Two config options exist to define powerpc MPC8xx:
* CONFIG_PPC_8xx
* CONFIG_8xx
arch/powerpc/platforms/Kconfig.cputype has contained the following
comment about CONFIG_8xx item for some years:
"# this is temp to handle compat with arch=ppc"
arch/powerpc is now the only place with remaining use of
CONFIG_8xx: get rid of them.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds AUX vectors for the L1I,D, L2 and L3 cache levels
providing for each cache level the size of the cache in bytes
and the geometry (line size and number of ways).
We chose to not use the existing alpha/sh definition which
packs all the information in a single entry per cache level as
it is too restricted to represent some of the geometries used
on POWER.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Retrieved from device-tree when available
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We have two set of identical struct members for the I and D sides
and mostly identical bunches of code to parse the device-tree to
populate them. Instead make a ppc_cache_info structure with one
copy for I and one for D
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
It will be used to calculate the associativity
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In a number of places we called "cache line size" what is actually
the cache block size, which in the powerpc architecture, means the
effective size to use with cache management instructions (it can
be different from the actual cache line size).
We fix the naming across the board and properly retrieve both
pieces of information when available in the device-tree.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Exception handlers are aligned to 128 bytes (L1 cache) on 64s, which is
overkill. It can reduce the icache footprint of any individual exception
path. However taken as a whole, the expansion in icache footprint seems
likely to be counter-productive and cause more total misses.
Create IFETCH_ALIGN_SHIFT/BYTES, which should give optimal ifetch
alignment with much more reasonable alignment. This saves 1792 bytes
from head_64.o text with an allmodconfig build.
Other subarchitectures should define appropriate IFETCH_ALIGN_SHIFT
values if this becomes more widely used.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch adds inline functions to use dcbz, dcbi, dcbf, dcbst
from C functions
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
This reverts commit 9678cdaae9 ("Use the POWER8 Micro Partition
Prefetch Engine in KVM HV on POWER8") because the original commit had
multiple, partly self-cancelling bugs, that could cause occasional
memory corruption.
In fact the logmpp instruction was incorrectly using register r0 as the
source of the buffer address and operation code, and depending on what
was in r0, it would either do nothing or corrupt the 64k page pointed to
by r0.
The logmpp instruction encoding and the operation code definitions could
be corrected, but then there is the problem that there is no clearly
defined way to know when the hardware has finished writing to the
buffer.
The original commit attempted to work around this by aborting the
write-out before starting the prefetch, but this is ineffective in the
case where the virtual core is now executing on a different physical
core from the one where the write-out was initiated.
These problems plus advice from the hardware designers not to use the
function (since the measured performance improvement from using the
feature was actually mostly negative), mean that reverting the code is
the best option.
Fixes: 9678cdaae9 ("Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8")
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
These functions are only used from one place each. If the cacheable_*
versions really are more efficient, then those changes should be
migrated into the common code instead.
NOTE: The old routines are just flat buggy on kernels that support
hardware with different cacheline sizes.
Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The POWER8 processor has a Micro Partition Prefetch Engine, which is
a fancy way of saying "has way to store and load contents of L2 or
L2+MRU way of L3 cache". We initiate the storing of the log (list of
addresses) using the logmpp instruction and start restore by writing
to a SPR.
The logmpp instruction takes parameters in a single 64bit register:
- starting address of the table to store log of L2/L2+L3 cache contents
- 32kb for L2
- 128kb for L2+L3
- Aligned relative to maximum size of the table (32kb or 128kb)
- Log control (no-op, L2 only, L2 and L3, abort logout)
We should abort any ongoing logging before initiating one.
To initiate restore, we write to the MPPR SPR. The format of what to write
to the SPR is similar to the logmpp instruction parameter:
- starting address of the table to read from (same alignment requirements)
- table size (no data, until end of table)
- prefetch rate (from fastest possible to slower. about every 8, 16, 24 or
32 cycles)
The idea behind loading and storing the contents of L2/L3 cache is to
reduce memory latency in a system that is frequently swapping vcores on
a physical CPU.
The best case scenario for doing this is when some vcores are doing very
cache heavy workloads. The worst case is when they have about 0 cache hits,
so we just generate needless memory operations.
This implementation just does L2 store/load. In my benchmarks this proves
to be useful.
Benchmark 1:
- 16 core POWER8
- 3x Ubuntu 14.04LTS guests (LE) with 8 VCPUs each
- No split core/SMT
- two guests running sysbench memory test.
sysbench --test=memory --num-threads=8 run
- one guest running apache bench (of default HTML page)
ab -n 490000 -c 400 http://localhost/
This benchmark aims to measure performance of real world application (apache)
where other guests are cache hot with their own workloads. The sysbench memory
benchmark does pointer sized writes to a (small) memory buffer in a loop.
In this benchmark with this patch I can see an improvement both in requests
per second (~5%) and in mean and median response times (again, about 5%).
The spread of minimum and maximum response times were largely unchanged.
benchmark 2:
- Same VM config as benchmark 1
- all three guests running sysbench memory benchmark
This benchmark aims to see if there is a positive or negative affect to this
cache heavy benchmark. Although due to the nature of the benchmark (stores) we
may not see a difference in performance, but rather hopefully an improvement
in consistency of performance (when vcore switched in, don't have to wait
many times for cachelines to be pulled in)
The results of this benchmark are improvements in consistency of performance
rather than performance itself. With this patch, the few outliers in duration
go away and we get more consistent performance in each guest.
benchmark 3:
- same 3 guests and CPU configuration as benchmark 1 and 2.
- two idle guests
- 1 guest running STREAM benchmark
This scenario also saw performance improvement with this patch. On Copy and
Scale workloads from STREAM, I got 5-6% improvement with this patch. For
Add and triad, it was around 10% (or more).
benchmark 4:
- same 3 guests as previous benchmarks
- two guests running sysbench --memory, distinctly different cache heavy
workload
- one guest running STREAM benchmark.
Similar improvements to benchmark 3.
benchmark 5:
- 1 guest, 8 VCPUs, Ubuntu 14.04
- Host configured with split core (SMT8, subcores-per-core=4)
- STREAM benchmark
In this benchmark, we see a 10-20% performance improvement across the board
of STREAM benchmark results with this patch.
Based on preliminary investigation and microbenchmarks
by Prerna Saxena <prerna@linux.vnet.ibm.com>
Signed-off-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
As Benjamin Herrenschmidt has indicated, we still need a dummy icbi to
purge all the prefetched instructions from the ifetch buffers for the
snooping icache. We also need a sync before the icbi to order the
actual stores to memory that might have modified instructions with
the icbi.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Disintegrate asm/system.h for PowerPC.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
cc: linuxppc-dev@lists.ozlabs.org
* 'for-35' of git://repo.or.cz/linux-kbuild: (81 commits)
kbuild: Revert part of e8d400a to resolve a conflict
kbuild: Fix checking of scm-identifier variable
gconfig: add support to show hidden options that have prompts
menuconfig: add support to show hidden options which have prompts
gconfig: remove show_debug option
gconfig: remove dbg_print_ptype() and dbg_print_stype()
kconfig: fix zconfdump()
kconfig: some small fixes
add random binaries to .gitignore
kbuild: Include gen_initramfs_list.sh and the file list in the .d file
kconfig: recalc symbol value before showing search results
.gitignore: ignore *.lzo files
headerdep: perlcritic warning
scripts/Makefile.lib: Align the output of LZO
kbuild: Generate modules.builtin in make modules_install
Revert "kbuild: specify absolute paths for cscope"
kbuild: Do not unnecessarily regenerate modules.builtin
headers_install: use local file handles
headers_check: fix perl warnings
export_report: fix perl warnings
...
This patch adds the base support for the 476 processor. The code was
primarily written by Ben Herrenschmidt and Torez Smith, but I've been
maintaining it for a while.
The goal is to have a single binary that will run on 44x and 47x, but
we still have some details to work out. The biggest is that the L1 cache
line size differs on the two platforms, but it's currently a compile-time
option.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Torez Smith <lnxtorez@linux.vnet.ibm.com>
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
from include/asm-powerpc. This is the result of a
mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm
Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly. Of the latter only
one was outside the arch code and it is a driver only built for powerpc.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>