existing zone_movable are allowed to be onlined movable. In short the criterion for the successful online_movable changes under udev's feet. A reliable udev approach would require a 2 phase approach where the first successful movable online would have to check all the previous blocks and online them in descending order. This is hard to be considered sane. This patchset aims at making the onlining semantic more usable. First of all it allows to online memory movable as long as it doesn't clash with the existing ZONE_NORMAL. That means that ZONE_NORMAL and ZONE_MOVABLE cannot overlap. Currently I preserve the original ordering semantic so the zone always precedes the movable zone but I have plans to remove this restriction in future because it is not really necessary. First 3 patches are cleanups which should be ready to be merged right away (unless I have missed something subtle of course). Patch 4 deals with ZONE_DEVICE dependencies down the __add_pages path. Patch 5 deals with implicit assumptions of register_one_node on pgdat initialization. Patches 6-10 deal with offline holes in the zone for pfn walkers. I hope I got all of them right but people familiar with compaction should double check this. Patch 11 is the core of the change. In order to make it easier to review I have tried it to be as minimalistic as possible and the large code removal is moved to patch 14. Patch 12 is a trivial follow up cleanup. Patch 13 fixes sparse warnings and finally patch 14 removes the unused code. I have tested the patches in kvm: # qemu-system-x86_64 -enable-kvm -monitor pty -m 2G,slots=4,maxmem=4G -numa node,mem=1G -numa node,mem=1G ... and then probed the additional memory by (qemu) object_add memory-backend-ram,id=mem1,size=1G (qemu) device_add pc-dimm,id=dimm1,memdev=mem1 Then I have used this simple script to probe the memory block by hand # cat probe_memblock.sh #!/bin/sh BLOCK_NR=$1 # echo $((0x100000000+$BLOCK_NR*(128<<20))) > /sys/devices/system/memory/probe # for i in $(seq 10); do sh probe_memblock.sh $i; done # grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory35/valid_zones:Normal Movable /sys/devices/system/memory/memory36/valid_zones:Normal Movable /sys/devices/system/memory/memory37/valid_zones:Normal Movable /sys/devices/system/memory/memory38/valid_zones:Normal Movable /sys/devices/system/memory/memory39/valid_zones:Normal Movable The main difference to the original implementation is that all new memblocks can be both online_kernel and online_movable initially because there is no clash obviously. For the comparison the original implementation would have /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal /sys/devices/system/memory/memory35/valid_zones:Normal /sys/devices/system/memory/memory36/valid_zones:Normal /sys/devices/system/memory/memory37/valid_zones:Normal /sys/devices/system/memory/memory38/valid_zones:Normal /sys/devices/system/memory/memory39/valid_zones:Normal Movable Now # echo online_movable > /sys/devices/system/memory/memory34/state # grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable /sys/devices/system/memory/memory35/valid_zones:Movable /sys/devices/system/memory/memory36/valid_zones:Movable /sys/devices/system/memory/memory37/valid_zones:Movable /sys/devices/system/memory/memory38/valid_zones:Movable /sys/devices/system/memory/memory39/valid_zones:Movable Block 33 can still be online both kernel and movable while all the remaining can be only movable. /proc/zonelist says Node 0, zone Normal pages free 0 min 0 low 0 high 0 spanned 0 present 0 -- Node 0, zone Movable pages free 32753 min 85 low 117 high 149 spanned 32768 present 32768 A new memblock at a lower address will result in a new memblock (32) which will still allow both Normal and Movable. # sh probe_memblock.sh 0 # grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable /sys/devices/system/memory/memory35/valid_zones:Movable and online_kernel will convert it to the zone normal properly while 33 can be still onlined both ways. # echo online_kernel > /sys/devices/system/memory/memory32/state # grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable /sys/devices/system/memory/memory35/valid_zones:Movable /proc/zoneinfo will now tell Node 0, zone Normal pages free 65441 min 165 low 230 high 295 spanned 65536 present 65536 -- Node 0, zone Movable pages free 32740 min 82 low 114 high 146 spanned 32768 present 32768 so both zones have one memblock spanned and present. Onlining 39 should associate this block to the movable zone # echo online > /sys/devices/system/memory/memory39/state /proc/zoneinfo will now tell Node 0, zone Normal pages free 32765 min 80 low 112 high 144 spanned 32768 present 32768 -- Node 0, zone Movable pages free 65501 min 160 low 225 high 290 spanned 196608 present 65536 so we will have a movable zone which spans 6 memblocks, 2 present and 4 representing a hole. Offlining both movable blocks will lead to the zone with no present pages which is the expected behavior I believe. # echo offline > /sys/devices/system/memory/memory39/state # echo offline > /sys/devices/system/memory/memory34/state # grep -A6 "Movable\|Normal" /proc/zoneinfo Node 0, zone Normal pages free 32735 min 90 low 122 high 154 spanned 32768 present 32768 -- Node 0, zone Movable pages free 0 min 0 low 0 high 0 spanned 196608 present 0 As a bonus we will get a nice cleanup in the memory hotplug codebase. This patch (of 16): init_currently_empty_zone doesn't have any error to return yet it is still an int and callers try to be defensive and try to handle potential error. Remove this nonsense and simplify all callers. This patch shouldn't have any visible effect Link: http://lkml.kernel.org/r/20170515085827.16474-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
864b9a393d |
mm: consider memblock reservations for deferred memory initialization sizing
We have seen an early OOM killer invocation on ppc64 systems with
crashkernel=4096M:
kthreadd invoked oom-killer: gfp_mask=0x16040c0(GFP_KERNEL|__GFP_COMP|__GFP_NOTRACK), nodemask=7, order=0, oom_score_adj=0
kthreadd cpuset=/ mems_allowed=7
CPU: 0 PID: 2 Comm: kthreadd Not tainted 4.4.68-1.gd7fe927-default #1
Call Trace:
dump_stack+0xb0/0xf0 (unreliable)
dump_header+0xb0/0x258
out_of_memory+0x5f0/0x640
__alloc_pages_nodemask+0xa8c/0xc80
kmem_getpages+0x84/0x1a0
fallback_alloc+0x2a4/0x320
kmem_cache_alloc_node+0xc0/0x2e0
copy_process.isra.25+0x260/0x1b30
_do_fork+0x94/0x470
kernel_thread+0x48/0x60
kthreadd+0x264/0x330
ret_from_kernel_thread+0x5c/0xa4
Mem-Info:
active_anon:0 inactive_anon:0 isolated_anon:0
active_file:0 inactive_file:0 isolated_file:0
unevictable:0 dirty:0 writeback:0 unstable:0
slab_reclaimable:5 slab_unreclaimable:73
mapped:0 shmem:0 pagetables:0 bounce:0
free:0 free_pcp:0 free_cma:0
Node 7 DMA free:0kB min:0kB low:0kB high:0kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:52428800kB managed:110016kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:320kB slab_unreclaimable:4672kB kernel_stack:1152kB pagetables:0kB unstable:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 7 DMA: 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB 0*8192kB 0*16384kB = 0kB
0 total pagecache pages
0 pages in swap cache
Swap cache stats: add 0, delete 0, find 0/0
Free swap = 0kB
Total swap = 0kB
819200 pages RAM
0 pages HighMem/MovableOnly
817481 pages reserved
0 pages cma reserved
0 pages hwpoisoned
the reason is that the managed memory is too low (only 110MB) while the
rest of the the 50GB is still waiting for the deferred intialization to
be done. update_defer_init estimates the initial memoty to initialize
to 2GB at least but it doesn't consider any memory allocated in that
range. In this particular case we've had
Reserving 4096MB of memory at 128MB for crashkernel (System RAM: 51200MB)
so the low 2GB is mostly depleted.
Fix this by considering memblock allocations in the initial static
initialization estimation. Move the max_initialise to
reset_deferred_meminit and implement a simple memblock_reserved_memory
helper which iterates all reserved blocks and sums the size of all that
start below the given address. The cumulative size is than added on top
of the initial estimation. This is still not ideal because
reset_deferred_meminit doesn't consider holes and so reservation might
be above the initial estimation whihch we ignore but let's make the
logic simpler until we really need to handle more complicated cases.
Fixes:
|
||
Tetsuo Handa
|
c288983ddd |
mm/page_alloc.c: make sure OOM victim can try allocations with no watermarks once
Roman Gushchin has reported that the OOM killer can trivially selects next OOM victim when a thread doing memory allocation from page fault path was selected as first OOM victim. allocate invoked oom-killer: gfp_mask=0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null), order=0, oom_score_adj=0 allocate cpuset=/ mems_allowed=0 CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 Call Trace: oom_kill_process+0x219/0x3e0 out_of_memory+0x11d/0x480 __alloc_pages_slowpath+0xc84/0xd40 __alloc_pages_nodemask+0x245/0x260 alloc_pages_vma+0xa2/0x270 __handle_mm_fault+0xca9/0x10c0 handle_mm_fault+0xf3/0x210 __do_page_fault+0x240/0x4e0 trace_do_page_fault+0x37/0xe0 do_async_page_fault+0x19/0x70 async_page_fault+0x28/0x30 ... Out of memory: Kill process 492 (allocate) score 899 or sacrifice child Killed process 492 (allocate) total-vm:2052368kB, anon-rss:1894576kB, file-rss:4kB, shmem-rss:0kB allocate: page allocation failure: order:0, mode:0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null) allocate cpuset=/ mems_allowed=0 CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 Call Trace: __alloc_pages_slowpath+0xd32/0xd40 __alloc_pages_nodemask+0x245/0x260 alloc_pages_vma+0xa2/0x270 __handle_mm_fault+0xca9/0x10c0 handle_mm_fault+0xf3/0x210 __do_page_fault+0x240/0x4e0 trace_do_page_fault+0x37/0xe0 do_async_page_fault+0x19/0x70 async_page_fault+0x28/0x30 ... oom_reaper: reaped process 492 (allocate), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB ... allocate invoked oom-killer: gfp_mask=0x0(), nodemask=(null), order=0, oom_score_adj=0 allocate cpuset=/ mems_allowed=0 CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 Call Trace: oom_kill_process+0x219/0x3e0 out_of_memory+0x11d/0x480 pagefault_out_of_memory+0x68/0x80 mm_fault_error+0x8f/0x190 ? handle_mm_fault+0xf3/0x210 __do_page_fault+0x4b2/0x4e0 trace_do_page_fault+0x37/0xe0 do_async_page_fault+0x19/0x70 async_page_fault+0x28/0x30 ... Out of memory: Kill process 233 (firewalld) score 10 or sacrifice child Killed process 233 (firewalld) total-vm:246076kB, anon-rss:20956kB, file-rss:0kB, shmem-rss:0kB There is a race window that the OOM reaper completes reclaiming the first victim's memory while nothing but mutex_trylock() prevents the first victim from calling out_of_memory() from pagefault_out_of_memory() after memory allocation for page fault path failed due to being selected as an OOM victim. This is a side effect of commit |
||
Vlastimil Babka
|
499118e966 |
mm: introduce memalloc_noreclaim_{save,restore}
The previous patch ("mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC") has shown that simply setting and clearing PF_MEMALLOC in current->flags can result in wrongly clearing a pre-existing PF_MEMALLOC flag and potentially lead to recursive reclaim. Let's introduce helpers that support proper nesting by saving the previous stat of the flag, similar to the existing memalloc_noio_* and memalloc_nofs_* helpers. Convert existing setting/clearing of PF_MEMALLOC within mm to the new helpers. There are no known issues with the converted code, but the change makes it more robust. Link: http://lkml.kernel.org/r/20170405074700.29871-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Boris Brezillon <boris.brezillon@free-electrons.com> Cc: Chris Leech <cleech@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Josef Bacik <jbacik@fb.com> Cc: Lee Duncan <lduncan@suse.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Richard Weinberger <richard@nod.at> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
62be1511b1 |
mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
Patch series "more robust PF_MEMALLOC handling" This series aims to unify the setting and clearing of PF_MEMALLOC, which prevents recursive reclaim. There are some places that clear the flag unconditionally from current->flags, which may result in clearing a pre-existing flag. This already resulted in a bug report that Patch 1 fixes (without the new helpers, to make backporting easier). Patch 2 introduces the new helpers, modelled after existing memalloc_noio_* and memalloc_nofs_* helpers, and converts mm core to use them. Patches 3 and 4 convert non-mm code. This patch (of 4): __alloc_pages_direct_compact() sets PF_MEMALLOC to prevent deadlock during page migration by lock_page() (see the comment in __unmap_and_move()). Then it unconditionally clears the flag, which can clear a pre-existing PF_MEMALLOC flag and result in recursive reclaim. This was not a problem until commit |
||
Vlastimil Babka
|
282722b0d2 |
mm, compaction: restrict async compaction to pageblocks of same migratetype
The migrate scanner in async compaction is currently limited to MIGRATE_MOVABLE pageblocks. This is a heuristic intended to reduce latency, based on the assumption that non-MOVABLE pageblocks are unlikely to contain movable pages. However, with the exception of THP's, most high-order allocations are not movable. Should the async compaction succeed, this increases the chance that the non-MOVABLE allocations will fallback to a MOVABLE pageblock, making the long-term fragmentation worse. This patch attempts to help the situation by changing async direct compaction so that the migrate scanner only scans the pageblocks of the requested migratetype. If it's a non-MOVABLE type and there are such pageblocks that do contain movable pages, chances are that the allocation can succeed within one of such pageblocks, removing the need for a fallback. If that fails, the subsequent sync attempt will ignore this restriction. In testing based on 4.9 kernel with stress-highalloc from mmtests configured for order-4 GFP_KERNEL allocations, this patch has reduced the number of unmovable allocations falling back to movable pageblocks by 30%. The number of movable allocations falling back is reduced by 12%. Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
02aa0cdd72 |
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count how many free pages were stolen, and change the pageblock's migratetype if more than half of the pageblock was free. This might be too conservative, as there might be other pages that are not free, but were allocated with the same migratetype as our allocation requested. While we cannot determine the migratetype of allocated pages precisely (at least without the page_owner functionality enabled), we can count pages that compaction would try to isolate for migration - those are either on LRU or __PageMovable(). The rest can be assumed to be MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily distinguish. This counting can be done as part of free page stealing with little additional overhead. The page stealing code is changed so that it considers free pages plus pages of the "good" migratetype for the decision whether to change pageblock's migratetype. The result should be more accurate migratetype of pageblocks wrt the actual pages in the pageblocks, when stealing from semi-occupied pageblocks. This should help the efficiency of page grouping by mobility. In testing based on 4.9 kernel with stress-highalloc from mmtests configured for order-4 GFP_KERNEL allocations, this patch has reduced the number of unmovable allocations falling back to movable pageblocks by 47%. The number of movable allocations falling back to other pageblocks are increased by 55%, but these events don't cause permanent fragmentation, so the tradeoff should be positive. Later patches also offset the movable fallback increase to some extent. [akpm@linux-foundation.org: merge fix] Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
3bc48f96cf |
mm, page_alloc: split smallest stolen page in fallback
The __rmqueue_fallback() function is called when there's no free page of requested migratetype, and we need to steal from a different one. There are various heuristics to make this event infrequent and reduce permanent fragmentation. The main one is to try stealing from a pageblock that has the most free pages, and possibly steal them all at once and convert the whole pageblock. Precise searching for such pageblock would be expensive, so instead the heuristics walks the free lists from MAX_ORDER down to requested order and assumes that the block with highest-order free page is likely to also have the most free pages in total. Chances are that together with the highest-order page, we steal also pages of lower orders from the same block. But then we still split the highest order page. This is wasteful and can contribute to fragmentation instead of avoiding it. This patch thus changes __rmqueue_fallback() to just steal the page(s) and put them on the freelist of the requested migratetype, and only report whether it was successful. Then we pick (and eventually split) the smallest page with __rmqueue_smallest(). This all happens under zone lock, so nobody can steal it from us in the process. This should reduce fragmentation due to fallbacks. At worst we are only stealing a single highest-order page and waste some cycles by moving it between lists and then removing it, but fallback is not exactly hot path so that should not be a concern. As a side benefit the patch removes some duplicate code by reusing __rmqueue_smallest(). [vbabka@suse.cz: fix endless loop in the modified __rmqueue()] Link: http://lkml.kernel.org/r/59d71b35-d556-4fc9-ee2e-1574259282fd@suse.cz Link: http://lkml.kernel.org/r/20170307131545.28577-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
4c174688ee |
New features for this release:
o Pretty much a full rewrite of the processing of function plugins. i.e. echo do_IRQ:stacktrace > set_ftrace_filter o The rewrite was needed to add plugins to be unique to tracing instances. i.e. mkdir instance/foo; cd instances/foo; echo do_IRQ:stacktrace > set_ftrace_filter The old way was written very hacky. This removes a lot of those hacks. o New "function-fork" tracing option. When set, pids in the set_ftrace_pid will have their children added when the processes with their pids listed in the set_ftrace_pid file forks. o Exposure of "maxactive" for kretprobe in kprobe_events o Allow for builtin init functions to be traced by the function tracer (via the kernel command line). Module init function tracing will come in the next release. o Added more selftests, and have selftests also test in an instance. -----BEGIN PGP SIGNATURE----- iQExBAABCAAbBQJZCRchFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L zuIH/RsLUb8Hj6GmhAvn/tblUDzWyqlXX2h79VVlo/XrWayHYNHnKOmua1WwMZC6 xESXb/AffAc89VWTkKsrwaK7yfRPG6+w8zTZOcFuXSBpqSGG/oey9Fxj5Wqqpche oJ2UY7ngxANAipkP5GxdYTafFSoWhGZGfUUtW+5tAHoFHzqO2lOjO8olbXP69sON kVX/b461S20cVvRe5H/F0klXLSc37Tlp5YznXy4H4V4HcJSN1Fb6/uozOXALZ4se SBpVMWmVVoGJorzj+ic7gVOeohvC8RnR400HbeMVwaI0Lj50noidDj/5Hv8F7T+D h1B8vATNZLFAFUOSHINCBIu6Vj0= =t8mg -----END PGP SIGNATURE----- Merge tag 'trace-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: "New features for this release: - Pretty much a full rewrite of the processing of function plugins. i.e. echo do_IRQ:stacktrace > set_ftrace_filter - The rewrite was needed to add plugins to be unique to tracing instances. i.e. mkdir instance/foo; cd instances/foo; echo do_IRQ:stacktrace > set_ftrace_filter The old way was written very hacky. This removes a lot of those hacks. - New "function-fork" tracing option. When set, pids in the set_ftrace_pid will have their children added when the processes with their pids listed in the set_ftrace_pid file forks. - Exposure of "maxactive" for kretprobe in kprobe_events - Allow for builtin init functions to be traced by the function tracer (via the kernel command line). Module init function tracing will come in the next release. - Added more selftests, and have selftests also test in an instance" * tag 'trace-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (60 commits) ring-buffer: Return reader page back into existing ring buffer selftests: ftrace: Allow some event trigger tests to run in an instance selftests: ftrace: Have some basic tests run in a tracing instance too selftests: ftrace: Have event tests also run in an tracing instance selftests: ftrace: Make func_event_triggers and func_traceonoff_triggers tests do instances selftests: ftrace: Allow some tests to be run in a tracing instance tracing/ftrace: Allow for instances to trigger their own stacktrace probes tracing/ftrace: Allow for the traceonoff probe be unique to instances tracing/ftrace: Enable snapshot function trigger to work with instances tracing/ftrace: Allow instances to have their own function probes tracing/ftrace: Add a better way to pass data via the probe functions ftrace: Dynamically create the probe ftrace_ops for the trace_array tracing: Pass the trace_array into ftrace_probe_ops functions tracing: Have the trace_array hold the list of registered func probes ftrace: If the hash for a probe fails to update then free what was initialized ftrace: Have the function probes call their own function ftrace: Have each function probe use its own ftrace_ops ftrace: Have unregister_ftrace_function_probe_func() return a value ftrace: Add helper function ftrace_hash_move_and_update_ops() ftrace: Remove data field from ftrace_func_probe structure ... |
||
Tetsuo Handa
|
0f7896f12b |
mm, page_alloc: remove debug_guardpage_minorder() test in warn_alloc()
Commit
|
||
Vinayak Menon
|
bd33ef3681 |
mm: enable page poisoning early at boot
On SPARSEMEM systems page poisoning is enabled after buddy is up, because of the dependency on page extension init. This causes the pages released by free_all_bootmem not to be poisoned. This either delays or misses the identification of some issues because the pages have to undergo another cycle of alloc-free-alloc for any corruption to be detected. Enable page poisoning early by getting rid of the PAGE_EXT_DEBUG_POISON flag. Since all the free pages will now be poisoned, the flag need not be verified before checking the poison during an alloc. [vinmenon@codeaurora.org: fix Kconfig] Link: http://lkml.kernel.org/r/1490878002-14423-1-git-send-email-vinmenon@codeaurora.org Link: http://lkml.kernel.org/r/1490358246-11001-1-git-send-email-vinmenon@codeaurora.org Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org> Acked-by: Laura Abbott <labbott@redhat.com> Tested-by: Laura Abbott <labbott@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
8225196341 |
mm: page_alloc: __GFP_NOWARN shouldn't suppress stall warnings
__GFP_NOWARN, which is usually added to avoid warnings from callsites that expect to fail and have fallbacks, currently also suppresses allocation stall warnings. These trigger when an allocation is stuck inside the allocator for 10 seconds or longer. But there is no class of allocations that can get legitimately stuck in the allocator for this long. This always indicates a problem. Always emit stall warnings. Restrict __GFP_NOWARN to alloc failures. Link: http://lkml.kernel.org/r/20170125181150.GA16398@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
7dea19f9ee |
mm: introduce memalloc_nofs_{save,restore} API
GFP_NOFS context is used for the following 5 reasons currently: - to prevent from deadlocks when the lock held by the allocation context would be needed during the memory reclaim - to prevent from stack overflows during the reclaim because the allocation is performed from a deep context already - to prevent lockups when the allocation context depends on other reclaimers to make a forward progress indirectly - just in case because this would be safe from the fs POV - silence lockdep false positives Unfortunately overuse of this allocation context brings some problems to the MM. Memory reclaim is much weaker (especially during heavy FS metadata workloads), OOM killer cannot be invoked because the MM layer doesn't have enough information about how much memory is freeable by the FS layer. In many cases it is far from clear why the weaker context is even used and so it might be used unnecessarily. We would like to get rid of those as much as possible. One way to do that is to use the flag in scopes rather than isolated cases. Such a scope is declared when really necessary, tracked per task and all the allocation requests from within the context will simply inherit the GFP_NOFS semantic. Not only this is easier to understand and maintain because there are much less problematic contexts than specific allocation requests, this also helps code paths where FS layer interacts with other layers (e.g. crypto, security modules, MM etc...) and there is no easy way to convey the allocation context between the layers. Introduce memalloc_nofs_{save,restore} API to control the scope of GFP_NOFS allocation context. This is basically copying memalloc_noio_{save,restore} API we have for other restricted allocation context GFP_NOIO. The PF_MEMALLOC_NOFS flag already exists and it is just an alias for PF_FSTRANS which has been xfs specific until recently. There are no more PF_FSTRANS users anymore so let's just drop it. PF_MEMALLOC_NOFS is now checked in the MM layer and drops __GFP_FS implicitly same as PF_MEMALLOC_NOIO drops __GFP_IO. memalloc_noio_flags is renamed to current_gfp_context because it now cares about both PF_MEMALLOC_NOFS and PF_MEMALLOC_NOIO contexts. Xfs code paths preserve their semantic. kmem_flags_convert() doesn't need to evaluate the flag anymore. This patch shouldn't introduce any functional changes. Let's hope that filesystems will drop direct GFP_NOFS (resp. ~__GFP_FS) usage as much as possible and only use a properly documented memalloc_nofs_{save,restore} checkpoints where they are appropriate. [akpm@linux-foundation.org: fix comment typo, reflow comment] Link: http://lkml.kernel.org/r/20170306131408.9828-5-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <clm@fb.com> Cc: David Sterba <dsterba@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Brian Foster <bfoster@redhat.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Nikolay Borisov <nborisov@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Xishi Qiu
|
a6ffdc0784 |
mm: use is_migrate_highatomic() to simplify the code
Introduce two helpers, is_migrate_highatomic() and is_migrate_highatomic_page(). Simplify the code, no functional changes. [akpm@linux-foundation.org: use static inlines rather than macros, per mhocko] Link: http://lkml.kernel.org/r/58B94F15.6060606@huawei.com Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
491d79ae77 |
mm: remove unnecessary back-off function when retrying page reclaim
The backoff mechanism is not needed. If we have MAX_RECLAIM_RETRIES loops without progress, we'll OOM anyway; backing off might cut one or two iterations off that in the rare OOM case. If we have intermittent success reclaiming a few pages, the backoff function gets reset also, and so is of little help in these scenarios. We might want a backoff function for when there IS progress, but not enough to be satisfactory. But this isn't that. Remove it. Link: http://lkml.kernel.org/r/20170228214007.5621-10-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jia He <hejianet@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
c822f6223d |
mm: delete NR_PAGES_SCANNED and pgdat_reclaimable()
NR_PAGES_SCANNED counts number of pages scanned since the last page free event in the allocator. This was used primarily to measure the reclaimability of zones and nodes, and determine when reclaim should give up on them. In that role, it has been replaced in the preceding patches by a different mechanism. Being implemented as an efficient vmstat counter, it was automatically exported to userspace as well. It's however unlikely that anyone outside the kernel is using this counter in any meaningful way. Remove the counter and the unused pgdat_reclaimable(). Link: http://lkml.kernel.org/r/20170228214007.5621-8-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jia He <hejianet@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
c73322d098 |
mm: fix 100% CPU kswapd busyloop on unreclaimable nodes
Patch series "mm: kswapd spinning on unreclaimable nodes - fixes and
cleanups".
Jia reported a scenario in which the kswapd of a node indefinitely spins
at 100% CPU usage. We have seen similar cases at Facebook.
The kernel's current method of judging its ability to reclaim a node (or
whether to back off and sleep) is based on the amount of scanned pages
in proportion to the amount of reclaimable pages. In Jia's and our
scenarios, there are no reclaimable pages in the node, however, and the
condition for backing off is never met. Kswapd busyloops in an attempt
to restore the watermarks while having nothing to work with.
This series reworks the definition of an unreclaimable node based not on
scanning but on whether kswapd is able to actually reclaim pages in
MAX_RECLAIM_RETRIES (16) consecutive runs. This is the same criteria
the page allocator uses for giving up on direct reclaim and invoking the
OOM killer. If it cannot free any pages, kswapd will go to sleep and
leave further attempts to direct reclaim invocations, which will either
make progress and re-enable kswapd, or invoke the OOM killer.
Patch #1 fixes the immediate problem Jia reported, the remainder are
smaller fixlets, cleanups, and overall phasing out of the old method.
Patch #6 is the odd one out. It's a nice cleanup to get_scan_count(),
and directly related to #5, but in itself not relevant to the series.
If the whole series is too ambitious for 4.11, I would consider the
first three patches fixes, the rest cleanups.
This patch (of 9):
Jia He reports a problem with kswapd spinning at 100% CPU when
requesting more hugepages than memory available in the system:
$ echo 4000 >/proc/sys/vm/nr_hugepages
top - 13:42:59 up 3:37, 1 user, load average: 1.09, 1.03, 1.01
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 12.5 sy, 0.0 ni, 85.5 id, 2.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 31371520 total, 30915136 used, 456384 free, 320 buffers
KiB Swap: 6284224 total, 115712 used, 6168512 free. 48192 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
76 root 20 0 0 0 0 R 100.0 0.000 217:17.29 kswapd3
At that time, there are no reclaimable pages left in the node, but as
kswapd fails to restore the high watermarks it refuses to go to sleep.
Kswapd needs to back away from nodes that fail to balance. Up until
commit
|
||
Linus Torvalds
|
c58d4055c0 |
A reasonably busy cycle for documentation this time around. There is a new
guide for user-space API documents, rather sparsely populated at the moment, but it's a start. Markus improved the infrastructure for converting diagrams. Mauro has converted much of the USB documentation over to RST. Plus the usual set of fixes, improvements, and tweaks. There's a bit more than the usual amount of reaching out of Documentation/ to fix comments elsewhere in the tree; I have acks for those where I could get them. -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJZB1elAAoJEI3ONVYwIuV6wUIQAJSM/4rNdj6z+GXeWhRfbsOo vqqVYluvXQIJaaqdsy9dgcfThhOXWYsPyVF6Xd+bDJpwF3BMZYbX1CI1Mo3kRD+7 9+Pf68cYSHRoU3l/sFI8q0zfKbHtmFteIvnRQoFtRaExqgTR8glUfxNDyN9XuNAZ 3naS4qMZivM4gjMcSpIB/wFOQpV+6qVIs6VTFLdCC8wodT3W/Wmb+bqrCVJ0twbB t8jJeYHt2wsiTdqrKU+VilAUAZ1Lby+DNfeWrO18rC1ohktPyUzOGg8JmTKUBpVO qj1OJwD6abuaNh/J9bXsh8u0OrVrBKWjVrhq9IFYDlm92fu3Bgr6YeoaVPEpcklt jdlgZnWs9/oXa6d32aMc9F7mP9a0Q1qikFTYINhaHQZCb4VDRuQ9hCSuqWm5jlVy lmVAoxLa0zSdOoXaYuO3HC99ku1cIn814CXMDz/IwKXkqUCV+zl+H3AGkvxGyQ5M eblw2TnQnc6e1LRcxt5bgpFR1JYMbCJhu0U5XrNFueQV8ReB15dvL7h4y21dWJKF 2Sr83rwfG1rpZQiSqCjOXxIzuXbEGH3+a+zCDV5IHhQRt/VNDOt2hgmcyucSSJ5h 5GRFYgTlGvoT/6LdIT39QooHB+4tSDRtEQ6lh0q2ZtVV2rfG/I6/PR5sUbWM65SN vAfctRm2afHLhdonSX5O =41m+ -----END PGP SIGNATURE----- Merge tag 'docs-4.12' of git://git.lwn.net/linux Pull documentation update from Jonathan Corbet: "A reasonably busy cycle for documentation this time around. There is a new guide for user-space API documents, rather sparsely populated at the moment, but it's a start. Markus improved the infrastructure for converting diagrams. Mauro has converted much of the USB documentation over to RST. Plus the usual set of fixes, improvements, and tweaks. There's a bit more than the usual amount of reaching out of Documentation/ to fix comments elsewhere in the tree; I have acks for those where I could get them" * tag 'docs-4.12' of git://git.lwn.net/linux: (74 commits) docs: Fix a couple typos docs: Fix a spelling error in vfio-mediated-device.txt docs: Fix a spelling error in ioctl-number.txt MAINTAINERS: update file entry for HSI subsystem Documentation: allow installing man pages to a user defined directory Doc/PM: Sync with intel_powerclamp code behavior zr364xx.rst: usb/devices is now at /sys/kernel/debug/ usb.rst: move documentation from proc_usb_info.txt to USB ReST book convert philips.txt to ReST and add to media docs docs-rst: usb: update old usbfs-related documentation arm: Documentation: update a path name docs: process/4.Coding.rst: Fix a couple of document refs docs-rst: fix usb cross-references usb: gadget.h: be consistent at kernel doc macros usb: composite.h: fix two warnings when building docs usb: get rid of some ReST doc build errors usb.rst: get rid of some Sphinx errors usb/URB.txt: convert to ReST and update it usb/persist.txt: convert to ReST and add to driver-api book usb/hotplug.txt: convert to ReST and add to driver-api book ... |
||
Mel Gorman
|
d34b0733b4 |
Revert "mm, page_alloc: only use per-cpu allocator for irq-safe requests"
This reverts commit
|
||
Michal Hocko
|
ce612879dd |
mm: move pcp and lru-pcp draining into single wq
We currently have 2 specific WQ_RECLAIM workqueues in the mm code. vmstat_wq for updating pcp stats and lru_add_drain_wq dedicated to drain per cpu lru caches. This seems more than necessary because both can run on a single WQ. Both do not block on locks requiring a memory allocation nor perform any allocations themselves. We will save one rescuer thread this way. On the other hand drain_all_pages() queues work on the system wq which doesn't have rescuer and so this depend on memory allocation (when all workers are stuck allocating and new ones cannot be created). Initially we thought this would be more of a theoretical problem but Hugh Dickins has reported: : 4.11-rc has been giving me hangs after hours of swapping load. At : first they looked like memory leaks ("fork: Cannot allocate memory"); : but for no good reason I happened to do "cat /proc/sys/vm/stat_refresh" : before looking at /proc/meminfo one time, and the stat_refresh stuck : in D state, waiting for completion of flush_work like many kworkers. : kthreadd waiting for completion of flush_work in drain_all_pages(). This worker should be using WQ_RECLAIM as well in order to guarantee a forward progress. We can reuse the same one as for lru draining and vmstat. Link: http://lkml.kernel.org/r/20170307131751.24936-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Tested-by: Yang Li <pku.leo@gmail.com> Tested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Polakov
|
1f06b81aea |
mm/page_alloc.c: fix print order in show_free_areas()
Fixes:
|
||
Steven Rostedt (VMware)
|
b80f0f6c9e |
ftrace: Have init/main.c call ftrace directly to free init memory
Relying on free_reserved_area() to call ftrace to free init memory proved to not be sufficient. The issue is that on x86, when debug_pagealloc is enabled, the init memory is not freed, but simply set as not present. Since ftrace was uninformed of this, starting function tracing still tries to update pages that are not present according to the page tables, causing ftrace to bug, as well as killing the kernel itself. Instead of relying on free_reserved_area(), have init/main.c call ftrace directly just before it frees the init memory. Then it needs to use __init_begin and __init_end to know where the init memory location is. Looking at all archs (and testing what I can), it appears that this should work for each of them. Reported-by: kernel test robot <xiaolong.ye@intel.com> Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> |
||
mchehab@s-opensource.com
|
0e056eb553 |
kernel-api.rst: fix a series of errors when parsing C files
./lib/string.c:134: WARNING: Inline emphasis start-string without end-string. ./mm/filemap.c:522: WARNING: Inline interpreted text or phrase reference start-string without end-string. ./mm/filemap.c:1283: ERROR: Unexpected indentation. ./mm/filemap.c:3003: WARNING: Inline interpreted text or phrase reference start-string without end-string. ./mm/vmalloc.c:1544: WARNING: Inline emphasis start-string without end-string. ./mm/page_alloc.c:4245: ERROR: Unexpected indentation. ./ipc/util.c:676: ERROR: Unexpected indentation. ./drivers/pci/irq.c:35: WARNING: Block quote ends without a blank line; unexpected unindent. ./security/security.c:109: ERROR: Unexpected indentation. ./security/security.c:110: WARNING: Definition list ends without a blank line; unexpected unindent. ./block/genhd.c:275: WARNING: Inline strong start-string without end-string. ./block/genhd.c:283: WARNING: Inline strong start-string without end-string. ./include/linux/clk.h:134: WARNING: Inline emphasis start-string without end-string. ./include/linux/clk.h:134: WARNING: Inline emphasis start-string without end-string. ./ipc/util.c:477: ERROR: Unknown target name: "s". Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Steven Rostedt (VMware)
|
42c269c88d |
ftrace: Allow for function tracing to record init functions on boot up
Adding a hook into free_reserve_area() that informs ftrace that boot up init text is being free, lets ftrace safely remove those init functions from its records, which keeps ftrace from trying to modify text that no longer exists. Note, this still does not allow for tracing .init text of modules, as modules require different work for freeing its init code. Link: http://lkml.kernel.org/r/1488502497.7212.24.camel@linux.intel.com Cc: linux-mm@kvack.org Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Requested-by: Todd Brandt <todd.e.brandt@linux.intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> |
||
Tony Luck
|
b4fb8f66f1 |
mm, page_alloc: Add missing check for memory holes
Commit |
||
Ingo Molnar
|
5b3cc15aff |
sched/headers: Prepare to move the memalloc_noio_*() APIs to <linux/sched/mm.h>
Update the .c files that depend on these APIs. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Masahiro Yamada
|
89d790ab31 |
scripts/spelling.txt: add "algined" pattern and fix typo instances
Fix typos and add the following to the scripts/spelling.txt: algined||aligned While we are here, fix the "appplication" in the touched line in drivers/block/loop.c. Also, fix the "may not naturally ..." to "may not be naturally ..." in the touched line in mm/page_alloc. Link: http://lkml.kernel.org/r/1481573103-11329-9-git-send-email-yamada.masahiro@socionext.com Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wei Yang
|
ad69444e75 |
mm/page_alloc.c: remove redundant init code for ZONE_MOVABLE
arch_zone_lowest/highest_possible_pfn[] is set to 0 and [ZONE_MOVABLE] is skipped in the loop. No need to reset them to 0 again. This patch just removes the redundant code. Link: http://lkml.kernel.org/r/20170209141731.60208-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Gavin Shan
|
e02dc017c3 |
mm/page_alloc: fix nodes for reclaim in fast path
When @node_reclaim_node isn't 0, the page allocator tries to reclaim
pages if the amount of free memory in the zones are below the low
watermark. On Power platform, none of NUMA nodes are scanned for page
reclaim because no nodes match the condition in zone_allows_reclaim().
On Power platform, RECLAIM_DISTANCE is set to 10 which is the distance
of Node-A to Node-A. So the preferred node even won't be scanned for
page reclaim.
__alloc_pages_nodemask()
get_page_from_freelist()
zone_allows_reclaim()
Anton proposed the test code as below:
# cat alloc.c
:
int main(int argc, char *argv[])
{
void *p;
unsigned long size;
unsigned long start, end;
start = time(NULL);
size = strtoul(argv[1], NULL, 0);
printf("To allocate %ldGB memory\n", size);
size <<= 30;
p = malloc(size);
assert(p);
memset(p, 0, size);
end = time(NULL);
printf("Used time: %ld seconds\n", end - start);
sleep(3600);
return 0;
}
The system I use for testing has two NUMA nodes. Both have 128GB
memory. In below scnario, the page caches on node#0 should be reclaimed
when it encounters pressure to accommodate request of allocation.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches; \
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619712 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619840 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 186816 kB
With the patch applied, the pagecache on node-0 is reclaimed when its
free memory is running out. It's the expected behaviour.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33605568 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 1379520 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 317120 kB
Fixes:
|
||
Masanari Iida
|
f2bf14d14d |
mm/page_alloc.c: remove duplicate inclusion of page_ext.h
Link: http://lkml.kernel.org/r/20170202011942.1609-1-standby24x7@gmail.com Signed-off-by: Masanari Iida <standby24x7@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Lucas Stach
|
ca96b62534 |
mm: alloc_contig_range: allow to specify GFP mask
Currently alloc_contig_range assumes that the compaction should be done with the default GFP_KERNEL flags. This is probably right for all current uses of this interface, but may change as CMA is used in more use-cases (including being the default DMA memory allocator on some platforms). Change the function prototype, to allow for passing through the GFP mask set by upper layers. Also respect global restrictions by applying memalloc_noio_flags to the passed in flags. Link: http://lkml.kernel.org/r/20170127172328.18574-1-l.stach@pengutronix.de Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Alexander Graf <agraf@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yisheng Xie
|
0efadf48bc |
mm/hotplug: enable memory hotplug for non-lru movable pages
We had considered all of the non-lru pages as unmovable before commit
|
||
Mel Gorman
|
bd233f538d |
mm, page_alloc: use static global work_struct for draining per-cpu pages
As suggested by Vlastimil Babka and Tejun Heo, this patch uses a static work_struct to co-ordinate the draining of per-cpu pages on the workqueue. Only one task can drain at a time but this is better than the previous scheme that allowed multiple tasks to send IPIs at a time. One consideration is whether parallel requests should synchronise against each other. This patch does not synchronise for a global drain as the common case for such callers is expected to be multiple parallel direct reclaimers competing for pages when the watermark is close to min. Draining the per-cpu list is unlikely to make much progress and serialising the drain is of dubious merit. Drains are synchonrised for callers such as memory hotplug and CMA that care about the drain being complete when the function returns. Link: http://lkml.kernel.org/r/20170125083038.rzb5f43nptmk7aed@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Suggested-by: Tejun Heo <tj@kernel.org> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
5104782011 |
mm, page_alloc: don't check cpuset allowed twice in fast-path
Since commit
|
||
Vlastimil Babka
|
df76cee6bb |
mm, page_alloc: remove redundant checks from alloc fastpath
The allocation fast path contains two similar checks for zoneref->zone being NULL, where zoneref points either to the first zone in the zonelist, or to the preferred zone. These can be NULL either due to empty zonelist, or no zone being compatible with given nodemask or task's cpuset. These checks are unnecessary, because the zonelist walks in first_zones_zonelist() and get_page_from_freelist() handle a NULL starting zoneref->zone or preferred_zoneref->zone safely. It's safe to fallback to __alloc_pages_slowpath() where we also have the check early enough. Link: http://lkml.kernel.org/r/20170124150511.5710-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
374ad05ab6 |
mm, page_alloc: only use per-cpu allocator for irq-safe requests
Many workloads that allocate pages are not handling an interrupt at a time. As allocation requests may be from IRQ context, it's necessary to disable/enable IRQs for every page allocation. This cost is the bulk of the free path but also a significant percentage of the allocation path. This patch alters the locking and checks such that only irq-safe allocation requests use the per-cpu allocator. All others acquire the irq-safe zone->lock and allocate from the buddy allocator. It relies on disabling preemption to safely access the per-cpu structures. It could be slightly modified to avoid soft IRQs using it but it's not clear it's worthwhile. This modification may slow allocations from IRQ context slightly but the main gain from the per-cpu allocator is that it scales better for allocations from multiple contexts. There is an implicit assumption that intensive allocations from IRQ contexts on multiple CPUs from a single NUMA node are rare and that the fast majority of scaling issues are encountered in !IRQ contexts such as page faulting. It's worth noting that this patch is not required for a bulk page allocator but it significantly reduces the overhead. The following is results from a page allocator micro-benchmark. Only order-0 is interesting as higher orders do not use the per-cpu allocator 4.10.0-rc2 4.10.0-rc2 vanilla irqsafe-v1r5 Amean alloc-odr0-1 287.15 ( 0.00%) 219.00 ( 23.73%) Amean alloc-odr0-2 221.23 ( 0.00%) 183.23 ( 17.18%) Amean alloc-odr0-4 187.00 ( 0.00%) 151.38 ( 19.05%) Amean alloc-odr0-8 167.54 ( 0.00%) 132.77 ( 20.75%) Amean alloc-odr0-16 156.00 ( 0.00%) 123.00 ( 21.15%) Amean alloc-odr0-32 149.00 ( 0.00%) 118.31 ( 20.60%) Amean alloc-odr0-64 138.77 ( 0.00%) 116.00 ( 16.41%) Amean alloc-odr0-128 145.00 ( 0.00%) 118.00 ( 18.62%) Amean alloc-odr0-256 136.15 ( 0.00%) 125.00 ( 8.19%) Amean alloc-odr0-512 147.92 ( 0.00%) 121.77 ( 17.68%) Amean alloc-odr0-1024 147.23 ( 0.00%) 126.15 ( 14.32%) Amean alloc-odr0-2048 155.15 ( 0.00%) 129.92 ( 16.26%) Amean alloc-odr0-4096 164.00 ( 0.00%) 136.77 ( 16.60%) Amean alloc-odr0-8192 166.92 ( 0.00%) 138.08 ( 17.28%) Amean alloc-odr0-16384 159.00 ( 0.00%) 138.00 ( 13.21%) Amean free-odr0-1 165.00 ( 0.00%) 89.00 ( 46.06%) Amean free-odr0-2 113.00 ( 0.00%) 63.00 ( 44.25%) Amean free-odr0-4 99.00 ( 0.00%) 54.00 ( 45.45%) Amean free-odr0-8 88.00 ( 0.00%) 47.38 ( 46.15%) Amean free-odr0-16 83.00 ( 0.00%) 46.00 ( 44.58%) Amean free-odr0-32 80.00 ( 0.00%) 44.38 ( 44.52%) Amean free-odr0-64 72.62 ( 0.00%) 43.00 ( 40.78%) Amean free-odr0-128 78.00 ( 0.00%) 42.00 ( 46.15%) Amean free-odr0-256 80.46 ( 0.00%) 57.00 ( 29.16%) Amean free-odr0-512 96.38 ( 0.00%) 64.69 ( 32.88%) Amean free-odr0-1024 107.31 ( 0.00%) 72.54 ( 32.40%) Amean free-odr0-2048 108.92 ( 0.00%) 78.08 ( 28.32%) Amean free-odr0-4096 113.38 ( 0.00%) 82.23 ( 27.48%) Amean free-odr0-8192 112.08 ( 0.00%) 82.85 ( 26.08%) Amean free-odr0-16384 110.38 ( 0.00%) 81.92 ( 25.78%) Amean total-odr0-1 452.15 ( 0.00%) 308.00 ( 31.88%) Amean total-odr0-2 334.23 ( 0.00%) 246.23 ( 26.33%) Amean total-odr0-4 286.00 ( 0.00%) 205.38 ( 28.19%) Amean total-odr0-8 255.54 ( 0.00%) 180.15 ( 29.50%) Amean total-odr0-16 239.00 ( 0.00%) 169.00 ( 29.29%) Amean total-odr0-32 229.00 ( 0.00%) 162.69 ( 28.96%) Amean total-odr0-64 211.38 ( 0.00%) 159.00 ( 24.78%) Amean total-odr0-128 223.00 ( 0.00%) 160.00 ( 28.25%) Amean total-odr0-256 216.62 ( 0.00%) 182.00 ( 15.98%) Amean total-odr0-512 244.31 ( 0.00%) 186.46 ( 23.68%) Amean total-odr0-1024 254.54 ( 0.00%) 198.69 ( 21.94%) Amean total-odr0-2048 264.08 ( 0.00%) 208.00 ( 21.24%) Amean total-odr0-4096 277.38 ( 0.00%) 219.00 ( 21.05%) Amean total-odr0-8192 279.00 ( 0.00%) 220.92 ( 20.82%) Amean total-odr0-16384 269.38 ( 0.00%) 219.92 ( 18.36%) This is the alloc, free and total overhead of allocating order-0 pages in batches of 1 page up to 16384 pages. Avoiding disabling/enabling overhead massively reduces overhead. Alloc overhead is roughly reduced by 14-20% in most cases. The free path is reduced by 26-46% and the total reduction is significant. Many users require zeroing of pages from the page allocator which is the vast cost of allocation. Hence, the impact on a basic page faulting benchmark is not that significant 4.10.0-rc2 4.10.0-rc2 vanilla irqsafe-v1r5 Hmean page_test 656632.98 ( 0.00%) 675536.13 ( 2.88%) Hmean brk_test 3845502.67 ( 0.00%) 3867186.94 ( 0.56%) Stddev page_test 10543.29 ( 0.00%) 4104.07 ( 61.07%) Stddev brk_test 33472.36 ( 0.00%) 15538.39 ( 53.58%) CoeffVar page_test 1.61 ( 0.00%) 0.61 ( 62.15%) CoeffVar brk_test 0.87 ( 0.00%) 0.40 ( 53.84%) Max page_test 666513.33 ( 0.00%) 678640.00 ( 1.82%) Max brk_test 3882800.00 ( 0.00%) 3887008.66 ( 0.11%) This is from aim9 and the most notable outcome is that fault variability is reduced by the patch. The headline improvement is small as the overall fault cost, zeroing, page table insertion etc dominate relative to disabling/enabling IRQs in the per-cpu allocator. Similarly, little benefit was seen on networking benchmarks both localhost and between physical server/clients where other costs dominate. It's possible that this will only be noticable on very high speed networks. Jesper Dangaard Brouer independently tested this with a separate microbenchmark from https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench Micro-benchmarked with [1] page_bench02: modprobe page_bench02 page_order=0 run_flags=$((2#010)) loops=$((10**8)); \ rmmod page_bench02 ; dmesg --notime | tail -n 4 Compared to baseline: 213 cycles(tsc) 53.417 ns - against this : 184 cycles(tsc) 46.056 ns - Saving : -29 cycles - Very close to expected 27 cycles saving [see below [2]] Micro benchmarking via time_bench_sample[3], we get the cost of these operations: time_bench: Type:for_loop Per elem: 0 cycles(tsc) 0.232 ns (step:0) time_bench: Type:spin_lock_unlock Per elem: 33 cycles(tsc) 8.334 ns (step:0) time_bench: Type:spin_lock_unlock_irqsave Per elem: 62 cycles(tsc) 15.607 ns (step:0) time_bench: Type:irqsave_before_lock Per elem: 57 cycles(tsc) 14.344 ns (step:0) time_bench: Type:spin_lock_unlock_irq Per elem: 34 cycles(tsc) 8.560 ns (step:0) time_bench: Type:simple_irq_disable_before_lock Per elem: 37 cycles(tsc) 9.289 ns (step:0) time_bench: Type:local_BH_disable_enable Per elem: 19 cycles(tsc) 4.920 ns (step:0) time_bench: Type:local_IRQ_disable_enable Per elem: 7 cycles(tsc) 1.864 ns (step:0) time_bench: Type:local_irq_save_restore Per elem: 38 cycles(tsc) 9.665 ns (step:0) [Mel's patch removes a ^^^^^^^^^^^^^^^^] ^^^^^^^^^ expected saving - preempt cost time_bench: Type:preempt_disable_enable Per elem: 11 cycles(tsc) 2.794 ns (step:0) [adds a preempt ^^^^^^^^^^^^^^^^^^^^^^] ^^^^^^^^^ adds this cost time_bench: Type:funcion_call_cost Per elem: 6 cycles(tsc) 1.689 ns (step:0) time_bench: Type:func_ptr_call_cost Per elem: 11 cycles(tsc) 2.767 ns (step:0) time_bench: Type:page_alloc_put Per elem: 211 cycles(tsc) 52.803 ns (step:0) Thus, expected improvement is: 38-11 = 27 cycles. [mgorman@techsingularity.net: s/preempt_enable_no_resched/preempt_enable/] Link: http://lkml.kernel.org/r/20170208143128.25ahymqlyspjcixu@techsingularity.net Link: http://lkml.kernel.org/r/20170123153906.3122-5-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
a459eeb7b8 |
mm, page_alloc: do not depend on cpu hotplug locks inside the allocator
Dmitry has reported the following lockdep splat lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3753 __mutex_lock_common kernel/locking/mutex.c:521 [inline] mutex_lock_nested+0x24e/0xff0 kernel/locking/mutex.c:621 pcpu_alloc+0xbda/0x1280 mm/percpu.c:896 __alloc_percpu+0x24/0x30 mm/percpu.c:1075 smpcfd_prepare_cpu+0x73/0xd0 kernel/smp.c:44 cpuhp_invoke_callback+0x254/0x1480 kernel/cpu.c:136 cpuhp_up_callbacks+0x81/0x2a0 kernel/cpu.c:493 _cpu_up+0x1e3/0x2a0 kernel/cpu.c:1057 do_cpu_up+0x73/0xa0 kernel/cpu.c:1087 cpu_up+0x18/0x20 kernel/cpu.c:1095 smp_init+0xe9/0xee kernel/smp.c:564 kernel_init_freeable+0x439/0x690 init/main.c:1010 kernel_init+0x13/0x180 init/main.c:941 ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433 cpu_hotplug_begin cpu_hotplug.lock pcpu_alloc pcpu_alloc_mutex get_online_cpus+0x62/0x90 kernel/cpu.c:248 drain_all_pages+0xf8/0x710 mm/page_alloc.c:2385 __alloc_pages_direct_reclaim mm/page_alloc.c:3440 [inline] __alloc_pages_slowpath+0x8fd/0x2370 mm/page_alloc.c:3778 __alloc_pages_nodemask+0x8f5/0xc60 mm/page_alloc.c:3980 __alloc_pages include/linux/gfp.h:426 [inline] __alloc_pages_node include/linux/gfp.h:439 [inline] alloc_pages_node include/linux/gfp.h:453 [inline] pcpu_alloc_pages mm/percpu-vm.c:93 [inline] pcpu_populate_chunk+0x1e1/0x900 mm/percpu-vm.c:282 pcpu_alloc+0xe01/0x1280 mm/percpu.c:998 __alloc_percpu_gfp+0x27/0x30 mm/percpu.c:1062 bpf_array_alloc_percpu kernel/bpf/arraymap.c:34 [inline] array_map_alloc+0x532/0x710 kernel/bpf/arraymap.c:99 find_and_alloc_map kernel/bpf/syscall.c:34 [inline] map_create kernel/bpf/syscall.c:188 [inline] SYSC_bpf kernel/bpf/syscall.c:870 [inline] SyS_bpf+0xd64/0x2500 kernel/bpf/syscall.c:827 entry_SYSCALL_64_fastpath+0x1f/0xc2 pcpu_alloc pcpu_alloc_mutex drain_all_pages get_online_cpus cpu_hotplug.lock cpu_hotplug_begin+0x206/0x2e0 kernel/cpu.c:304 _cpu_up+0xca/0x2a0 kernel/cpu.c:1011 do_cpu_up+0x73/0xa0 kernel/cpu.c:1087 cpu_up+0x18/0x20 kernel/cpu.c:1095 smp_init+0xe9/0xee kernel/smp.c:564 kernel_init_freeable+0x439/0x690 init/main.c:1010 kernel_init+0x13/0x180 init/main.c:941 ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433 cpu_hotplug_begin cpu_hotplug.lock Pulling cpu hotplug locks inside the page allocator is just too dangerous. Let's remove the dependency by dropping get_online_cpus() from drain_all_pages. This is not so simple though because now we do not have a protection against cpu hotplug which means 2 things: - the work item might be executed on a different cpu in worker from unbound pool so it doesn't run on pinned on the cpu - we have to make sure that we do not race with page_alloc_cpu_dead calling drain_pages_zone Disabling preemption in drain_local_pages_wq will solve the first problem drain_local_pages will determine its local CPU from the WQ context which will be stable after that point, page_alloc_cpu_dead is pinned to the CPU already. The later condition is achieved by disabling IRQs in drain_pages_zone. Fixes: mm, page_alloc: drain per-cpu pages from workqueue context Link: http://lkml.kernel.org/r/20170207201950.20482-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
0ccce3b924 |
mm, page_alloc: drain per-cpu pages from workqueue context
The per-cpu page allocator can be drained immediately via drain_all_pages() which sends IPIs to every CPU. In the next patch, the per-cpu allocator will only be used for interrupt-safe allocations which prevents draining it from IPI context. This patch uses workqueues to drain the per-cpu lists instead. This is slower but no slowdown during intensive reclaim was measured and the paths that use drain_all_pages() are not that sensitive to performance. This is particularly true as the path would only be triggered when reclaim is failing. It also makes a some sense to avoid storming a machine with IPIs when it's under memory pressure. Arguably, it should be further adjusted so that only one caller at a time is draining pages but it's beyond the scope of the current patch. Link: http://lkml.kernel.org/r/20170123153906.3122-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |