Remove the ad-hoc implementation, the generic code now allows us not to
reinvent the wheel.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/1525786706-22846-11-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 2016 version of Hyper-V offers the option to operate the guest VM
per-vcpu stimer's in Direct Mode, which means the timer interupts on its
own vector rather than queueing a VMbus message. Direct Mode reduces
timer processing overhead in both the hypervisor and the guest, and
avoids having timer interrupts pollute the VMbus interrupt stream for
the synthetic NIC and storage. This patch enables Direct Mode by
default on stimer0 when running on a version of Hyper-V that supports
it.
In prep for coming support of Hyper-V on ARM64, the arch independent
portion of the code contains calls to routines that will be populated
on ARM64 but are not needed and do nothing on x86.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Hyper-V reenlightenment interrupts arrive when the VM is migrated, While
they are not interesting in general it's important when L2 nested guests
are running.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: devel@linuxdriverproject.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Cathy Avery <cavery@redhat.com>
Cc: Mohammed Gamal <mmorsy@redhat.com>
Link: https://lkml.kernel.org/r/20180124132337.30138-6-vkuznets@redhat.com
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We are using the same vector for nested/non-nested posted
interrupts delivery, this may cause interrupts latency in
L1 since we can't kick the L2 vcpu out of vmx-nonroot mode.
This patch introduces a new vector which is only for nested
posted interrupts to solve the problems above.
Signed-off-by: Wincy Van <fanwenyi0529@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The UP asm/tlbflush.h generates somewhat nicer code than the SMP version.
Aside from that, it's fallen quite a bit behind the SMP code:
- flush_tlb_mm_range() didn't flush individual pages if the range
was small.
- The lazy TLB code was much weaker. This usually wouldn't matter,
but, if a kernel thread flushed its lazy "active_mm" more than
once (due to reclaim or similar), it wouldn't be unlazied and
would instead pointlessly flush repeatedly.
- Tracepoints were missing.
Aside from that, simply having the UP code around was a maintanence
burden, since it means that any change to the TLB flush code had to
make sure not to break it.
Simplify everything by deleting the UP code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
52aec3308d ("x86/tlb: replace INVALIDATE_TLB_VECTOR by CALL_FUNCTION_VECTOR")
the TLB remote shootdown is done through call function vector. That
commit didn't take care of irq_tlb_count, which a later commit:
fd0f586972 ("x86: Distinguish TLB shootdown interrupts from other functions call interrupts")
... tried to fix.
The fix assumes every increase of irq_tlb_count has a corresponding
increase of irq_call_count. So the irq_call_count is always bigger than
irq_tlb_count and we could substract irq_tlb_count from irq_call_count.
Unfortunately this is not true for the smp_call_function_single() case.
The IPI is only sent if the target CPU's call_single_queue is empty when
adding a csd into it in generic_exec_single. That means if two threads
are both adding flush tlb csds to the same CPU's call_single_queue, only
one IPI is sent. In other words, the irq_call_count is incremented by 1
but irq_tlb_count is incremented by 2. Over time, irq_tlb_count will be
bigger than irq_call_count and the substract will produce a very large
irq_call_count value due to overflow.
Considering that:
1) it's not worth to send more IPIs for the sake of accurate counting of
irq_call_count in generic_exec_single();
2) it's not easy to tell if the call function interrupt is for TLB
shootdown in __smp_call_function_single_interrupt().
Not to exclude TLB shootdown from call function count seems to be the
simplest fix and this patch just does that.
This bug was found by LKP's cyclic performance regression tracking recently
with the vm-scalability test suite. I have bisected to commit:
3dec0ba0be ("mm/rmap: share the i_mmap_rwsem")
This commit didn't do anything wrong but revealed the irq_call_count
problem. IIUC, the commit makes rwc->remap_one in rmap_walk_file
concurrent with multiple threads. When remap_one is try_to_unmap_one(),
then multiple threads could queue flush TLB to the same CPU but only
one IPI will be sent.
Since the commit was added in Linux v3.19, the counting problem only
shows up from v3.19 onwards.
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tomoki Sekiyama <tomoki.sekiyama.qu@hitachi.com>
Link: http://lkml.kernel.org/r/20160811074430.GA18163@aaronlu.sh.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, we use a global vector as the Posted-Interrupts
Notification Event for all the vCPUs in the system. We need
to introduce another global vector for VT-d Posted-Interrtups,
which will be used to wakeup the sleep vCPU when an external
interrupt from a direct-assigned device happens for that vCPU.
[ tglx: Removed a gazillion of extra newlines ]
Signed-off-by: Feng Wu <feng.wu@intel.com>
Cc: jiang.liu@linux.intel.com
Link: http://lkml.kernel.org/r/1432026437-16560-4-git-send-email-feng.wu@intel.com
Suggested-by: Yang Zhang <yang.z.zhang@intel.com>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Deferred errors indicate error conditions that were not corrected, but
require no action from S/W (or action is optional).These errors provide
info about a latent UC MCE that can occur when a poisoned data is
consumed by the processor.
Processors that report these errors can be configured to generate APIC
interrupts to notify OS about the error.
Provide an interrupt handler in this patch so that OS can catch these
errors as and when they happen. Currently, we simply log the errors and
exit the handler as S/W action is not mandated.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1430913538-1415-5-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
HyperV abuses a device interrupt to account for the
HYPERVISOR_CALLBACK_VECTOR.
Provide proper accounting as we have for the other vectors as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: x86 <x86@kernel.org>
Link: http://lkml.kernel.org/r/20140223212738.681855582@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Posted Interrupt feature requires a special IPI to deliver posted interrupt
to guest. And it should has a high priority so the interrupt will not be
blocked by others.
Normally, the posted interrupt will be consumed by vcpu if target vcpu is
running and transparent to OS. But in some cases, the interrupt will arrive
when target vcpu is scheduled out. And host will see it. So we need to
register a dump handler to handle it.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
As TLB shootdown requests to other CPU cores are now using function call
interrupts, TLB shootdowns entry in /proc/interrupts is always shown as 0.
This behavior change was introduced by commit 52aec3308d ("x86/tlb:
replace INVALIDATE_TLB_VECTOR by CALL_FUNCTION_VECTOR").
This patch reverts TLB shootdowns entry in /proc/interrupts to count TLB
shootdowns separately from the other function call interrupts.
Signed-off-by: Tomoki Sekiyama <tomoki.sekiyama.qu@hitachi.com>
Link: http://lkml.kernel.org/r/20120926021128.22212.20440.stgit@hpxw
Acked-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Since percpu_xxx() serial functions are duplicated with this_cpu_xxx().
Removing percpu_xxx() definition and replacing them by this_cpu_xxx()
in code. There is no function change in this patch, just preparation for
later percpu_xxx serial function removing.
On x86 machine the this_cpu_xxx() serial functions are same as
__this_cpu_xxx() without no unnecessary premmpt enable/disable.
Thanks for Stephen Rothwell, he found and fixed a i386 build error in
the patch.
Also thanks for Andrew Morton, he kept updating the patchset in Linus'
tree.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Christoph Lameter <cl@gentwo.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
LAPIC related statistics are grouped inside the per-cpu
structure irq_stat, so there is no need for icr_read_retry_count
to be a standalone per-cpu variable.
This patch moves icr_read_retry_count to where it belongs.
Suggested-y: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Cc: Jörn Engel <joern@logfs.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide a mechanism that allows running code in IRQ context. It is
most useful for NMI code that needs to interact with the rest of the
system -- like wakeup a task to drain buffers.
Perf currently has such a mechanism, so extract that and provide it as
a generic feature, independent of perf so that others may also
benefit.
The IRQ context callback is generated through self-IPIs where
possible, or on architectures like powerpc the decrementer (the
built-in timer facility) is set to generate an interrupt immediately.
Architectures that don't have anything like this get to do with a
callback from the timer tick. These architectures can call
irq_work_run() at the tail of any IRQ handlers that might enqueue such
work (like the perf IRQ handler) to avoid undue latencies in
processing the work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[ various fixes ]
Signed-off-by: Huang Ying <ying.huang@intel.com>
LKML-Reference: <1287036094.7768.291.camel@yhuang-dev>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
irq_thermal_count is only being maintained when
X86_THERMAL_VECTOR, and both X86_THERMAL_VECTOR and
X86_MCE_THRESHOLD don't need extra wrapping in X86_MCE
conditionals.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Yong Wang <yong.y.wang@intel.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Arjan van de Ven <arjan@infradead.org>
LKML-Reference: <4B06AFA902000078000211F8@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Enable the 64bit MCE_INTEL code (CMCI, thermal interrupts) for 32bit NEW_MCE.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
In non-SMP mode, the variable section attribute specified by DECLARE_PER_CPU()
does not agree with that specified by DEFINE_PER_CPU(). This means that
architectures that have a small data section references relative to a base
register may throw up linkage errors due to too great a displacement between
where the base register points and the per-CPU variable.
On FRV, the .h declaration says that the variable is in the .sdata section, but
the .c definition says it's actually in the .data section. The linker throws
up the following errors:
kernel/built-in.o: In function `release_task':
kernel/exit.c:78: relocation truncated to fit: R_FRV_GPREL12 against symbol `per_cpu__process_counts' defined in .data section in kernel/built-in.o
kernel/exit.c:78: relocation truncated to fit: R_FRV_GPREL12 against symbol `per_cpu__process_counts' defined in .data section in kernel/built-in.o
To fix this, DECLARE_PER_CPU() should simply apply the same section attribute
as does DEFINE_PER_CPU(). However, this is made slightly more complex by
virtue of the fact that there are several variants on DEFINE, so these need to
be matched by variants on DECLARE.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement set_perf_counter_pending() with a self-IPI so that it will
run ASAP in a usable context.
For now use a second IRQ vector, because the primary vector pokes
the apic in funny ways that seem to confuse things.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094517.724626696@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Merge reason: we have gathered quite a few conflicts, need to merge upstream
Conflicts:
arch/powerpc/kernel/Makefile
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/hardirq.h
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/cpu/common.c
arch/x86/kernel/irq.c
arch/x86/kernel/syscall_table_32.S
arch/x86/mm/iomap_32.c
include/linux/sched.h
kernel/Makefile
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch allocates a system interrupt vector for various platform
specific uses.
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: john stultz <johnstul@us.ibm.com>
LKML-Reference: <20090304185605.GA24419@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>