In addition to changing the signature, this patch also switches
all the functions which are used as an argument to also take btrfs_inode.
Namely those are: btrfs_get_extent and btrfs_get_extent_filemap.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace all 1 << inode->i_blkbits and (1 << inode->i_blkbits) in fs
branch.
This patch also fixes multiple checkpatch warnings: WARNING: Prefer
'unsigned int' to bare use of 'unsigned'
Thanks to Andrew Morton for suggesting more appropriate function instead
of macro.
[geliangtang@gmail.com: truncate: use i_blocksize()]
Link: http://lkml.kernel.org/r/9c8b2cd83c8f5653805d43debde9fa8817e02fc4.1484895804.git.geliangtang@gmail.com
Link: http://lkml.kernel.org/r/1481319905-10126-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull btrfs updates from Chris Mason:
"This has a series of fixes and cleanups that Dave Sterba has been
collecting.
There is a pretty big variety here, cleaning up internal APIs and
fixing corner cases"
* 'for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (124 commits)
Btrfs: use the correct type when creating cow dio extent
Btrfs: fix deadlock between dedup on same file and starting writeback
btrfs: use btrfs_debug instead of pr_debug in transaction abort
btrfs: btrfs_truncate_free_space_cache always allocates path
btrfs: free-space-cache, clean up unnecessary root arguments
btrfs: convert btrfs_inc_block_group_ro to accept fs_info
btrfs: flush_space always takes fs_info->fs_root
btrfs: pass fs_info to (more) routines that are only called with extent_root
btrfs: qgroup: Move half of the qgroup accounting time out of commit trans
btrfs: remove unused parameter from adjust_slots_upwards
btrfs: remove unused parameters from __btrfs_write_out_cache
btrfs: remove unused parameter from cleanup_write_cache_enospc
btrfs: remove unused parameter from __add_inode_ref
btrfs: remove unused parameter from clone_copy_inline_extent
btrfs: remove unused parameters from btrfs_cmp_data
btrfs: remove unused parameter from __add_inline_refs
btrfs: remove unused parameters from scrub_setup_wr_ctx
btrfs: remove unused parameter from create_snapshot
btrfs: remove unused parameter from init_first_rw_device
btrfs: remove unused parameter from __btrfs_alloc_chunk
...
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before attempting to split a leaf we try to migrate items from the leaf to
its right and left siblings. We start by trying to move items into the
rigth sibling and, if the new item is meant to be inserted at the end of
our leaf, we try to free from our leaf an amount of bytes equal to the
number of bytes used by the new item, by setting the variable space_needed
to the byte size of that new item. However if we fail to move enough items
to the right sibling due to lack of space in that sibling, we then try
to move items into the left sibling, and in that case we try to free
an amount equal to the size of the new item from our leaf, when we need
only to free an amount corresponding to the size of the new item minus
the current free space of our leaf. So make sure that before we try to
move items to the left sibling we do set the variable space_needed with
a value corresponding to the new item's size minus the leaf's current
free space.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
If we have a file with an implicit hole (NO_HOLES feature enabled) that
has an extent following the hole, delayed writes against regions of the
file behind the hole happened before but were not yet flushed and then
we truncate the file to a smaller size that lies inside the hole, we
end up persisting a wrong disk_i_size value for our inode that leads to
data loss after umounting and mounting again the filesystem or after
the inode is evicted and loaded again.
This happens because at inode.c:btrfs_truncate_inode_items() we end up
setting last_size to the offset of the extent that we deleted and that
followed the hole. We then pass that value to btrfs_ordered_update_i_size()
which updates the inode's disk_i_size to a value smaller then the offset
of the buffered (delayed) writes.
Example reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0x01 0K 32K" /mnt/foo
$ xfs_io -d -c "pwrite -S 0x02 -b 32K 64K 32K" /mnt/foo
$ xfs_io -c "truncate 60K" /mnt/foo
--> inode's disk_i_size updated to 0
$ md5sum /mnt/foo
3c5ca3c3ab42f4b04d7e7eb0b0d4d806 /mnt/foo
$ umount /dev/sdb
$ mount /dev/sdb /mnt
$ md5sum /mnt/foo
d41d8cd98f00b204e9800998ecf8427e /mnt/foo
--> Empty file, all data lost!
Cc: <stable@vger.kernel.org> # 3.14+
Fixes: 16e7549f04 ("Btrfs: incompatible format change to remove hole extents")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
When using the NO_HOLES feature, during an incremental send we often issue
write operations for holes when we should not, because that range is already
a hole in the destination snapshot. While that does not change the contents
of the file at the receiver, it avoids preservation of file holes, leading
to wasted disk space and extra IO during send/receive.
A couple examples where the holes are not preserved follows.
$ mkfs.btrfs -O no-holes -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0xaa 0 4K" /mnt/foo
$ xfs_io -f -c "pwrite -S 0xaa 0 4K" -c "pwrite -S 0xbb 1028K 4K" /mnt/bar
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
# Now add one new extent to our first test file, increasing its size and
# leaving a 1Mb hole between the first extent and this new extent.
$ xfs_io -c "pwrite -S 0xbb 1028K 4K" /mnt/foo
# Now overwrite the last extent of our second test file.
$ xfs_io -c "pwrite -S 0xcc 1028K 4K" /mnt/bar
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ xfs_io -r -c "fiemap -v" /mnt/snap2/foo
/mnt/snap2/foo:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 25088..25095 8 0x2000
1: [8..2055]: hole 2048
2: [2056..2063]: 24576..24583 8 0x2001
$ xfs_io -r -c "fiemap -v" /mnt/snap2/bar
/mnt/snap2/bar:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 25096..25103 8 0x2000
1: [8..2055]: hole 2048
2: [2056..2063]: 24584..24591 8 0x2001
$ btrfs send /mnt/snap1 -f /tmp/1.snap
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.snap
$ umount /mnt
# It's not relevant to enable no-holes in the new filesystem.
$ mkfs.btrfs -O no-holes -f /dev/sdc
$ mount /dev/sdc /mnt
$ btrfs receive /mnt -f /tmp/1.snap
$ btrfs receive /mnt -f /tmp/2.snap
$ xfs_io -r -c "fiemap -v" /mnt/snap2/foo
/mnt/snap2/foo:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 24576..24583 8 0x2000
1: [8..2063]: 25624..27679 2056 0x1
$ xfs_io -r -c "fiemap -v" /mnt/snap2/bar
/mnt/snap2/bar:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 24584..24591 8 0x2000
1: [8..2063]: 27680..29735 2056 0x1
The holes do not exist in the second filesystem and they were replaced
with extents filled with the byte 0x00, making each file take 1032Kb of
space instead of 8Kb.
So fix this by not issuing the write operations consisting of buffers
filled with the byte 0x00 when the destination snapshot already has a
hole for the respective range.
A test case for fstests will follow soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
We log holes explicitly by using file extent items, however when replaying
a log tree, if a logged file extent item corresponds to a hole and the
NO_HOLES feature is enabled we do not need to copy the file extent item
into the fs/subvolume tree, as the absence of such file extent items is
the purpose of the NO_HOLES feature. So skip the copying of file extent
items representing holes when the NO_HOLES feature is enabled.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When falling back from a nocow write to a regular cow write, we were
leaking the subvolume writers counter in 2 situations, preventing
snapshot creation from ever completing in the future, as it waits
for that counter to go down to zero before the snapshot creation
starts.
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
[Improved changelog and subject]
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Very often we have the checksums for an extent spread in multiple items
in the checksums tree, and currently the algorithm to delete them starts
by looking for them one by one and then deleting them one by one, which
is not optimal since each deletion involves shifting all the other items
in the leaf and when the leaf reaches some low threshold, to move items
off the leaf into its left and right neighbor leafs. Also, after each
item deletion we release our search path and start a new search for other
checksums items.
So optimize this by deleting in bulk all the items in the same leaf that
contain checksums for the extent being freed.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
When both the parent and send snapshots have a directory inode with the
same number but different generations (therefore they are different
inodes) and both have an entry with the same name, an incremental send
stream will contain an invalid rmdir operation that refers to the
orphanized name of the inode from the parent snapshot.
The following example scenario shows how this happens.
Parent snapshot:
.
|---- d259_old/ (ino 259, gen 9)
| |---- d1/ (ino 258, gen 9)
|
|---- f (ino 257, gen 9)
Send snapshot:
.
|---- d258/ (ino 258, gen 7)
|---- d259/ (ino 259, gen 7)
|---- d1/ (ino 257, gen 7)
When the kernel is processing inode 258 it notices that in both snapshots
there is an inode numbered 259 that is a parent of an inode 258. However
it ignores the fact that the inodes numbered 259 have different generations
in both snapshots, which means they are effectively different inodes.
Then it checks that both inodes 259 have a dentry named "d1" and because
of that it issues a rmdir operation with orphanized name of the inode 258
from the parent snapshot. This happens at send.c:process_record_refs(),
which calls send.c:did_overwrite_first_ref() that returns true and because
of that later on at process_recorded_refs() such rmdir operation is issued
because the inode being currently processed (258) is a directory and it
was deleted in the send snapshot (and replaced with another inode that has
the same number and is a directory too).
Fix this issue by comparing the generations of parent directory inodes
that have the same number and make send.c:did_overwrite_first_ref() when
the generations are different.
The following steps reproduce the problem.
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ touch /mnt/f
$ mkdir /mnt/d1
$ mkdir /mnt/d259_old
$ mv /mnt/d1 /mnt/d259_old/d1
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/1.snap
$ umount /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ mkdir /mnt/d1
$ mkdir /mnt/dir258
$ mkdir /mnt/dir259
$ mv /mnt/d1 /mnt/dir259/d1
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs receive /mnt/ -f /tmp/1.snap
# Take note that once the filesystem is created, its current
# generation has value 7 so the inodes from the second snapshot all have
# a generation value of 7. And after receiving the first snapshot
# the filesystem is at a generation value of 10, because the call to
# create the second snapshot bumps the generation to 8 (the snapshot
# creation ioctl does a transaction commit), the receive command calls
# the snapshot creation ioctl to create the first snapshot, which bumps
# the filesystem's generation to 9, and finally when the receive
# operation finishes it calls an ioctl to transition the first snapshot
# (snap1) from RW mode to RO mode, which does another transaction commit
# and bumps the filesystem's generation to 10. This means all the inodes
# in the first snapshot (snap1) have a generation value of 9.
$ rm -f /tmp/1.snap
$ btrfs send /mnt/snap1 -f /tmp/1.snap
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.snap
$ umount /mnt
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ btrfs receive /mnt -f /tmp/1.snap
$ btrfs receive -vv /mnt -f /tmp/2.snap
receiving snapshot mysnap2 uuid=9c03962f-f620-0047-9f98-32e5a87116d9, ctransid=7 parent_uuid=d17a6e3f-14e5-df4f-be39-a7951a5399aa, parent_ctransid=9
utimes
unlink f
mkdir o257-7-0
mkdir o259-7-0
rename o257-7-0 -> o259-7-0/d1
chown o259-7-0/d1 - uid=0, gid=0
chmod o259-7-0/d1 - mode=0755
utimes o259-7-0/d1
rmdir o258-9-0
ERROR: rmdir o258-9-0 failed: No such file or directory
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
[Rewrote changelog to be more precise and clear]
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When we are checking if we need to delay the rename operation for an
inode we not checking if a parent inode that exists in the send and
parent snapshots is really the same inode or not, that is, we are not
comparing the generation number of the parent inode in the send and
parent snapshots. Not only this results in unnecessarily delaying a
rename operation but also can later on make us generate an incorrect
name for a new inode in the send snapshot that has the same number
as another inode in the parent snapshot but a different generation.
Here follows an example where this happens.
Parent snapshot:
. (ino 256, gen 3)
|--- dir258/ (ino 258, gen 7)
| |--- dir257/ (ino 257, gen 7)
|
|--- dir259/ (ino 259, gen 7)
Send snapshot:
. (ino 256, gen 3)
|--- file258 (ino 258, gen 10)
|
|--- new_dir259/ (ino 259, gen 10)
|--- dir257/ (ino 257, gen 7)
The following steps happen when computing the incremental send stream:
1) When processing inode 257, its new parent is created using its orphan
name (o257-21-0), and the rename operation for inode 257 is delayed
because its new parent (inode 259) was not yet processed - this
decision to delay the rename operation does not make much sense
because the inode 259 in the send snapshot is a new inode, it's not
the same as inode 259 in the parent snapshot.
2) When processing inode 258 we end up delaying its rmdir operation,
because inode 257 was not yet renamed (moved away from the directory
inode 258 represents). We also create the new inode 258 using its
orphan name "o258-10-0", then rename it to its final name of "file258"
and then issue a truncate operation for it. However this truncate
operation contains an incorrect name, which corresponds to the orphan
name and not to the final name, which makes the receiver fail. This
happens because when we attempt to compute the inode's current name
we verify that there's another inode with the same number (258) that
has its rmdir operation pending and because of that we generate an
orphan name for the new inode 258 (we do this in the function
get_cur_path()).
Fix this by not delayed the rename operation of an inode if it has parents
with the same number but different generations in both snapshots.
The following steps reproduce this example scenario.
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir /mnt/dir257
$ mkdir /mnt/dir258
$ mkdir /mnt/dir259
$ mv /mnt/dir257 /mnt/dir258/dir257
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ mv /mnt/dir258/dir257 /mnt/dir257
$ rmdir /mnt/dir258
$ rmdir /mnt/dir259
# Remount the filesystem so that the next created inodes will have the
# numbers 258 and 259. This is because when a filesystem is mounted,
# btrfs sets the subvolume's inode counter to a value corresponding to
# the highest inode number in the subvolume plus 1. This inode counter
# is used to assign a unique number to each new inode and it's
# incremented by 1 after very inode creation.
# Note: we unmount and then mount instead of doing a mount with
# "-o remount" because otherwise the inode counter remains at value 260.
$ umount /mnt
$ mount /dev/sdb /mnt
$ touch /mnt/file258
$ mkdir /mnt/new_dir259
$ mv /mnt/dir257 /mnt/new_dir259/dir257
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send /mnt/snap1 -f /tmp/1.snap
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.snap
$ umount /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ btrfs receive /mnt -f /tmo/1.snap
$ btrfs receive /mnt -f /tmo/2.snap -vv
receiving snapshot mysnap2 uuid=e059b6d1-7f55-f140-8d7c-9a3039d23c97, ctransid=10 parent_uuid=77e98cb6-8762-814f-9e05-e8ba877fc0b0, parent_ctransid=7
utimes
mkdir o259-10-0
rename dir258 -> o258-7-0
utimes
mkfile o258-10-0
rename o258-10-0 -> file258
utimes
truncate o258-10-0 size=0
ERROR: truncate o258-10-0 failed: No such file or directory
Reported-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Under certain situations, an incremental send operation can fail due to a
premature attempt to create a new top level inode (a direct child of the
subvolume/snapshot root) whose name collides with another inode that was
removed from the send snapshot.
Consider the following example scenario.
Parent snapshot:
. (ino 256, gen 8)
|---- a1/ (ino 257, gen 9)
|---- a2/ (ino 258, gen 9)
Send snapshot:
. (ino 256, gen 3)
|---- a2/ (ino 257, gen 7)
In this scenario, when receiving the incremental send stream, the btrfs
receive command fails like this (ran in verbose mode, -vv argument):
rmdir a1
mkfile o257-7-0
rename o257-7-0 -> a2
ERROR: rename o257-7-0 -> a2 failed: Is a directory
What happens when computing the incremental send stream is:
1) An operation to remove the directory with inode number 257 and
generation 9 is issued.
2) An operation to create the inode with number 257 and generation 7 is
issued. This creates the inode with an orphanized name of "o257-7-0".
3) An operation rename the new inode 257 to its final name, "a2", is
issued. This is incorrect because inode 258, which has the same name
and it's a child of the same parent (root inode 256), was not yet
processed and therefore no rmdir operation for it was yet issued.
The rename operation is issued because we fail to detect that the
name of the new inode 257 collides with inode 258, because their
parent, a subvolume/snapshot root (inode 256) has a different
generation in both snapshots.
So fix this by ignoring the generation value of a parent directory that
matches a root inode (number 256) when we are checking if the name of the
inode currently being processed collides with the name of some other
inode that was not yet processed.
We can achieve this scenario of different inodes with the same number but
different generation values either by mounting a filesystem with the inode
cache option (-o inode_cache) or by creating and sending snapshots across
different filesystems, like in the following example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir /mnt/a1
$ mkdir /mnt/a2
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/1.snap
$ umount /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ touch /mnt/a2
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs receive /mnt -f /tmp/1.snap
# Take note that once the filesystem is created, its current
# generation has value 7 so the inode from the second snapshot has
# a generation value of 7. And after receiving the first snapshot
# the filesystem is at a generation value of 10, because the call to
# create the second snapshot bumps the generation to 8 (the snapshot
# creation ioctl does a transaction commit), the receive command calls
# the snapshot creation ioctl to create the first snapshot, which bumps
# the filesystem's generation to 9, and finally when the receive
# operation finishes it calls an ioctl to transition the first snapshot
# (snap1) from RW mode to RO mode, which does another transaction commit
# and bumps the filesystem's generation to 10.
$ rm -f /tmp/1.snap
$ btrfs send /mnt/snap1 -f /tmp/1.snap
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.snap
$ umount /mnt
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ btrfs receive /mnt /tmp/1.snap
# Receive of snapshot snap2 used to fail.
$ btrfs receive /mnt /tmp/2.snap
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
[Rewrote changelog to be more precise and clear]
Signed-off-by: Filipe Manana <fdmanana@suse.com>
'BTRFS_ORDERED_REGULAR' was introduced for the cow case in patch
'Btrfs: specify a new ordered extent type for create_io_em',
but it missed the directIO cow case.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Commit e5d6b12fe1 (Btrfs: don't WARN() in btrfs_transaction_abort() for
IO errors) added a pr_debug call to be printed when a transaction is
aborted with -EIO instead of WARN. btrfs_debug prints which file system
the message is associated with so let's use that instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_truncate_free_space_cache always allocates a btrfs_path structure
but only uses it when the caller passes a block group. Let's move the
allocation and free into the conditional.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The free space cache APIs accept a root but always use the tree root.
Also, btrfs_truncate_free_space_cache accepts a root AND an inode but
the inode always points to the root anyway, so let's just pass the inode.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_inc_block_group_ro is either passed the extent root or the dev
root, but it doesn't do anything with the dev tree. Let's convert
to passing an fs_info and using the extent root.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to pass a root to flush_space since it always uses
the fs_root.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Outside of interactions with qgroups, the roots passed in extent-tree.c
are usually passed to ensure that we don't do refcounts on log trees or
to get the allocation profile for an allocation request. Otherwise, it
operates on the extent root. This patch converts some more routines in
extent-tree.c that are always called with the extent root to accept
an fs_info instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just as Filipe pointed out, the most time consuming parts of qgroup are
btrfs_qgroup_account_extents() and
btrfs_qgroup_prepare_account_extents().
Which both call btrfs_find_all_roots() to get old_roots and new_roots
ulist.
What makes things worse is, we're calling that expensive
btrfs_find_all_roots() at transaction committing time with
TRANS_STATE_COMMIT_DOING, which will blocks all incoming transaction.
Such behavior is necessary for @new_roots search as current
btrfs_find_all_roots() can't do it correctly so we do call it just
before switch commit roots.
However for @old_roots search, it's not necessary as such search is
based on commit_root, so it will always be correct and we can move it
out of transaction committing.
This patch moves the @old_roots search part out of
commit_transaction(), so in theory we can half the time qgroup time
consumption at commit_transaction().
But please note that, this won't speedup qgroup overall, the total time
consumption is still the same, just reduce the performance stall.
Cc: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both unused after the call to update_cache_item has been moved to
__btrfs_wait_cache_io.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unused since the helper has been split, eb used in the caller.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the page locking has been reworked, we get all pages prepared via
cmp_pages.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name parameters have never been used, as the name is passed via the
dentry.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The 'device' used to be added in that function, but now it's done by the
caller.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Never used for anything meaningful since we have our own superblock
filler.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The 'tree' was used to call locking hook that does not exist anymore.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The logic has been updated in "Btrfs: make mapping->writeback_index
point to the last written page" (a91326679f) and page is not
needed anymore.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This used to hold number of maximum pages to allocate, but this is now
limited by BIO_MAX_PAGES. The local are now unused and removed as well.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
None of the checks need to know the ro/rw status as they're all not
changing the superblock. Moreover, we can access the sb flags directly
if we'd need to decide by the ro/rw status.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unused since qgroup refactoring that split data and metadata accounting,
the btrfs_qgroup_free helper.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
write_all_supers and write_ctree_super are almost equal, the parameter
'trans' is unused so we can drop it and have just one helper.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Change the name so it matches the naming we already use eg. for
btrfs_path.
Suggested-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There was never need for RCU protection around reading nodesize or other
fairly constant filesystem data.
Signed-off-by: David Sterba <dsterba@suse.com>
The quota status used to be tracked as a variable, so the mutex was
needed (until "Btrfs: add a flags field to btrfs_fs_info" afcdd129e0).
Since the status is a bit modified atomically and we don't hold the
mutex beyond the check, we can drop it.
Signed-off-by: David Sterba <dsterba@suse.com>
Status of quotas should be the first check in
btrfs_qgroup_account_extent and we can return immediatelly, no need to
do no-op ulist frees.
Signed-off-by: David Sterba <dsterba@suse.com>
We can embed range_changed to the extent changeset to address following
problems:
- no need to allocate ulist dynamically, we also get rid of the GFP_NOFS
for free
- fix lack of allocation failure checking in btrfs_qgroup_reserve_data
The stack consuption where extent_changeset is used slightly increases:
before: 16
after: 16 - 8 (for pointer) + 32 (sizeof ulist) = 40
Which is bearable.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We do a readahead of the free space cache inode to speed things up but
the failure is not fatal, like in other readahead cases. Proper reads
would need to happen anyway and any errors would be caught there.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Qgroup relations are added/deleted from ioctl, we hold the high level
qgroup lock, no deadlocks or recursion from the allocation possible
here.
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to use GFP_NOFS here as this is called from ioctls an the
only lock held is the subvol_sem, which is of a high level and protects
creation/renames/deletion and is never held in the writeout paths.
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to use GFP_NOFS here as this is called from ioctls an the
only lock held is the subvol_sem, which is of a high level and protects
creation/renames/deletion and is never held in the writeout paths.
Signed-off-by: David Sterba <dsterba@suse.com>
As 0 refers to an existing type BTRFS_ORDERED_IO_DONE, this specifies a
new type 'REGULAR' for regular IO.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have similar codes to create and insert extent mapping around IO path,
this merges them into a single helper.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This uses a helper instead of open code around used byte of space_info
everywhere.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to take the lock if the block group has not been cached.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The original csum error message only outputs inode number, offset, check
sum and expected check sum.
However no root objectid is outputted, which sometimes makes debugging
quite painful under multi-subvolume case (including relocation).
Also the checksum output is decimal, which seldom makes sense for
users/developers and is hard to read in most time.
This patch will add root objectid, which will be %lld for rootid larger
than LAST_FREE_OBJECTID, and hex csum output for better readability.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If btrfs_bio_alloc fails in submit_extent_page, submit_extent_page returns
without clearing the writeback bit of the failed page.
__extent_writepage_io, that is a caller of submit_extent_page,
does not clear the remaining writeback bit anywhere.
As a result, this will cause the hang at filemap_fdatawait_range,
because it waits the writeback bit to be cleared from the failed page.
So, we have to call end_page_writeback to clear the writeback bit.
For reproducing the hang, we inject a fault like
if (should_failtest()) { // I define should_failtest()
bio = NULL;
}
else {
bio = btrfs_bio_alloc(...);
}
in submit_extent_page.
We should also check whether page has the bit before end_page_writeback,
to avoid the conflict against the other end_page_writeback in bio_endio.
Thus, we add PageWriteback checks not only in __extent_writepage_io,
but also in write_one_eb too, because it misses the check.
Signed-off-by: Takafumi Kubota <takafumi.kubota1012@sslab.ics.keio.ac.jp>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit "btrfs: ulist: Add ulist_del() function" (d4b8040459)
removed some debugging code but left the structure defintions.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we have a helper to set page bits, let lock_delalloc_pages and
__unlock_for_delalloc use it.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ changes to the helper separated from the following patch ]
Signed-off-by: David Sterba <dsterba@suse.com>
This introduces a new helper which can be used to process pages bits.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
run_delalloc_nocow has used trans in two places where they don't
actually need @trans.
For btrfs_lookup_file_extent, we search for file extents without COWing
anything, and for btrfs_cross_ref_exist, the only place where we need
@trans is deferencing it in order to get running_transaction which we
could easily get from the global fs_info.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All we need is @delayed_refs, all callers have get it ahead of calling
btrfs_find_delayed_ref_head since lock needs to be acquired firstly,
there is no reason to deference it again inside the function.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
@trans is not used at all, this removes it.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
@cached_state is no more required in __extent_writepage_io, also remove
the goto label.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Once a qgroup limit is exceeded, it's impossible to restore normal
operation to the subvolume without modifying the limit or removing
the subvolume. This is a surprising situation for many users used
to the typical workflow with quotas on other file systems where it's
possible to remove files until the used space is back under the limit.
When we go to unlink a file and start the transaction, we'll hit
the qgroup limit while trying to reserve space for the items we'll
modify while removing the file. We discussed last month how best
to handle this situation and agreed that there is no perfect solution.
The best principle-of-least-surprise solution is to handle it similarly
to how we already handle ENOSPC when unlinking, which is to allow
the operation to succeed with the expectation that it will ultimately
release space under most circumstances.
This patch modifies the transaction start path to select whether to
honor the qgroups limits. btrfs_start_transaction_fallback_global_rsv
is the only caller that skips enforcement. The reservation and tracking
still happens normally -- it just skips the enforcement step.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit Btrfs: btrfs_page_mkwrite: Reserve space in sectorsized units"
(d0b7da88) did this, but btrfs_lookup_ordered_range expects a 'length'
rather than a 'page_end'.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Variable 'walk' in lock_stripe_add() is not used. Remove it.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This was originally a prep patch for changing the behavior on len=0, but
we went another direction with that. This still makes the function
slightly easier to follow.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In a lot of places, it's unclear when it's safe to reuse a struct
btrfs_key after it has been passed to a helper function. Constify these
arguments wherever possible to make it obvious.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Dio writes can update i_size in btrfs_get_blocks_direct when it
writes to offset beyond EOF so that endio can update disk_i_size
correctly (because we don't udpate disk_i_size beyond i_size).
However, when truncating down a file, we firstly update i_size
and then wait for in-flight lockless dio reads/writes, according
to the above, i_size may have been changed in dio writes, and
file extents don't get truncated.
For lockless dio writes are always overwrites, i_size is not
supposed to be changed, so this adds a check to filter out this
case.
The race could be reproduced by fstests/generic/299 with patch
"Btrfs: fix btrfs_ordered_update_i_size to update disk_i_size properly"
applied.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we have a good helper entry_end, use it for ordered extent.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ whitespace reformatting ]
Signed-off-by: David Sterba <dsterba@suse.com>
The comment about "page_mkwrite gets called every time the page is
dirtied" in btrfs_page_mkwrite is not correct, it only gets called the
first time the page gets dirtied after the page faults in.
However, we don't need to touch the code because it works well, although
the proper logic is to check if delalloc bits has been set and if so, go
free reserved space, if not, set the delalloc bits for dirty page range.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ordered_update_i_size can be called by truncate and endio, but
only endio takes ordered_extent which contains the completed IO.
while truncating down a file, if there are some in-flight IOs,
btrfs_ordered_update_i_size in endio will set disk_i_size to
@orig_offset that is zero. If truncating-down fails somehow, we try to
recover in memory isize with this zero'd disk_i_size.
Fix it by only updating disk_i_size with @orig_offset when
btrfs_ordered_update_i_size is not called from endio while truncating
down and waiting for in-flight IOs completing their work before recover
in-memory size.
Besides fixing the above issue, add an assertion for last_size to double
check we truncate down to the desired size.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is internal to btrfs and doesn't really deal with any
VFS members, as such it needn't take a struct inode refrence but
btrfs_inode.
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_ino takes a struct inode and this causes a lot of
internal btrfs functions which consume this ino to take a VFS inode,
rather than btrfs' own struct btrfs_inode. In order to fix this "leak"
of VFS structs into the internals of btrfs first it's necessary to
eliminate all uses of struct inode for the purpose of inode. This patch
does that by using BTRFS_I to convert an inode to btrfs_inode. With
this problem eliminated subsequent patches will start eliminating the
passing of struct inode altogether, eventually resulting in a lot cleaner
code.
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
[ fix btrfs_get_extent tracepoint prototype ]
Signed-off-by: David Sterba <dsterba@suse.com>
The expression is open-coded in several places, this asks for a wrapper.
As we know the MAX_EXTENT fits to u32, we can use the appropirate
division helper. This cascades to the result type updates.
Compiler is clever enough to use shift instead of integer division, so
there's no change in the generated assembly.
Signed-off-by: David Sterba <dsterba@suse.com>
A proposed patch in https://marc.info/?l=linux-btrfs&m=147859791003837
pointed out bad limit threshold in cow_file_range_async, but it turned
out that the whole logic is not necessary and is done by writeback. We
agreed to remove it.
Signed-off-by: David Sterba <dsterba@suse.com>
As of now writes smaller than 64k for non compressed extents and 16k
for compressed extents inside eof are considered as candidate
for auto defrag, put them together at a place.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since btrfs_defrag_leaves() does not support extent_root, remove its
corresponding call. The user can use the file based defrag to defrag
extents as of now.
No change in behaviour as extent_root is explicitly skipped in
btrfs_defrag_leaves and this has never worked as expected.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ ehnance changelong ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_add_delayed_data_ref is always called with a NULL extent_op,
so let's drop the argument.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The check for a null inode is redundant since the function
is a callback for exportfs, which will itself crash if
dentry->d_inode or parent->d_inode is NULL. Removing the
null check makes this consistent with other file systems.
Also remove the redundant null dir check too.
Found with static analysis by CoverityScan, CID 1389472
Kudos to Jeff Mahoney for reviewing and explaining the error in
my original patch (most of this explanation went into the above
commit message) and David Sterba for pointing out that the dir
check is also redundant.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This replaces ACCESS_ONCE macro with the corresponding
READ|WRITE macros
Signed-off-by: Seraphime Kirkovski <kirkseraph@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This cleans up the cases where the min/max macros were used with a cast
rather than using directly min_t/max_t.
Signed-off-by: Seraphime Kirkovski <kirkseraph@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To make the code clearer, use rb_entry() instead of container_of() to
deal with rbtree.
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
try_release_extent_state reduces the gfp mask to GFP_NOFS if it is
compatible. This is true for GFP_KERNEL as well. There is no real
reason to do that though. There is no new lock taken down the
the only consumer of the gfp mask which is
try_release_extent_state
clear_extent_bit
__clear_extent_bit
alloc_extent_state
So this seems just unnecessary and confusing.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
b335b0034e ("Btrfs: Avoid using __GFP_HIGHMEM with slab allocator")
has reduced the allocation mask in btrfs_releasepage to GFP_NOFS just
to prevent from giving an unappropriate gfp mask to the slab allocator
deeper down the callchain (in alloc_extent_state). This is wrong for
two reasons a) GFP_NOFS might be just too restrictive for the calling
context b) it is better to tweak the gfp mask down when it needs that.
So just remove the mask tweaking from btrfs_releasepage and move it
down to alloc_extent_state where it is needed.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Goldwyn Rodrigues has exposed and fixed a bug which underflows btrfs
qgroup reserved space, and leads to non-writable fs.
This reminds us that we don't have enough underflow check for qgroup
reserved space.
For underflow case, we should not really underflow the numbers but warn
and keeps qgroup still work.
So add more check on qgroup reserved space and add WARN_ON() and
btrfs_warn() for any underflow case.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"This has two last minute fixes. The highest priority here is a
regression fix for the decompression code, but we also fixed up a
problem with the 32-bit compat ioctls.
The decompression bug could hand back the wrong data on big reads when
zlib was used. I have a larger cleanup to make the math here less
error prone, but at this stage in the release Omar's patch is the best
choice"
* 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix btrfs_decompress_buf2page()
btrfs: fix btrfs_compat_ioctl failures on non-compat ioctls
If btrfs_decompress_buf2page() is handed a bio with its page in the
middle of the working buffer, then we adjust the offset into the working
buffer. After we copy into the bio, we advance the iterator by the
number of bytes we copied. Then, we have some logic to handle the case
of discontiguous pages and adjust the offset into the working buffer
again. However, if we didn't advance the bio to a new page, we may enter
this case in error, essentially repeating the adjustment that we already
made when we entered the function. The end result is bogus data in the
bio.
Previously, we only checked for this case when we advanced to a new
page, but the conversion to bio iterators changed that. This restores
the old, correct behavior.
A case I saw when testing with zlib was:
buf_start = 42769
total_out = 46865
working_bytes = total_out - buf_start = 4096
start_byte = 45056
The condition (total_out > start_byte && buf_start < start_byte) is
true, so we adjust the offset:
buf_offset = start_byte - buf_start = 2287
working_bytes -= buf_offset = 1809
current_buf_start = buf_start = 42769
Then, we copy
bytes = min(bvec.bv_len, PAGE_SIZE - buf_offset, working_bytes) = 1809
buf_offset += bytes = 4096
working_bytes -= bytes = 0
current_buf_start += bytes = 44578
After bio_advance(), we are still in the same page, so start_byte is the
same. Then, we check (total_out > start_byte && current_buf_start < start_byte),
which is true! So, we adjust the values again:
buf_offset = start_byte - buf_start = 2287
working_bytes = total_out - start_byte = 1809
current_buf_start = buf_start + buf_offset = 45056
But note that working_bytes was already zero before this, so we should
have stopped copying.
Fixes: 974b1adc3b ("btrfs: use bio iterators for the decompression handlers")
Reported-by: Pat Erley <pat-lkml@erley.org>
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Liu Bo <bo.li.liu@oracle.com>
Commit 4c63c2454e incorrectly assumed that returning -ENOIOCTLCMD would
cause the native ioctl to be called. The ->compat_ioctl callback is
expected to handle all ioctls, not just compat variants. As a result,
when using 32-bit userspace on 64-bit kernels, everything except those
three ioctls would return -ENOTTY.
Fixes: 4c63c2454e ("btrfs: bugfix: handle FS_IOC32_{GETFLAGS,SETFLAGS,GETVERSION} in btrfs_ioctl")
Cc: stable@vger.kernel.org
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
blk_get_backing_dev_info() is now a simple dereference. Remove that
function and simplify some code around that.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull btrfs updates from Chris Mason:
"Some fixes that we've collected from the list.
We still have one more pending to nail down a regression in lzo
compression, but I wanted to get this batch out the door"
* 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: remove ->{get, set}_acl() from btrfs_dir_ro_inode_operations
Btrfs: disable xattr operations on subvolume directories
Btrfs: remove old tree_root case in btrfs_read_locked_inode()
Btrfs: fix truncate down when no_holes feature is enabled
Btrfs: Fix deadlock between direct IO and fast fsync
btrfs: fix false enospc error when truncating heavily reflinked file
When you snapshot a subvolume containing a subvolume, you get a
placeholder directory where the subvolume would be. These directory
inodes have ->i_ops set to btrfs_dir_ro_inode_operations. Previously,
these i_ops didn't include the xattr operation callbacks. The conversion
to xattr_handlers missed this case, leading to bogus attempts to set
xattrs on these inodes. This manifested itself as failures when running
delayed inodes.
To fix this, clear IOP_XATTR in ->i_opflags on these inodes.
Fixes: 6c6ef9f26e ("xattr: Stop calling {get,set,remove}xattr inode operations")
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Reported-by: Chris Murphy <lists@colorremedies.com>
Tested-by: Chris Murphy <lists@colorremedies.com>
Cc: <stable@vger.kernel.org> # 4.9.x
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
As Jeff explained in c2951f32d3 ("btrfs: remove old tree_root dirent
processing in btrfs_real_readdir()"), supporting this old format is no
longer necessary since the Btrfs magic number has been updated since we
changed to the current format. There are other places where we still
handle this old format, but since this is part of a fix that is going to
stable, I'm only removing this one for now.
Cc: <stable@vger.kernel.org> # 4.9.x
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
For such a file mapping,
[0-4k][hole][8k-12k]
In NO_HOLES mode, we don't have the [hole] extent any more.
Commit c1aa45759e ("Btrfs: fix shrinking truncate when the no_holes feature is enabled")
fixed disk isize not being updated in NO_HOLES mode when data is not flushed.
However, even if data has been flushed, we can still have trouble
in updating disk isize since we updated disk isize to 'start' of
the last evicted extent.
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The following deadlock is seen when executing generic/113 test,
---------------------------------------------------------+----------------------------------------------------
Direct I/O task Fast fsync task
---------------------------------------------------------+----------------------------------------------------
btrfs_direct_IO
__blockdev_direct_IO
do_blockdev_direct_IO
do_direct_IO
btrfs_get_blocks_direct
while (blocks needs to written)
get_more_blocks (first iteration)
btrfs_get_blocks_direct
btrfs_create_dio_extent
down_read(&BTRFS_I(inode) >dio_sem)
Create and add extent map and ordered extent
up_read(&BTRFS_I(inode) >dio_sem)
btrfs_sync_file
btrfs_log_dentry_safe
btrfs_log_inode_parent
btrfs_log_inode
btrfs_log_changed_extents
down_write(&BTRFS_I(inode) >dio_sem)
Collect new extent maps and ordered extents
wait for ordered extent completion
get_more_blocks (second iteration)
btrfs_get_blocks_direct
btrfs_create_dio_extent
down_read(&BTRFS_I(inode) >dio_sem)
--------------------------------------------------------------------------------------------------------------
In the above description, Btrfs direct I/O code path has not yet started
submitting bios for file range covered by the initial ordered
extent. Meanwhile, The fast fsync task obtains the write semaphore and
waits for I/O on the ordered extent to get completed. However, the
Direct I/O task is now blocked on obtaining the read semaphore.
To resolve the deadlock, this commit modifies the Direct I/O code path
to obtain the read semaphore before invoking
__blockdev_direct_IO(). The semaphore is then given up after
__blockdev_direct_IO() returns. This allows the Direct I/O code to
complete I/O on all the ordered extents it creates.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Below test script can reveal this bug:
dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=100
dev=$(losetup --show -f fs.img)
mkdir -p /mnt/mntpoint
mkfs.btrfs -f $dev
mount $dev /mnt/mntpoint
cd /mnt/mntpoint
echo "workdir is: /mnt/mntpoint"
blocksize=$((128 * 1024))
dd if=/dev/zero of=testfile bs=$blocksize count=1
sync
count=$((17*1024*1024*1024/blocksize))
echo "file size is:" $((count*blocksize))
for ((i = 1; i <= $count; i++)); do
dst_offset=$((blocksize * i))
xfs_io -f -c "reflink testfile 0 $dst_offset $blocksize"\
testfile > /dev/null
done
sync
truncate --size 0 testfile
The last truncate operation will fail for ENOSPC reason, but indeed
it should not fail.
In btrfs_truncate(), we use a temporary block_rsv to do truncate
operation. With every btrfs_truncate_inode_items() call, we migrate space
to this block_rsv, but forget to cleanup previous reservation, which
will make this block_rsv's reserved bytes keep growing, and this reserved
space will only be released in the end of btrfs_truncate(), this metadata
leak will impact other's metadata reservation. In this case, it's
"btrfs_start_transaction(root, 2);" fails for enospc error, which make
this truncate operation fail.
Call btrfs_block_rsv_release() to fix this bug.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"These are all over the place.
The tracepoint part of the pull fixes a crash and adds a little more
information to two tracepoints, while the rest are good old fashioned
fixes"
* 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: make tracepoint format strings more compact
Btrfs: add truncated_len for ordered extent tracepoints
Btrfs: add 'inode' for extent map tracepoint
btrfs: fix crash when tracepoint arguments are freed by wq callbacks
Btrfs: adjust outstanding_extents counter properly when dio write is split
Btrfs: fix lockdep warning about log_mutex
Btrfs: use down_read_nested to make lockdep silent
btrfs: fix locking when we put back a delayed ref that's too new
btrfs: fix error handling when run_delayed_extent_op fails
btrfs: return the actual error value from from btrfs_uuid_tree_iterate
'inode' is an important field for btrfs_get_extent, lets trace it.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Enabling btrfs tracepoints leads to instant crash, as reported. The wq
callbacks could free the memory and the tracepoints started to
dereference the members to get to fs_info.
The proposed fix https://marc.info/?l=linux-btrfs&m=148172436722606&w=2
removed the tracepoints but we could preserve them by passing only the
required data in a safe way.
Fixes: bc074524e1 ("btrfs: prefix fsid to all trace events")
CC: stable@vger.kernel.org # 4.8+
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently how btrfs dio deals with split dio write is not good
enough if dio write is split into several segments due to the
lack of contiguous space, a large dio write like 'dd bs=1G count=1'
can end up with incorrect outstanding_extents counter and endio
would complain loudly with an assertion.
This fixes the problem by compensating the outstanding_extents
counter in inode if a large dio write gets split.
Reported-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While checking INODE_REF/INODE_EXTREF for a corner case, we may acquire a
different inode's log_mutex with holding the current inode's log_mutex, and
lockdep has complained this with a possilble deadlock warning.
Fix this by using mutex_lock_nested() when processing the other inode's
log_mutex.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If @block_group is not @used_bg, it'll try to get @used_bg's lock without
droping @block_group 's lock and lockdep has throwed a scary deadlock warning
about it.
Fix it by using down_read_nested.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In __btrfs_run_delayed_refs, when we put back a delayed ref that's too
new, we have already dropped the lock on locked_ref when we set
->processing = 0.
This patch keeps the lock to cover that assignment.
Fixes: d7df2c796d (Btrfs: attach delayed ref updates to delayed ref heads)
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In __btrfs_run_delayed_refs, the error path when run_delayed_extent_op
fails sets locked_ref->processing = 0 but doesn't re-increment
delayed_refs->num_heads_ready. As a result, we end up triggering
the WARN_ON in btrfs_select_ref_head.
Fixes: d7df2c796d (Btrfs: attach delayed ref updates to delayed ref heads)
Reported-by: Jon Nelson <jnelson-suse@jamponi.net>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In function btrfs_uuid_tree_iterate(), errno is assigned to variable ret
on errors. However, it directly returns 0. It may be better to return
ret. This patch also removes the warning, because the caller already
prints a warning.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=188731
Signed-off-by: Pan Bian <bianpan2016@163.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
[ edited subject ]
Signed-off-by: David Sterba <dsterba@suse.com>
Pull partial readlink cleanups from Miklos Szeredi.
This is the uncontroversial part of the readlink cleanup patch-set that
simplifies the default readlink handling.
Miklos and Al are still discussing the rest of the series.
* git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
vfs: make generic_readlink() static
vfs: remove ".readlink = generic_readlink" assignments
vfs: default to generic_readlink()
vfs: replace calling i_op->readlink with vfs_readlink()
proc/self: use generic_readlink
ecryptfs: use vfs_get_link()
bad_inode: add missing i_op initializers
Pull more vfs updates from Al Viro:
"In this pile:
- autofs-namespace series
- dedupe stuff
- more struct path constification"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
ocfs2: implement the VFS clone_range, copy_range, and dedupe_range features
ocfs2: charge quota for reflinked blocks
ocfs2: fix bad pointer cast
ocfs2: always unlock when completing dio writes
ocfs2: don't eat io errors during _dio_end_io_write
ocfs2: budget for extent tree splits when adding refcount flag
ocfs2: prohibit refcounted swapfiles
ocfs2: add newlines to some error messages
ocfs2: convert inode refcount test to a helper
simple_write_end(): don't zero in short copy into uptodate
exofs: don't mess with simple_write_{begin,end}
9p: saner ->write_end() on failing copy into non-uptodate page
fix gfs2_stuffed_write_end() on short copies
fix ceph_write_end()
nfs_write_end(): fix handling of short copies
vfs: refactor clone/dedupe_file_range common functions
fs: try to clone files first in vfs_copy_file_range
vfs: misc struct path constification
namespace.c: constify struct path passed to a bunch of primitives
quota: constify struct path in quota_on
...
Pull btrfs updates from Chris Mason:
"Jeff Mahoney and Dave Sterba have a really nice set of cleanups in
here, and Christoph pitched in corrections/improvements to make btrfs
use proper helpers for bio walking instead of doing it by hand.
There are some key fixes as well, including some long standing bugs
that took forever to track down in btrfs_drop_extents and during
balance"
* 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (77 commits)
btrfs: limit async_work allocation and worker func duration
Revert "Btrfs: adjust len of writes if following a preallocated extent"
Btrfs: don't WARN() in btrfs_transaction_abort() for IO errors
btrfs: opencode chunk locking, remove helpers
btrfs: remove root parameter from transaction commit/end routines
btrfs: split btrfs_wait_marked_extents into normal and tree log functions
btrfs: take an fs_info directly when the root is not used otherwise
btrfs: simplify btrfs_wait_cache_io prototype
btrfs: convert extent-tree tracepoints to use fs_info
btrfs: root->fs_info cleanup, access fs_info->delayed_root directly
btrfs: root->fs_info cleanup, add fs_info convenience variables
btrfs: root->fs_info cleanup, update_block_group{,flags}
btrfs: root->fs_info cleanup, lock/unlock_chunks
btrfs: root->fs_info cleanup, btrfs_calc_{trans,trunc}_metadata_size
btrfs: pull node/sector/stripe sizes out of root and into fs_info
btrfs: root->fs_info cleanup, io_ctl_init
btrfs: root->fs_info cleanup, use fs_info->dev_root everywhere
btrfs: struct reada_control.root -> reada_control.fs_info
btrfs: struct btrfsic_state->root should be an fs_info
btrfs: alloc_reserved_file_extent trace point should use extent_root
...
This fixes several interlinked problems with the iterators in the
presence of multiorder entries.
1. radix_tree_iter_next() would only advance by one slot, which would
result in the iterators returning the same entry more than once if
there were sibling entries.
2. radix_tree_next_slot() could return an internal pointer instead of
a user pointer if a tagged multiorder entry was immediately followed by
an entry of lower order.
3. radix_tree_next_slot() expanded to a lot more code than it used to
when multiorder support was compiled in. And I wasn't comfortable with
entry_to_node() being in a header file.
Fixing radix_tree_iter_next() for the presence of sibling entries
necessarily involves examining the contents of the radix tree, so we now
need to pass 'slot' to radix_tree_iter_next(), and we need to change the
calling convention so it is called *before* dropping the lock which
protects the tree. Also rename it to radix_tree_iter_resume(), as some
people thought it was necessary to call radix_tree_iter_next() each time
around the loop.
radix_tree_next_slot() becomes closer to how it looked before multiorder
support was introduced. It only checks to see if the next entry in the
chunk is a sibling entry or a pointer to a node; this should be rare
enough that handling this case out of line is not a performance impact
(and such impact is amortised by the fact that the entry we just
processed was a multiorder entry). Also, radix_tree_next_slot() used to
force a new chunk lookup for untagged entries, which is more expensive
than the out of line sibling entry skipping.
Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We drop the lock which protects the radix tree, so we must call
radix_tree_iter_next() in order to avoid a modification to the tree
invalidating the iterator state.
Link: http://lkml.kernel.org/r/1480369871-5271-54-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 262c5e86fe ("printk/btrfs: handle more message headers")
triggers:
warning: `ratelimit' may be used uninitialized in this function
with gcc (4.1.2) and probably many other versions. The code actually is
correct but a bit twisted. Let's make it more straightforward and set
the default values at the beginning.
Link: http://lkml.kernel.org/r/20161213135246.GQ3506@pathway.suse.cz
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Problem statement: unprivileged user who has read-write access to more than
one btrfs subvolume may easily consume all kernel memory (eventually
triggering oom-killer).
Reproducer (./mkrmdir below essentially loops over mkdir/rmdir):
[root@kteam1 ~]# cat prep.sh
DEV=/dev/sdb
mkfs.btrfs -f $DEV
mount $DEV /mnt
for i in `seq 1 16`
do
mkdir /mnt/$i
btrfs subvolume create /mnt/SV_$i
ID=`btrfs subvolume list /mnt |grep "SV_$i$" |cut -d ' ' -f 2`
mount -t btrfs -o subvolid=$ID $DEV /mnt/$i
chmod a+rwx /mnt/$i
done
[root@kteam1 ~]# sh prep.sh
[maxim@kteam1 ~]$ for i in `seq 1 16`; do ./mkrmdir /mnt/$i 2000 2000 & done
[root@kteam1 ~]# for i in `seq 1 4`; do grep "kmalloc-128" /proc/slabinfo | grep -v dma; sleep 60; done
kmalloc-128 10144 10144 128 32 1 : tunables 0 0 0 : slabdata 317 317 0
kmalloc-128 9992352 9992352 128 32 1 : tunables 0 0 0 : slabdata 312261 312261 0
kmalloc-128 24226752 24226752 128 32 1 : tunables 0 0 0 : slabdata 757086 757086 0
kmalloc-128 42754240 42754240 128 32 1 : tunables 0 0 0 : slabdata 1336070 1336070 0
The huge numbers above come from insane number of async_work-s allocated
and queued by btrfs_wq_run_delayed_node.
The problem is caused by btrfs_wq_run_delayed_node() queuing more and more
works if the number of delayed items is above BTRFS_DELAYED_BACKGROUND. The
worker func (btrfs_async_run_delayed_root) processes at least
BTRFS_DELAYED_BATCH items (if they are present in the list). So, the machinery
works as expected while the list is almost empty. As soon as it is getting
bigger, worker func starts to process more than one item at a time, it takes
longer, and the chances to have async_works queued more than needed is getting
higher.
The problem above is worsened by another flaw of delayed-inode implementation:
if async_work was queued in a throttling branch (number of items >=
BTRFS_DELAYED_WRITEBACK), corresponding worker func won't quit until
the number of items < BTRFS_DELAYED_BACKGROUND / 2. So, it is possible that
the func occupies CPU infinitely (up to 30sec in my experiments): while the
func is trying to drain the list, the user activity may add more and more
items to the list.
The patch fixes both problems in straightforward way: refuse queuing too
many works in btrfs_wq_run_delayed_node and bail out of worker func if
at least BTRFS_DELAYED_WRITEBACK items are processed.
Changed in v2: remove support of thresh == NO_THRESHOLD.
Signed-off-by: Maxim Patlasov <mpatlasov@virtuozzo.com>
Signed-off-by: Chris Mason <clm@fb.com>
Cc: stable@vger.kernel.org # v3.15+
Pull block layer updates from Jens Axboe:
"This is the main block pull request this series. Contrary to previous
release, I've kept the core and driver changes in the same branch. We
always ended up having dependencies between the two for obvious
reasons, so makes more sense to keep them together. That said, I'll
probably try and keep more topical branches going forward, especially
for cycles that end up being as busy as this one.
The major parts of this pull request is:
- Improved support for O_DIRECT on block devices, with a small
private implementation instead of using the pig that is
fs/direct-io.c. From Christoph.
- Request completion tracking in a scalable fashion. This is utilized
by two components in this pull, the new hybrid polling and the
writeback queue throttling code.
- Improved support for polling with O_DIRECT, adding a hybrid mode
that combines pure polling with an initial sleep. From me.
- Support for automatic throttling of writeback queues on the block
side. This uses feedback from the device completion latencies to
scale the queue on the block side up or down. From me.
- Support from SMR drives in the block layer and for SD. From Hannes
and Shaun.
- Multi-connection support for nbd. From Josef.
- Cleanup of request and bio flags, so we have a clear split between
which are bio (or rq) private, and which ones are shared. From
Christoph.
- A set of patches from Bart, that improve how we handle queue
stopping and starting in blk-mq.
- Support for WRITE_ZEROES from Chaitanya.
- Lightnvm updates from Javier/Matias.
- Supoort for FC for the nvme-over-fabrics code. From James Smart.
- A bunch of fixes from a whole slew of people, too many to name
here"
* 'for-4.10/block' of git://git.kernel.dk/linux-block: (182 commits)
blk-stat: fix a few cases of missing batch flushing
blk-flush: run the queue when inserting blk-mq flush
elevator: make the rqhash helpers exported
blk-mq: abstract out blk_mq_dispatch_rq_list() helper
blk-mq: add blk_mq_start_stopped_hw_queue()
block: improve handling of the magic discard payload
blk-wbt: don't throttle discard or write zeroes
nbd: use dev_err_ratelimited in io path
nbd: reset the setup task for NBD_CLEAR_SOCK
nvme-fabrics: Add FC LLDD loopback driver to test FC-NVME
nvme-fabrics: Add target support for FC transport
nvme-fabrics: Add host support for FC transport
nvme-fabrics: Add FC transport LLDD api definitions
nvme-fabrics: Add FC transport FC-NVME definitions
nvme-fabrics: Add FC transport error codes to nvme.h
Add type 0x28 NVME type code to scsi fc headers
nvme-fabrics: patch target code in prep for FC transport support
nvme-fabrics: set sqe.command_id in core not transports
parser: add u64 number parser
nvme-rdma: align to generic ib_event logging helper
...
Patches queued up by Filipe:
The most important change is still the fix for the extent tree
corruption that happens due to balance when qgroups are enabled (a
regression introduced in 4.7 by a fix for a regression from the last
qgroups rework). This has been hitting SLE and openSUSE users and QA
very badly, where transactions keep getting aborted when running
delayed references leaving the root filesystem in RO mode and nearly
unusable. There are fixes here that allow us to run xfstests again
with the integrity checker enabled, which has been impossible since 4.8
(apparently I'm the only one running xfstests with the integrity
checker enabled, which is useful to validate dirtied leafs, like
checking if there are keys out of order, etc). The rest are just some
trivial fixes, most of them tagged for stable, and two cleanups.
Signed-off-by: Chris Mason <clm@fb.com>
Commit 4bcc595ccd ("printk: reinstate KERN_CONT for printing
continuation lines") allows to define more message headers for a single
message. The motivation is that continuous lines might get mixed.
Therefore it make sense to define the right log level for every piece of
a cont line.
The current btrfs_printk() macros do not support continuous lines at the
moment. But better be prepared for a custom messages and avoid
potential "lvl" buffer overflow.
This patch iterates over the entire message header. It is interested
only into the message level like the original code.
This patch also introduces PRINTK_MAX_SINGLE_HEADER_LEN. Three bytes
are enough for the message level header at the moment. But it used to
be three, see the commit 04d2c8c83d ("printk: convert the format for
KERN_<LEVEL> to a 2 byte pattern").
Also I fixed the default ratelimit level. It looked very strange when it
was different from the default log level.
[pmladek@suse.com: Fix a check of the valid message level]
Link: http://lkml.kernel.org/r/20161111183236.GD2145@dhcp128.suse.cz
Link: http://lkml.kernel.org/r/1478695291-12169-4-git-send-email-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Joe Perches <joe@perches.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is exposing an existing deadlock between fsync and AIO. Until we
have the deadlock fixed, I'm pulling this one out.
This reverts commit a23eaa875f.
Signed-off-by: Chris Mason <clm@fb.com>
A clone is a perfectly fine implementation of a file copy, so most
file systems just implement the copy that way. Instead of duplicating
this logic move it to the VFS. Currently btrfs and XFS implement copies
the same way as clones and there is no behavior change for them, cifs
only implements clones and grow support for copy_file_range with this
patch. NFS implements both, so this will allow copy_file_range to work
on servers that only implement CLONE and be lot more efficient on servers
that implements CLONE and COPY.
Signed-off-by: Christoph Hellwig <hch@lst.de>
If .readlink == NULL implies generic_readlink().
Generated by:
to_del="\.readlink.*=.*generic_readlink"
for i in `git grep -l $to_del`; do sed -i "/$to_del"/d $i; done
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
btrfs_transaction_abort() has a WARN() to help us nail down whatever
problem lead to the abort. But most of the time, we're aborting for EIO,
and the warning just adds noise.
Signed-off-by: Chris Mason <clm@fb.com>
Now we only use the root parameter to print the root objectid in
a tracepoint. We can use the root parameter from the transaction
handle for that. It's also used to join the transaction with
async commits, so we remove the comment that it's just for checking.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_write_and_wait_marked_extents and btrfs_sync_log both call
btrfs_wait_marked_extents, which provides a core loop and then handles
errors differently based on whether it's it's a log root or not.
This means that btrfs_write_and_wait_marked_extents needs to take a root
because btrfs_wait_marked_extents requires one, even though it's only
used to determine whether the root is a log root. The log root code
won't ever call into the transaction commit code using a log root, so we
can factor out the core loop and provide the error handling appropriate
to each waiter in new routines. This allows us to eventually remove
the root argument from btrfs_commit_transaction, and as a result,
btrfs_end_transaction.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer. Let's convert those to
just accept an fs_info pointer directly.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the exception of the one case where btrfs_wait_cache_io is called
without a block group, it's called with the same arguments. The root
argument is only used in the special case, so let's factor out the core
and simplify the call in the normal case to require a trans, block group,
and path.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent-tree tracepoints all operate on the extent root, regardless of
which root is passed in. Let's just use the extent root objectid instead.
If it turns out that nobody is depending on the format of this tracepoint,
we can drop the root printing entirely.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This results in btrfs_assert_delayed_root_empty and
btrfs_destroy_delayed_inode taking an fs_info instead of a root.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In routines where someptr->fs_info is referenced multiple times, we
introduce a convenience variable. This makes the code considerably
more readable.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We track the node sizes per-root, but they never vary from the values
in the superblock. This patch messes with the 80-column style a bit,
but subsequent patches to factor out root->fs_info into a convenience
variable fix it up again.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The io_ctl->root member was only being used to access root->fs_info.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root is never used. We substitute extent_root in for the
reada_find_extent call, since it's only ever used to obtain the node
size. This call site will be changed to use fs_info in a later patch.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root member is never used except for obtaining an fs_info pointer.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Even though a separate root is passed in, we're still operating on the
extent root. Let's use that for the trace point.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_init_new_device only uses the root passed in via the ioctl to
start the transaction. Nothing else that happens is related to whatever
root the user used to initiate the ioctl. We can drop the root requirement
and just use fs_info->dev_root instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many functions that are always called with the same root
argument. Rather than passing the same root every time, we can
pass an fs_info pointer instead and have the function get the root
pointer itself.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are 11 functions that accept a root parameter and immediately
overwrite it. We can pass those an fs_info pointer instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a log tree has a layout like the following:
leaf N:
...
item 240 key (282 DIR_LOG_ITEM 0) itemoff 8189 itemsize 8
dir log end 1275809046
leaf N + 1:
item 0 key (282 DIR_LOG_ITEM 3936149215) itemoff 16275 itemsize 8
dir log end 18446744073709551615
...
When we pass the value 1275809046 + 1 as the parameter start_ret to the
function tree-log.c:find_dir_range() (done by replay_dir_deletes()), we
end up with path->slots[0] having the value 239 (points to the last item
of leaf N, item 240). Because the dir log item in that position has an
offset value smaller than *start_ret (1275809046 + 1) we need to move on
to the next leaf, however the logic for that is wrong since it compares
the current slot to the number of items in the leaf, which is smaller
and therefore we don't lookup for the next leaf but instead we set the
slot to point to an item that does not exist, at slot 240, and we later
operate on that slot which has unexpected content or in the worst case
can result in an invalid memory access (accessing beyond the last page
of leaf N's extent buffer).
So fix the logic that checks when we need to lookup at the next leaf
by first incrementing the slot and only after to check if that slot
is beyond the last item of the current leaf.
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Fixes: e02119d5a7 (Btrfs: Add a write ahead tree log to optimize synchronous operations)
Cc: stable@vger.kernel.org # 2.6.29+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness]
The hole punching can result in adding new leafs (and as a consequence
new nodes) to the tree because when we find file extent items that span
beyond the hole range we may end up not deleting them (just adjusting
them, reducing their range by reducing their length or increasing their
offset field) and add new file extent items representing holes.
So after splitting a leaf (therefore creating a new one) to insert a new
file extent item representing a hole, a new node might be added to each
level of the tree in the worst case scenario (since there's a new key
and every parent node was full).
For example if a file has an extent item representing the range 0 to 64Mb
and we punch a hole in the range 1Mb to 20Mb, the existing extent item is
duplicated and one of the copies is adjusted to represent the range 0 to
1Mb, the other copy adjusted to represent the range 20Mb to 64Mb, and a
new file extent item representing a hole in the range 1Mb to 20Mb is
inserted.
Fix this by using btrfs_calc_trans_metadata_size() instead of
btrfs_calc_trunc_metadata_size(), so that enough metadata space is
reserved for the worst possible case.
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness]
This issue was found when I tried to delete a heavily reflinked file,
when deleting such files, other transaction operation will not have a
chance to make progress, for example, start_transaction() will blocked
in wait_current_trans(root) for long time, sometimes it even triggers
soft lockups, and the time taken to delete such heavily reflinked file
is also very large, often hundreds of seconds. Using perf top, it reports
that:
PerfTop: 7416 irqs/sec kernel:99.8% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
---------------------------------------------------------------------------------------
84.37% [btrfs] [k] __btrfs_run_delayed_refs.constprop.80
11.02% [kernel] [k] delay_tsc
0.79% [kernel] [k] _raw_spin_unlock_irq
0.78% [kernel] [k] _raw_spin_unlock_irqrestore
0.45% [kernel] [k] do_raw_spin_lock
0.18% [kernel] [k] __slab_alloc
It seems __btrfs_run_delayed_refs() took most cpu time, after some debug
work, I found it's select_delayed_ref() causing this issue, for a delayed
head, in our case, it'll be full of BTRFS_DROP_DELAYED_REF nodes, but
select_delayed_ref() will firstly try to iterate node list to find
BTRFS_ADD_DELAYED_REF nodes, obviously it's a disaster in this case, and
waste much time.
To fix this issue, we introduce a new ref_add_list in struct btrfs_delayed_ref_head,
then in select_delayed_ref(), if this list is not empty, we can directly use
nodes in this list. With this patch, it just took about 10~15 seconds to
delte the same file. Now using perf top, it reports that:
PerfTop: 2734 irqs/sec kernel:99.5% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
----------------------------------------------------------------------------------------
20.74% [kernel] [k] _raw_spin_unlock_irqrestore
16.33% [kernel] [k] __slab_alloc
5.41% [kernel] [k] lock_acquired
4.42% [kernel] [k] lock_acquire
4.05% [kernel] [k] lock_release
3.37% [kernel] [k] _raw_spin_unlock_irq
For normal files, this patch also gives help, at least we do not need to
iterate whole list to found BTRFS_ADD_DELAYED_REF nodes.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 62b99540a1 (btrfs: relocation: Fix leaking qgroups numbers
on data extents) only fixes the problem partly.
The previous fix is to trace all new data extents at transaction commit
time when balance finishes.
However balance is not done in a large transaction, every path
replacement can happen in its own transaction.
This makes the fix useless if transaction commits during relocation.
For example:
relocate_block_group()
|-merge_reloc_roots()
| |- merge_reloc_root()
| |- btrfs_start_transaction() <- Trans X
| |- replace_path() <- Cause leak
| |- btrfs_end_transaction_throttle() <- Trans X commits here
| | Leak not fixed
| |
| |- btrfs_start_transaction() <- Trans Y
| |- replace_path() <- Cause leak
| |- btrfs_end_transaction_throttle() <- Trans Y ends
| but not committed
|-btrfs_join_transaction() <- Still trans Y
|-qgroup_fix() <- Only fixes data leak
| in trans Y
|-btrfs_commit_transaction() <- Trans Y commits
In that case, qgroup fixup can only fix data leak in trans Y, data leak
in trans X is out of fix.
So the correct fix should happen in the same transaction of
replace_path().
This patch fixes it by tracing both subtrees of tree block swap, so it
can fix the problem and ensure all leaking and fix are in the same
transaction, so no leak again.
Reported-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move account_shared_subtree() to qgroup.c and rename it to
btrfs_qgroup_trace_subtree().
Do the same thing for account_leaf_items() and rename it to
btrfs_qgroup_trace_leaf_items().
Since all these functions are only for qgroup, move them to qgroup.c and
export them is more appropriate.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename btrfs_qgroup_insert_dirty_extent(_nolock) to
btrfs_qgroup_trace_extent(_nolock), according to the new
reserve/trace/account naming schema.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add explaination how btrfs qgroups work.
Qgroup is split into 3 main phrases:
1) Reserve
To ensure qgroup doesn't exceed its limit
2) Trace
To info qgroup to trace which extent
3) Account
Calculate qgroup number change for each traced extent.
This should save quite some time for new developers.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
And remove the bogus check for a NULL return value from kmap, which
can't happen. While we're at it: I don't think that kmapping up to 256
will work without deadlocks on highmem machines, a better idea would
be to use vm_map_ram to map all of them into a single virtual address
range. Incidentally that would also simplify the code a lot.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rework the loop a little bit to use the generic bio_for_each_segment_all
helper for iterating over the bio.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the bvec offset and len members to prepare for multipage bvecs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using bi_vcnt to calculate it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use bio_for_each_segment_all to iterate over the segments instead.
This requires a bit of reshuffling so that we only lookup up the ordered
item once inside the bio_for_each_segment_all loop.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just use bio_for_each_segment_all to iterate over all segments.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just use bio_for_each_segment_all to iterate over all segments.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass the full bio to the decompression routines and use bio iterators
to iterate over the data in the bio.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
This fixes the WARN_ON on BTRFS_I(inode)->reserved_extents in
btrfs_destroy_inode and the WARN_ON on nonzero delalloc bytes on umount
with qgroups enabled.
I was able to reproduce this by setting up a small (~500kb) quota limit
and writing a file one byte at a time until I hit the limit. The warnings
would all hit on umount.
The root cause is that we would reserve a block-sized range in both
the reservation and the quota in btrfs_check_data_free_space, but if we
encountered a problem (like e.g. EDQUOT), we would only release the single
byte in the qgroup reservation. That caused an iotree state split, which
increased the number of outstanding extents, in turn disallowing releasing
the metadata reservation.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>