Pankaj reports that starting with commit ad428cdb52 "dax: Check the
end of the block-device capacity with dax_direct_access()" device-mapper
no longer allows dax operation. This results from the stricter checks in
__bdev_dax_supported() that validate that the start and end of a
block-device map to the same 'pagemap' instance.
Teach the dax-core and device-mapper to validate the 'pagemap' on a
per-target basis. This is accomplished by refactoring the
bdev_dax_supported() internals into generic_fsdax_supported() which
takes a sector range to validate. Consequently generic_fsdax_supported()
is suitable to be used in a device-mapper ->iterate_devices() callback.
A new ->dax_supported() operation is added to allow composite devices to
split and route upper-level bdev_dax_supported() requests.
Fixes: ad428cdb52 ("dax: Check the end of the block-device...")
Cc: <stable@vger.kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reported-by: Pankaj Gupta <pagupta@redhat.com>
Reviewed-by: Pankaj Gupta <pagupta@redhat.com>
Tested-by: Pankaj Gupta <pagupta@redhat.com>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Internal to dax_unlock_mapping_entry(), dax_unlock_entry() is used to
store a replacement entry in the Xarray at the given xas-index with the
DAX_LOCKED bit clear. When called, dax_unlock_entry() expects the unlocked
value of the entry relative to the current Xarray state to be specified.
In most contexts dax_unlock_entry() is operating in the same scope as
the matched dax_lock_entry(). However, in the dax_unlock_mapping_entry()
case the implementation needs to recall the original entry. In the case
where the original entry is a 'pmd' entry it is possible that the pfn
performed to do the lookup is misaligned to the value retrieved in the
Xarray.
Change the api to return the unlock cookie from dax_lock_page() and pass
it to dax_unlock_page(). This fixes a bug where dax_unlock_page() was
assuming that the page was PMD-aligned if the entry was a PMD entry with
signatures like:
WARNING: CPU: 38 PID: 1396 at fs/dax.c:340 dax_insert_entry+0x2b2/0x2d0
RIP: 0010:dax_insert_entry+0x2b2/0x2d0
[..]
Call Trace:
dax_iomap_pte_fault.isra.41+0x791/0xde0
ext4_dax_huge_fault+0x16f/0x1f0
? up_read+0x1c/0xa0
__do_fault+0x1f/0x160
__handle_mm_fault+0x1033/0x1490
handle_mm_fault+0x18b/0x3d0
Link: https://lkml.kernel.org/r/20181130154902.GL10377@bombadil.infradead.org
Fixes: 9f32d22130 ("dax: Convert dax_lock_mapping_entry to XArray")
Reported-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for implementing support for memory poison (media error)
handling via dax mappings, implement a lock_page() equivalent. Poison
error handling requires rmap and needs guarantees that the page->mapping
association is maintained / valid (inode not freed) for the duration of
the lookup.
In the device-dax case it is sufficient to simply hold a dev_pagemap
reference. In the filesystem-dax case we need to use the entry lock.
Export the entry lock via dax_lock_mapping_entry() that uses
rcu_read_lock() to protect against the inode being freed, and
revalidates the page->mapping association under xa_lock().
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Commit 1c8f422059 ("mm: change return type to vm_fault_t") missed a
conversion. It's not a big problem at present because mainline is still
using
typedef int vm_fault_t;
Fixes: 1c8f422059 ("mm: change return type to vm_fault_t")
Link: http://lkml.kernel.org/r/20180620172046.GA27894@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* DAX broke a fundamental assumption of truncate of file mapped pages.
The truncate path assumed that it is safe to disconnect a pinned page
from a file and let the filesystem reclaim the physical block. With DAX
the page is equivalent to the filesystem block. Introduce
dax_layout_busy_page() to enable filesystems to wait for pinned DAX
pages to be released. Without this wait a filesystem could allocate
blocks under active device-DMA to a new file.
* DAX arranges for the block layer to be bypassed and uses
dax_direct_access() + copy_to_iter() to satisfy read(2) calls.
However, the memcpy_mcsafe() facility is available through the pmem
block driver. In order to safely handle media errors, via the DAX
block-layer bypass, introduce copy_to_iter_mcsafe().
* Fix cache management policy relative to the ACPI NFIT Platform
Capabilities Structure to properly elide cache flushes when they are not
necessary. The table indicates whether CPU caches are power-fail
protected. Clarify that a deep flush is always performed on
REQ_{FUA,PREFLUSH} requests.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbGxI7AAoJEB7SkWpmfYgCDjsP/2Lcibu9Kf4tKIzuInsle6iE
6qP29qlkpHVTpDKbhvIxTYTYL9sMU0DNUrpPCJR/EYdeyztLWDFC5EAT1wF240vf
maV37s/uP331jSC/2VJnKWzBs2ztQxmKLEIQCxh6aT0qs9cbaOvJgB/WlVu+qtsl
aGJFLmb6vdQacp31noU5plKrMgMA1pADyF5qx9I9K2HwowHE7T368ZEFS/3S//c3
LXmpx/Nfq52sGu/qbRbu6B1CTJhIGhmarObyQnvBYoKntK1Ov4e8DS95wD3EhNDe
FuRkOCUKhjl6cFy7QVWh1ct1bFm84ny+b4/AtbpOmv9l/+0mveJ7e+5mu8HQTifT
wYiEe2xzXJ+OG/xntv8SvlZKMpjP3BqI0jYsTutsjT4oHrciiXdXM186cyS+BiGp
KtFmWyncQJgfiTq6+Hj5XpP9BapNS+OYdYgUagw9ZwzdzptuGFYUMSVOBrYrn6c/
fwqtxjubykJoW0P3pkIoT91arFSea7nxOKnGwft06imQ7TwR4ARsI308feQ9itJq
2P2e7/20nYMsw2aRaUDDA70Yu+Lagn1m8WL87IybUGeUDLb1BAkjphAlWa6COJ+u
PhvAD2tvyM9m0c7O5Mytvz7iWKG6SVgatoAyOPkaeplQK8khZ+wEpuK58sO6C1w8
4GBvt9ri9i/Ww/A+ppWs
=4bfw
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This adds a user for the new 'bytes-remaining' updates to
memcpy_mcsafe() that you already received through Ingo via the
x86-dax- for-linus pull.
Not included here, but still targeting this cycle, is support for
handling memory media errors (poison) consumed via userspace dax
mappings.
Summary:
- DAX broke a fundamental assumption of truncate of file mapped
pages. The truncate path assumed that it is safe to disconnect a
pinned page from a file and let the filesystem reclaim the physical
block. With DAX the page is equivalent to the filesystem block.
Introduce dax_layout_busy_page() to enable filesystems to wait for
pinned DAX pages to be released. Without this wait a filesystem
could allocate blocks under active device-DMA to a new file.
- DAX arranges for the block layer to be bypassed and uses
dax_direct_access() + copy_to_iter() to satisfy read(2) calls.
However, the memcpy_mcsafe() facility is available through the pmem
block driver. In order to safely handle media errors, via the DAX
block-layer bypass, introduce copy_to_iter_mcsafe().
- Fix cache management policy relative to the ACPI NFIT Platform
Capabilities Structure to properly elide cache flushes when they
are not necessary. The table indicates whether CPU caches are
power-fail protected. Clarify that a deep flush is always performed
on REQ_{FUA,PREFLUSH} requests"
* tag 'libnvdimm-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (21 commits)
dax: Use dax_write_cache* helpers
libnvdimm, pmem: Do not flush power-fail protected CPU caches
libnvdimm, pmem: Unconditionally deep flush on *sync
libnvdimm, pmem: Complete REQ_FLUSH => REQ_PREFLUSH
acpi, nfit: Remove ecc_unit_size
dax: dax_insert_mapping_entry always succeeds
libnvdimm, e820: Register all pmem resources
libnvdimm: Debug probe times
linvdimm, pmem: Preserve read-only setting for pmem devices
x86, nfit_test: Add unit test for memcpy_mcsafe()
pmem: Switch to copy_to_iter_mcsafe()
dax: Report bytes remaining in dax_iomap_actor()
dax: Introduce a ->copy_to_iter dax operation
uio, lib: Fix CONFIG_ARCH_HAS_UACCESS_MCSAFE compilation
xfs, dax: introduce xfs_break_dax_layouts()
xfs: prepare xfs_break_layouts() for another layout type
xfs: prepare xfs_break_layouts() to be called with XFS_MMAPLOCK_EXCL
mm, fs, dax: handle layout changes to pinned dax mappings
mm: fix __gup_device_huge vs unmap
mm: introduce MEMORY_DEVICE_FS_DAX and CONFIG_DEV_PAGEMAP_OPS
...
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
commit 1c8f422059 ("mm: change return type to vm_fault_t")
There was an existing bug inside dax_load_hole() if vm_insert_mixed had
failed to allocate a page table, we'd return VM_FAULT_NOPAGE instead of
VM_FAULT_OOM. With new vmf_insert_mixed() this issue is addressed.
vm_insert_mixed_mkwrite has inefficiency when it returns an error value,
driver has to convert it to vm_fault_t type. With new
vmf_insert_mixed_mkwrite() this limitation will be addressed.
Link: http://lkml.kernel.org/r/20180510181121.GA15239@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function return values are confusing with the way the function is
named. We expect a true or false return value but it actually returns
0/-errno. This makes the code very confusing. Changing the return values
to return a bool where if DAX is supported then return true and no DAX
support returns false.
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Change bdev_dax_supported so it takes a bdev parameter. This enables
multi-device filesystems like xfs to check that a dax device can work for
the particular filesystem. Once that's in place, actually fix all the
parts of XFS where we need to be able to distinguish between datadev and
rtdev.
This patch fixes the problem where we screw up the dax support checking
in xfs if the datadev and rtdev have different dax capabilities.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[rez: Re-added __bdev_dax_supported() for !CONFIG_FS_DAX cases]
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Similar to the ->copy_from_iter() operation, a platform may want to
deploy an architecture or device specific routine for handling reads
from a dax_device like /dev/pmemX. On x86 this routine will point to a
machine check safe version of copy_to_iter(). For now, add the plumbing
to device-mapper and the dax core.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Background:
get_user_pages() in the filesystem pins file backed memory pages for
access by devices performing dma. However, it only pins the memory pages
not the page-to-file offset association. If a file is truncated the
pages are mapped out of the file and dma may continue indefinitely into
a page that is owned by a device driver. This breaks coherency of the
file vs dma, but the assumption is that if userspace wants the
file-space truncated it does not matter what data is inbound from the
device, it is not relevant anymore. The only expectation is that dma can
safely continue while the filesystem reallocates the block(s).
Problem:
This expectation that dma can safely continue while the filesystem
changes the block map is broken by dax. With dax the target dma page
*is* the filesystem block. The model of leaving the page pinned for dma,
but truncating the file block out of the file, means that the filesytem
is free to reallocate a block under active dma to another file and now
the expected data-incoherency situation has turned into active
data-corruption.
Solution:
Defer all filesystem operations (fallocate(), truncate()) on a dax mode
file while any page/block in the file is under active dma. This solution
assumes that dma is transient. Cases where dma operations are known to
not be transient, like RDMA, have been explicitly disabled via
commits like 5f1d43de54 "IB/core: disable memory registration of
filesystem-dax vmas".
The dax_layout_busy_page() routine is called by filesystems with a lock
held against mm faults (i_mmap_lock) to find pinned / busy dax pages.
The process of looking up a busy page invalidates all mappings
to trigger any subsequent get_user_pages() to block on i_mmap_lock.
The filesystem continues to call dax_layout_busy_page() until it finally
returns no more active pages. This approach assumes that the page
pinning is transient, if that assumption is violated the system would
have likely hung from the uncompleted I/O.
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Change device-mapper's DAX dependency to require the presence of at
least one DAX_DRIVER. This allows device-mapper to be built without
bringing the DAX core along which is especially wasteful when there are
no DAX drivers, like BLK_DEV_PMEM, configured.
Cc: Alasdair Kergon <agk@redhat.com>
Reported-by: Bart Van Assche <Bart.VanAssche@wdc.com>
Reported-by: kbuild test robot <lkp@intel.com>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for the dax implementation to start associating dax pages
to inodes via page->mapping, we need to provide a 'struct
address_space_operations' instance for dax. Define some generic VFS aops
helpers for dax. These noop implementations are there in the dax case to
prevent the VFS from falling back to operations with page-cache
assumptions, dax_writeback_mapping_range() may not be referenced in the
FS_DAX=n case.
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Matthew Wilcox <mawilcox@microsoft.com>
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Ext4 needs to pass through error from its iomap handler to the page
fault handler so that it can properly detect ENOSPC and force
transaction commit and retry the fault (and block allocation). Add
argument to dax_iomap_fault() for passing such error.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
* Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may be
required to satisfy a write fault to also be flushed ("on disk") before
the kernel returns to userspace from the fault handler. Effectively
every write-fault that dirties metadata completes an fsync() before
returning from the fault handler. The new MAP_SHARED_VALIDATE mapping
type guarantees that the MAP_SYNC flag is validated as supported by the
filesystem's ->mmap() file operation.
* Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods. This
enables interoperability with environments that only implement the
standardized methods.
* Add support for the ACPI 6.2 NVDIMM media error injection methods.
* Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for latch
last shutdown status, firmware update, SMART error injection, and
SMART alarm threshold control.
* Cleanup physical address information disclosures to be root-only.
* Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
* Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
957ac8c421 dax: fix PMD faults on zero-length files
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
a39e596baa xfs: support for synchronous DAX faults
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
7b565c9f96 xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaDfvcAAoJEB7SkWpmfYgCk7sP/2qJhBH+VTTdg2osDnhAdAhI
co/AGEmsHFlUCMBb/Ek7UnMAmhBYiJU2q4ywPsNFBpusXpMlqNy5Iwo7k4/wQHE/
SJcIM0g4zg0ViFuUhwV+C2T0R5UzFR8JLd9EYWj/YS6aJpurtotm5l4UStaM0Hzo
AhxSXJLrBDuqCpbOxbctfiGEmdRL7aRfBEAARTNRKBn/iXxJUcYHlp62rtXQS+t4
I6LC/URCWTNTTMGmzW6TRsgSD9WMfd19xKcGzN3qL6ee0KFccxN4ctFqHA/sFGOh
iYLeR0XJUjJxyp+PkWGteXPVZL0Kj3bD/lSTG+Co5bm/ra8a/sh3TSFfgFyoBZD1
EqMN8Ryf80hGp3FabeH2Iw2SviYPZpHSWgjddjxLD0RA6OmpzINc+Wm8eqApjMME
sbZDTOijiab4QMQ0XamF4GuDHyQtawv5Y/w2Ehhl1tmiqW+5tKhsKqxkQt+/V3Yt
RTVSRe2Pkway66b+cD64IdQ6L2tyonPnmi5IzgkKOhlOEGomy+4/U2Jt2bMbhzq6
ymszKmXp2XI8P06wU8sHrIUeXO5I9qoKn/fZA73Eb8aIzgJe3tBE/5+Ab7RG6HB9
1OVfcMWoXU1gNgNktTs63X1Lsg4aW9kt/K4fPHHcqUcaliEJpJTlAbg9GLF2buoW
nQ+0fTRgMRihE3ZA0Fs3
=h2vZ
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and dax updates from Dan Williams:
"Save for a few late fixes, all of these commits have shipped in -next
releases since before the merge window opened, and 0day has given a
build success notification.
The ext4 touches came from Jan, and the xfs touches have Darrick's
reviewed-by. An xfstest for the MAP_SYNC feature has been through
a few round of reviews and is on track to be merged.
- Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may
be required to satisfy a write fault to also be flushed ("on disk")
before the kernel returns to userspace from the fault handler.
Effectively every write-fault that dirties metadata completes an
fsync() before returning from the fault handler. The new
MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag
is validated as supported by the filesystem's ->mmap() file
operation.
- Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods.
This enables interoperability with environments that only implement
the standardized methods.
- Add support for the ACPI 6.2 NVDIMM media error injection methods.
- Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for
latch last shutdown status, firmware update, SMART error injection,
and SMART alarm threshold control.
- Cleanup physical address information disclosures to be root-only.
- Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
- Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
- 957ac8c421 ("dax: fix PMD faults on zero-length files"):
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
- a39e596baa ("xfs: support for synchronous DAX faults") and
7b565c9f96 ("xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()")
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>"
* tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (49 commits)
acpi, nfit: add 'Enable Latch System Shutdown Status' command support
dax: fix general protection fault in dax_alloc_inode
dax: fix PMD faults on zero-length files
dax: stop requiring a live device for dax_flush()
brd: remove dax support
dax: quiet bdev_dax_supported()
fs, dax: unify IOMAP_F_DIRTY read vs write handling policy in the dax core
tools/testing/nvdimm: unit test clear-error commands
acpi, nfit: validate commands against the device type
tools/testing/nvdimm: stricter bounds checking for error injection commands
xfs: support for synchronous DAX faults
xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
ext4: Support for synchronous DAX faults
ext4: Simplify error handling in ext4_dax_huge_fault()
dax: Implement dax_finish_sync_fault()
dax, iomap: Add support for synchronous faults
mm: Define MAP_SYNC and VM_SYNC flags
dax: Allow tuning whether dax_insert_mapping_entry() dirties entry
dax: Allow dax_iomap_fault() to return pfn
dax: Fix comment describing dax_iomap_fault()
...
Implement a function that filesystems can call to finish handling of
synchronous page faults. It takes care of syncing appropriare file range
and insertion of page table entry.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For synchronous page fault dax_iomap_fault() will need to return PFN
which will then need to be inserted into page tables after fsync()
completes. Add necessary parameter to dax_iomap_fault().
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
- Constify a few variables in DM core and DM integrity
- Add bufio optimization and checksum failure accounting to DM integrity
- Fix DM integrity to avoid checking integrity of failed reads
- Fix DM integrity to use init_completion
- A couple DM log-writes target fixes
- Simplify DAX flushing by eliminating the unnecessary flush abstraction
that was stood up for DM's use.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJZuo8UAAoJEMUj8QotnQNa5BEIANO4mHh1nrzEbH72a4RCLgxV
H1Pk1zZx/W1bhOOmcRRhxCSM85dPgsCegc5EmpwLZEMavQrP9UZblHcYOUsyIx7W
S/lWa+soOq/5N2OveROc4WdoWVs50UFmc1+BcClc4YrEe+15XC3R0VMkjX2b/hUL
o2eYhPjpMlgaorMtRRU6MAooo2fBRQ9m05aPeVgd35fxibrE7PZm+EYW09wa0STi
9ufuDXJf8+TtFP/38BD41LbUEskuHUZTSDeAJ+3DBaTtfEZcZYxsst4P9JangsHx
jqqqI9aYzFD2a27fl9WLhCvm40YFiKp5nwzED0RZjzWxVa/jTShX7a49BdzTTfw=
=rkSB
-----END PGP SIGNATURE-----
Merge tag 'for-4.14/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm
Pull device mapper updates from Mike Snitzer:
- Some request-based DM core and DM multipath fixes and cleanups
- Constify a few variables in DM core and DM integrity
- Add bufio optimization and checksum failure accounting to DM
integrity
- Fix DM integrity to avoid checking integrity of failed reads
- Fix DM integrity to use init_completion
- A couple DM log-writes target fixes
- Simplify DAX flushing by eliminating the unnecessary flush
abstraction that was stood up for DM's use.
* tag 'for-4.14/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm:
dax: remove the pmem_dax_ops->flush abstraction
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK
dm integrity: make blk_integrity_profile structure const
dm integrity: do not check integrity for failed read operations
dm log writes: fix >512b sectorsize support
dm log writes: don't use all the cpu while waiting to log blocks
dm ioctl: constify ioctl lookup table
dm: constify argument arrays
dm integrity: count and display checksum failures
dm integrity: optimize writing dm-bufio buffers that are partially changed
dm rq: do not update rq partially in each ending bio
dm rq: make dm-sq requeuing behavior consistent with dm-mq behavior
dm mpath: complain about unsupported __multipath_map_bio() return values
dm mpath: avoid that building with W=1 causes gcc 7 to complain about fall-through
* Media error handling support in the Block Translation Table (BTT)
driver is reworked to address sleeping-while-atomic locking and
memory-allocation-context conflicts.
* The dax_device lookup overhead for xfs and ext4 is moved out of the
iomap hot-path to a mount-time lookup.
* A new 'ecc_unit_size' sysfs attribute is added to advertise the
read-modify-write boundary property of a persistent memory range.
* Preparatory fix-ups for arm and powerpc pmem support are included
along with other miscellaneous fixes.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZtsAGAAoJEB7SkWpmfYgCrzMP/2vPvZvrFjZn5pAoZjlmTmHM
ySceoOC7vwvVXIsSs52FhSjcxEoXo9cklXPwhXOPVtVUFdSDJBUOIUxwIziE6Y+5
sFJ2xT9K+5zKBUiXJwqFQDg52dn//eBNnnnDz+HQrBSzGrbWQhIZY2m19omPzv1I
BeN0OCGOdW3cjSo3BCFl1d+KrSl704e7paeKq/TO3GIiAilIXleTVxcefEEodV2K
ZvWHpFIhHeyN8dsF8teI952KcCT92CT/IaabxQIwCxX0/8/GFeDc5aqf77qiYWKi
uxCeQXdgnaE8EZNWZWGWIWul6eYEkoCNbLeUQ7eJnECq61VxVajJS0NyGa5T9OiM
P046Bo2b1b3R0IHxVIyVG0ZCm3YUMAHSn/3uRxPgESJ4bS/VQ3YP5M6MLxDOlc90
IisLilagitkK6h8/fVuVrwciRNQ71XEC34t6k7GCl/1ZnLlLT+i4/jc5NRZnGEZh
aXAAGHdteQ+/mSz6p2UISFUekbd6LerwzKRw8ibDvH6pTud8orYR7g2+JoGhgb6Y
pyFVE8DhIcqNKAMxBsjiRZ46OQ7qrT+AemdAG3aVv6FaNoe4o5jPLdw2cEtLqtpk
+DNm0/lSWxxxozjrvu6EUZj6hk8R5E19XpRzV5QJkcKUXMu7oSrFLdMcC4FeIjl9
K4hXLV3fVBVRMiS0RA6z
=5iGY
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm from Dan Williams:
"A rework of media error handling in the BTT driver and other updates.
It has appeared in a few -next releases and collected some late-
breaking build-error and warning fixups as a result.
Summary:
- Media error handling support in the Block Translation Table (BTT)
driver is reworked to address sleeping-while-atomic locking and
memory-allocation-context conflicts.
- The dax_device lookup overhead for xfs and ext4 is moved out of the
iomap hot-path to a mount-time lookup.
- A new 'ecc_unit_size' sysfs attribute is added to advertise the
read-modify-write boundary property of a persistent memory range.
- Preparatory fix-ups for arm and powerpc pmem support are included
along with other miscellaneous fixes"
* tag 'libnvdimm-for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (26 commits)
libnvdimm, btt: fix format string warnings
libnvdimm, btt: clean up warning and error messages
ext4: fix null pointer dereference on sbi
libnvdimm, nfit: move the check on nd_reserved2 to the endpoint
dax: fix FS_DAX=n BLOCK=y compilation
libnvdimm: fix integer overflow static analysis warning
libnvdimm, nd_blk: remove mmio_flush_range()
libnvdimm, btt: rework error clearing
libnvdimm: fix potential deadlock while clearing errors
libnvdimm, btt: cache sector_size in arena_info
libnvdimm, btt: ensure that flags were also unchanged during a map_read
libnvdimm, btt: refactor map entry operations with macros
libnvdimm, btt: fix a missed NVDIMM_IO_ATOMIC case in the write path
libnvdimm, nfit: export an 'ecc_unit_size' sysfs attribute
ext4: perform dax_device lookup at mount
ext2: perform dax_device lookup at mount
xfs: perform dax_device lookup at mount
dax: introduce a fs_dax_get_by_bdev() helper
libnvdimm, btt: check memory allocation failure
libnvdimm, label: fix index block size calculation
...
Commit abebfbe2f7 ("dm: add ->flush() dax operation support") is
buggy. A DM device may be composed of multiple underlying devices and
all of them need to be flushed. That commit just routes the flush
request to the first device and ignores the other devices.
It could be fixed by adding more complex logic to the device mapper. But
there is only one implementation of the method pmem_dax_ops->flush - that
is pmem_dax_flush() - and it calls arch_wb_cache_pmem(). Consequently, we
don't need the pmem_dax_ops->flush abstraction at all, we can call
arch_wb_cache_pmem() directly from dax_flush() because dax_dev->ops->flush
can't ever reach anything different from arch_wb_cache_pmem().
It should be also pointed out that for some uses of persistent memory it
is needed to flush only a very small amount of data (such as 1 cacheline),
and it would be overkill if we go through that device mapper machinery for
a single flushed cache line.
Fix this by removing the pmem_dax_ops->flush abstraction and call
arch_wb_cache_pmem() directly from dax_flush(). Also, remove the device
mapper code that forwards the flushes.
Fixes: abebfbe2f7 ("dm: add ->flush() dax operation support")
Cc: stable@vger.kernel.org
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Now that we no longer insert struct page pointers in DAX radix trees the
page cache code no longer needs to know anything about DAX exceptional
entries. Move all the DAX exceptional entry definitions from dax.h to
fs/dax.c.
Link: http://lkml.kernel.org/r/20170724170616.25810-6-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we no longer insert struct page pointers in DAX radix trees we
can remove the special casing for DAX in page_cache_tree_insert().
This also allows us to make dax_wake_mapping_entry_waiter() local to
fs/dax.c, removing it from dax.h.
Link: http://lkml.kernel.org/r/20170724170616.25810-5-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When servicing mmap() reads from file holes the current DAX code
allocates a page cache page of all zeroes and places the struct page
pointer in the mapping->page_tree radix tree.
This has three major drawbacks:
1) It consumes memory unnecessarily. For every 4k page that is read via
a DAX mmap() over a hole, we allocate a new page cache page. This
means that if you read 1GiB worth of pages, you end up using 1GiB of
zeroed memory. This is easily visible by looking at the overall
memory consumption of the system or by looking at /proc/[pid]/smaps:
7f62e72b3000-7f63272b3000 rw-s 00000000 103:00 12 /root/dax/data
Size: 1048576 kB
Rss: 1048576 kB
Pss: 1048576 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 1048576 kB
Private_Dirty: 0 kB
Referenced: 1048576 kB
Anonymous: 0 kB
LazyFree: 0 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 0 kB
SwapPss: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
2) It is slower than using a common zero page because each page fault
has more work to do. Instead of just inserting a common zero page we
have to allocate a page cache page, zero it, and then insert it. Here
are the average latencies of dax_load_hole() as measured by ftrace on
a random test box:
Old method, using zeroed page cache pages: 3.4 us
New method, using the common 4k zero page: 0.8 us
This was the average latency over 1 GiB of sequential reads done by
this simple fio script:
[global]
size=1G
filename=/root/dax/data
fallocate=none
[io]
rw=read
ioengine=mmap
3) The fact that we had to check for both DAX exceptional entries and
for page cache pages in the radix tree made the DAX code more
complex.
Solve these issues by following the lead of the DAX PMD code and using a
common 4k zero page instead. As with the PMD code we will now insert a
DAX exceptional entry into the radix tree instead of a struct page
pointer which allows us to remove all the special casing in the DAX
code.
Note that we do still pretty aggressively check for regular pages in the
DAX radix tree, especially where we take action based on the bits set in
the page. If we ever find a regular page in our radix tree now that
most likely means that someone besides DAX is inserting pages (which has
happened lots of times in the past), and we want to find that out early
and fail loudly.
This solution also removes the extra memory consumption. Here is that
same /proc/[pid]/smaps after 1GiB of reading from a hole with the new
code:
7f2054a74000-7f2094a74000 rw-s 00000000 103:00 12 /root/dax/data
Size: 1048576 kB
Rss: 0 kB
Pss: 0 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 0 kB
Private_Dirty: 0 kB
Referenced: 0 kB
Anonymous: 0 kB
LazyFree: 0 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 0 kB
SwapPss: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
Overall system memory consumption is similarly improved.
Another major change is that we remove dax_pfn_mkwrite() from our fault
flow, and instead rely on the page fault itself to make the PTE dirty
and writeable. The following description from the patch adding the
vm_insert_mixed_mkwrite() call explains this a little more:
"To be able to use the common 4k zero page in DAX we need to have our
PTE fault path look more like our PMD fault path where a PTE entry
can be marked as dirty and writeable as it is first inserted rather
than waiting for a follow-up dax_pfn_mkwrite() =>
finish_mkwrite_fault() call.
Right now we can rely on having a dax_pfn_mkwrite() call because we
can distinguish between these two cases in do_wp_page():
case 1: 4k zero page => writable DAX storage
case 2: read-only DAX storage => writeable DAX storage
This distinction is made by via vm_normal_page(). vm_normal_page()
returns false for the common 4k zero page, though, just as it does
for DAX ptes. Instead of special casing the DAX + 4k zero page case
we will simplify our DAX PTE page fault sequence so that it matches
our DAX PMD sequence, and get rid of the dax_pfn_mkwrite() helper.
We will instead use dax_iomap_fault() to handle write-protection
faults.
This means that insert_pfn() needs to follow the lead of
insert_pfn_pmd() and allow us to pass in a 'mkwrite' flag. If
'mkwrite' is set insert_pfn() will do the work that was previously
done by wp_page_reuse() as part of the dax_pfn_mkwrite() call path"
Link: http://lkml.kernel.org/r/20170724170616.25810-4-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a helper that can replace the following common pattern:
if (blk_queue_dax(bdev->bd_queue))
fs_dax_get_by_host(bdev->bd_disk->disk_name);
This will be used to move dax_device lookup from iomap-operation time to
fs-mount time.
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently dm_dax_flush() is not being called, even if underlying dax
device supports write cache, because DAXDEV_WRITE_CACHE is not being
propagated up to the DM dax device.
If the underlying dax device supports write cache, set
DAXDEV_WRITE_CACHE on the DM dax device. This will cause dm_dax_flush()
to be called.
Fixes: abebfbe2f7 ("dm: add ->flush() dax operation support")
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The madvise policy for transparent huge pages is meant to avoid unwanted
allocations of transparent huge pages. It allows a policy of disabling
the extra memory pressure and effort to arrange for a huge page when it
is not needed.
DAX by definition never incurs this overhead since it is statically
allocated. The policy choice makes even less sense for device-dax which
tries to guarantee a given tlb-fault size. Specifically, the following
setting:
echo never > /sys/kernel/mm/transparent_hugepage/enabled
...violates that guarantee and silently disables all device-dax
instances with a 2M or 1G alignment. So, let's avoid that non-obvious
side effect by force enabling thp for dax mappings in all cases.
It is worth noting that the reason this uses vma_is_dax(), and the
resulting header include changes, is that previous attempts to add a
VM_DAX flag were NAKd.
Link: http://lkml.kernel.org/r/149739531127.20686.15813586620597484283.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dax_flush() operation can be turned into a nop on platforms where
firmware arranges for cpu caches to be flushed on a power-fail event.
The ACPI 6.2 specification defines a mechanism for the platform to
indicate this capability so the kernel can select the proper default.
However, for other platforms, the administrator must toggle this setting
manually.
Given this flush setting is a dax-specific mechanism we advertise it
through a 'dax' attribute group hanging off a host device. For example,
a 'pmem0' block-device gets a 'dax' sysfs-subdirectory with a
'write_cache' attribute to control response to dax cache flush requests.
This is similar to the 'queue/write_cache' attribute that appears under
block devices.
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Require all dax-drivers to register a ->copy_from_iter() operation so
that it is clear which dax_operations are optional and which must be
implemented for filesystem-dax to operate.
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Allow device-mapper to route flush operations to the
per-target implementation. In order for the device stacking to work we
need a dax_dev and a pgoff relative to that device. This gives each
layer of the stack the information it needs to look up the operation
pointer for the next level.
This conceptually allows for an array of mixed device drivers with
varying flush implementations.
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Filesystem-DAX flushes caches whenever it writes to the address returned
through dax_direct_access() and when writing back dirty radix entries.
That flushing is only required in the pmem case, so add a dax operation
to allow pmem to take this extra action, but skip it for other dax
capable devices that do not provide a flush routine.
An example for this differentiation might be a volatile ram disk where
there is no expectation of persistence. In fact the pmem driver itself might
front such an address range specified by the NFIT. So, this "no flush"
property might be something passed down by the bus / libnvdimm.
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Allow device-mapper to route copy_from_iter operations to the
per-target implementation. In order for the device stacking to work we
need a dax_dev and a pgoff relative to that device. This gives each
layer of the stack the information it needs to look up the operation
pointer for the next level.
This conceptually allows for an array of mixed device drivers with
varying copy_from_iter implementations.
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The pmem driver has a need to transfer data with a persistent memory
destination and be able to rely on the fact that the destination writes are not
cached. It is sufficient for the writes to be flushed to a cpu-store-buffer
(non-temporal / "movnt" in x86 terms), as we expect userspace to call fsync()
to ensure data-writes have reached a power-fail-safe zone in the platform. The
fsync() triggers a REQ_FUA or REQ_FLUSH to the pmem driver which will turn
around and fence previous writes with an "sfence".
Implement a __copy_from_user_inatomic_flushcache, memcpy_page_flushcache, and
memcpy_flushcache, that guarantee that the destination buffer is not dirty in
the cpu cache on completion. The new copy_from_iter_flushcache and sub-routines
will be used to replace the "pmem api" (include/linux/pmem.h +
arch/x86/include/asm/pmem.h). The availability of copy_from_iter_flushcache()
and memcpy_flushcache() are gated by the CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
config symbol, and fallback to copy_from_iter_nocache() and plain memcpy()
otherwise.
This is meant to satisfy the concern from Linus that if a driver wants to do
something beyond the normal nocache semantics it should be something private to
that driver [1], and Al's concern that anything uaccess related belongs with
the rest of the uaccess code [2].
The first consumer of this interface is a new 'copy_from_iter' dax operation so
that pmem can inject cache maintenance operations without imposing this
overhead on other dax-capable drivers.
[1]: https://lists.01.org/pipermail/linux-nvdimm/2017-January/008364.html
[2]: https://lists.01.org/pipermail/linux-nvdimm/2017-April/009942.html
Cc: <x86@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Tetsuo reports:
fs/built-in.o: In function `xfs_file_iomap_end':
xfs_iomap.c:(.text+0xe0ef9): undefined reference to `put_dax'
fs/built-in.o: In function `xfs_file_iomap_begin':
xfs_iomap.c:(.text+0xe1a7f): undefined reference to `dax_get_by_host'
make: *** [vmlinux] Error 1
$ grep DAX .config
CONFIG_DAX=m
# CONFIG_DEV_DAX is not set
# CONFIG_FS_DAX is not set
When FS_DAX=n we can/must throw away the dax code in filesystems.
Implement 'fs_' versions of dax_get_by_host() and put_dax() that are
nops in the FS_DAX=n case.
Cc: <linux-xfs@vger.kernel.org>
Cc: <linux-ext4@vger.kernel.org>
Cc: Jan Kara <jack@suse.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Fixes: ef51042472 ("block, dax: move 'select DAX' from BLOCK to FS_DAX")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Merge misc fixes from Andrew Morton:
"15 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm, docs: update memory.stat description with workingset* entries
mm: vmscan: scan until it finds eligible pages
mm, thp: copying user pages must schedule on collapse
dax: fix PMD data corruption when fault races with write
dax: fix data corruption when fault races with write
ext4: return to starting transaction in ext4_dax_huge_fault()
mm: fix data corruption due to stale mmap reads
dax: prevent invalidation of mapped DAX entries
Tigran has moved
mm, vmalloc: fix vmalloc users tracking properly
mm/khugepaged: add missed tracepoint for collapse_huge_page_swapin
gcov: support GCC 7.1
mm, vmstat: Remove spurious WARN() during zoneinfo print
time: delete current_fs_time()
hwpoison, memcg: forcibly uncharge LRU pages
Patch series "mm,dax: Fix data corruption due to mmap inconsistency",
v4.
This series fixes data corruption that can happen for DAX mounts when
page faults race with write(2) and as a result page tables get out of
sync with block mappings in the filesystem and thus data seen through
mmap is different from data seen through read(2).
The series passes testing with t_mmap_stale test program from Ross and
also other mmap related tests on DAX filesystem.
This patch (of 4):
dax_invalidate_mapping_entry() currently removes DAX exceptional entries
only if they are clean and unlocked. This is done via:
invalidate_mapping_pages()
invalidate_exceptional_entry()
dax_invalidate_mapping_entry()
However, for page cache pages removed in invalidate_mapping_pages()
there is an additional criteria which is that the page must not be
mapped. This is noted in the comments above invalidate_mapping_pages()
and is checked in invalidate_inode_page().
For DAX entries this means that we can can end up in a situation where a
DAX exceptional entry, either a huge zero page or a regular DAX entry,
could end up mapped but without an associated radix tree entry. This is
inconsistent with the rest of the DAX code and with what happens in the
page cache case.
We aren't able to unmap the DAX exceptional entry because according to
its comments invalidate_mapping_pages() isn't allowed to block, and
unmap_mapping_range() takes a write lock on the mapping->i_mmap_rwsem.
Since we essentially never have unmapped DAX entries to evict from the
radix tree, just remove dax_invalidate_mapping_entry().
Fixes: c6dcf52c23 ("mm: Invalidate DAX radix tree entries only if appropriate")
Link: http://lkml.kernel.org/r/20170510085419.27601-2-jack@suse.cz
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org> [4.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For configurations that do not enable DAX filesystems or drivers, do not
require the DAX core to be built.
Given that the 'direct_access' method has been removed from
'block_device_operations', we can also go ahead and remove the
block-related dax helper functions from fs/block_dev.c to
drivers/dax/super.c. This keeps dax details out of the block layer and
lets the DAX core be built as a module in the FS_DAX=n case.
Filesystems need to include dax.h to call bdev_dax_supported().
Cc: linux-xfs@vger.kernel.org
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that a dax_device is plumbed through all dax-capable drivers we can
switch from block_device_operations to dax_operations for invoking
->direct_access.
This also lets us kill off some usages of struct blk_dax_ctl on the way
to its eventual removal.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
commit d1a5f2b4d8 ("block: use DAX for partition table reads") was
part of a stalled effort to allow dax mappings of block devices. Since
then the device-dax mechanism has filled the role of dax-mapping static
device ranges.
Now that we are moving ->direct_access() from a block_device operation
to a dax_inode operation we would need block devices to map and carry
their own dax_inode reference.
Unless / until we decide to revive dax mapping of raw block devices
through the dax_inode scheme, there is no need to carry
read_dax_sector(). Its removal in turn allows for the removal of
bdev_direct_access() and should have been included in commit
2237570168 ("block_dev: remove DAX leftovers").
Cc: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Replace bdev_direct_access() with dax_direct_access() that uses
dax_device and dax_operations instead of a block_device and
block_device_operations for dax. Once all consumers of the old api have
been converted bdev_direct_access() will be deleted.
Given that block device partitioning decisions can cause dax page
alignment constraints to be violated this also introduces the
bdev_dax_pgoff() helper. It handles calculating a logical pgoff relative
to the dax_device and also checks for page alignment.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Setup a dax_device to have the same lifetime as the pmem block device
and add a ->direct_access() method that is equivalent to
pmem_direct_access(). Once fs/dax.c has been converted to use
dax_operations the old pmem_direct_access() will be removed.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Track a set of dax_operations per dax_device that can be set at
alloc_dax() time. These operations will be used to stop the abuse of
block_device_operations for communicating dax capabilities to
filesystems. It will also be used to replace the "pmem api" and move
pmem-specific cache maintenance, and other dax-driver-specific
filesystem-dax operations, to dax device methods. In particular this
allows us to stop abusing __copy_user_nocache(), via memcpy_to_pmem(),
with a driver specific replacement.
This is a standalone introduction of the operations. Follow on patches
convert each dax-driver and teach fs/dax.c to use ->direct_access() from
dax_operations instead of block_device_operations.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For the current block_device based filesystem-dax path, we need a way
for it to lookup the dax_device associated with a block_device. Add a
'host' property of a dax_device that can be used for this purpose. It is
a free form string, but for a dax_device associated with a block device
it is the bdev name.
This is a stop-gap until filesystems are able to mount on a dax-inode
directly.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We want dax capable drivers to be able to publish a set of dax
operations [1]. However, we do not want to further abuse block_devices
to advertise these operations. Instead we will attach these operations
to a dax device and add a lookup mechanism to go from block device path
to a dax device. A dax capable driver like pmem or brd is responsible
for registering a dax device, alongside a block device, and then a dax
capable filesystem is responsible for retrieving the dax device by path
name if it wants to call dax_operations.
For now, we refactor the dax pseudo-fs to be a generic facility, rather
than an implementation detail, of the device-dax use case. Where a "dax
device" is just an inode + dax infrastructure, and "Device DAX" is a
mapping service layered on top of that base 'struct dax_device'.
"Filesystem DAX" is then a mapping service that layers a filesystem on
top of that same base device. Filesystem DAX is associated with a
block_device for now, but perhaps directly to a dax device in the
future, or for new pmem-only filesystems.
[1]: https://lkml.org/lkml/2017/1/19/880
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Since the introduction of FAULT_FLAG_SIZE to the vm_fault flag, it has
been somewhat painful with getting the flags set and removed at the
correct locations. More than one kernel oops was introduced due to
difficulties of getting the placement correctly.
Remove the flag values and introduce an input parameter to huge_fault
that indicates the size of the page entry. This makes the code easier
to trace and should avoid the issues we see with the fault flags where
removal of the flag was necessary in the fallback paths.
Link: http://lkml.kernel.org/r/148615748258.43180.1690152053774975329.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "1G transparent hugepage support for device dax", v2.
The following series implements support for 1G trasparent hugepage on
x86 for device dax. The bulk of the code was written by Mathew Wilcox a
while back supporting transparent 1G hugepage for fs DAX. I have
forward ported the relevant bits to 4.10-rc. The current submission has
only the necessary code to support device DAX.
Comments from Dan Williams: So the motivation and intended user of this
functionality mirrors the motivation and users of 1GB page support in
hugetlbfs. Given expected capacities of persistent memory devices an
in-memory database may want to reduce tlb pressure beyond what they can
already achieve with 2MB mappings of a device-dax file. We have
customer feedback to that effect as Willy mentioned in his previous
version of these patches [1].
[1]: https://lkml.org/lkml/2016/1/31/52
Comments from Nilesh @ Oracle:
There are applications which have a process model; and if you assume
10,000 processes attempting to mmap all the 6TB memory available on a
server; we are looking at the following:
processes : 10,000
memory : 6TB
pte @ 4k page size: 8 bytes / 4K of memory * #processes = 6TB / 4k * 8 * 10000 = 1.5GB * 80000 = 120,000GB
pmd @ 2M page size: 120,000 / 512 = ~240GB
pud @ 1G page size: 240GB / 512 = ~480MB
As you can see with 2M pages, this system will use up an exorbitant
amount of DRAM to hold the page tables; but the 1G pages finally brings
it down to a reasonable level. Memory sizes will keep increasing; so
this number will keep increasing.
An argument can be made to convert the applications from process model
to thread model, but in the real world that may not be always practical.
Hopefully this helps explain the use case where this is valuable.
This patch (of 3):
In preparation for adding the ability to handle PUD pages, convert
vm_operations_struct.pmd_fault to vm_operations_struct.huge_fault. The
vm_fault structure is extended to include a union of the different page
table pointers that may be needed, and three flag bits are reserved to
indicate which type of pointer is in the union.
[ross.zwisler@linux.intel.com: remove unused function ext4_dax_huge_fault()]
Link: http://lkml.kernel.org/r/1485813172-7284-1-git-send-email-ross.zwisler@linux.intel.com
[dave.jiang@intel.com: clear PMD or PUD size flags when in fall through path]
Link: http://lkml.kernel.org/r/148589842696.5820.16078080610311444794.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545058784.17912.6353162518188733642.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
"142 patches:
- DAX updates
- various misc bits
- OCFS2 updates
- most of MM"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (142 commits)
mm/z3fold.c: limit first_num to the actual range of possible buddy indexes
mm: fix <linux/pagemap.h> stray kernel-doc notation
zram: remove obsolete sysfs attrs
mm/memblock.c: remove unnecessary log and clean up
oom-reaper: use madvise_dontneed() logic to decide if unmap the VMA
mm: drop unused argument of zap_page_range()
mm: drop zap_details::check_swap_entries
mm: drop zap_details::ignore_dirty
mm, page_alloc: warn_alloc nodemask is NULL when cpusets are disabled
mm: help __GFP_NOFAIL allocations which do not trigger OOM killer
mm, oom: do not enforce OOM killer for __GFP_NOFAIL automatically
mm: consolidate GFP_NOFAIL checks in the allocator slowpath
lib/show_mem.c: teach show_mem to work with the given nodemask
arch, mm: remove arch specific show_mem
mm, page_alloc: warn_alloc print nodemask
mm, page_alloc: do not report all nodes in show_mem
Revert "mm: bail out in shrink_inactive_list()"
mm, vmscan: consider eligible zones in get_scan_count
mm, vmscan: cleanup lru size claculations
mm, vmscan: do not count freed pages as PGDEACTIVATE
...
pmd_fault() and related functions really only need the vmf parameter since
the additional parameters are all included in the vmf struct. Remove the
additional parameter and simplify pmd_fault() and friends.
Link: http://lkml.kernel.org/r/1484085142-2297-8-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of passing in multiple parameters in the pmd_fault() handler,
a vmf can be passed in just like a fault() handler. This will simplify
code and remove the need for the actual pmd fault handlers to allocate a
vmf. Related functions are also modified to do the same.
[dave.jiang@intel.com: fix issue with xfs_tests stall when DAX option is off]
Link: http://lkml.kernel.org/r/148469861071.195597.3619476895250028518.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/1484085142-2297-7-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>