Commit Graph

156 Commits

Author SHA1 Message Date
Anthony Yznaga
144552ff89 /proc/kpagecount: return 0 for special pages that are never mapped
Certain pages that are never mapped to userspace have a type indicated in
the page_type field of their struct pages (e.g.  PG_buddy).  page_type
overlaps with _mapcount so set the count to 0 and avoid calling
page_mapcount() for these pages.

[anthony.yznaga@oracle.com: incorporate feedback from Matthew Wilcox]
  Link: http://lkml.kernel.org/r/1544481313-27318-1-git-send-email-anthony.yznaga@oracle.com
Link: http://lkml.kernel.org/r/1543963526-27917-1-git-send-email-anthony.yznaga@oracle.com
Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:50 -08:00
Alexander Duyck
d483da5bc7 mm: create non-atomic version of SetPageReserved for init use
It doesn't make much sense to use the atomic SetPageReserved at init time
when we are using memset to clear the memory and manipulating the page
flags via simple "&=" and "|=" operations in __init_single_page.

This patch adds a non-atomic version __SetPageReserved that can be used
during page init and shows about a 10% improvement in initialization times
on the systems I have available for testing.  On those systems I saw
initialization times drop from around 35 seconds to around 32 seconds to
initialize a 3TB block of persistent memory.  I believe the main advantage
of this is that it allows for more compiler optimization as the __set_bit
operation can be reordered whereas the atomic version cannot.

I tried adding a bit of documentation based on f1dd2cd13c ("mm,
memory_hotplug: do not associate hotadded memory to zones until online").

Ideally the reserved flag should be set earlier since there is a brief
window where the page is initialization via __init_single_page and we have
not set the PG_Reserved flag.  I'm leaving that for a future patch set as
that will require a more significant refactor.

Link: http://lkml.kernel.org/r/20180925202018.3576.11607.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:34 -07:00
Alexander Duyck
f682a97a00 mm: provide kernel parameter to allow disabling page init poisoning
Patch series "Address issues slowing persistent memory initialization", v5.

The main thing this patch set achieves is that it allows us to initialize
each node worth of persistent memory independently.  As a result we reduce
page init time by about 2 minutes because instead of taking 30 to 40
seconds per node and going through each node one at a time, we process all
4 nodes in parallel in the case of a 12TB persistent memory setup spread
evenly over 4 nodes.

This patch (of 3):

On systems with a large amount of memory it can take a significant amount
of time to initialize all of the page structs with the PAGE_POISON_PATTERN
value.  I have seen it take over 2 minutes to initialize a system with
over 12TB of RAM.

In order to work around the issue I had to disable CONFIG_DEBUG_VM and
then the boot time returned to something much more reasonable as the
arch_add_memory call completed in milliseconds versus seconds.  However in
doing that I had to disable all of the other VM debugging on the system.

In order to work around a kernel that might have CONFIG_DEBUG_VM enabled
on a system that has a large amount of memory I have added a new kernel
parameter named "vm_debug" that can be set to "-" in order to disable it.

Link: http://lkml.kernel.org/r/20180925201921.3576.84239.stgit@localhost.localdomain
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:34 -07:00
Johannes Weiner
1899ad18c6 mm: workingset: tell cache transitions from workingset thrashing
Refaults happen during transitions between workingsets as well as in-place
thrashing.  Knowing the difference between the two has a range of
applications, including measuring the impact of memory shortage on the
system performance, as well as the ability to smarter balance pressure
between the filesystem cache and the swap-backed workingset.

During workingset transitions, inactive cache refaults and pushes out
established active cache.  When that active cache isn't stale, however,
and also ends up refaulting, that's bonafide thrashing.

Introduce a new page flag that tells on eviction whether the page has been
active or not in its lifetime.  This bit is then stored in the shadow
entry, to classify refaults as transitioning or thrashing.

How many page->flags does this leave us with on 32-bit?

	20 bits are always page flags

	21 if you have an MMU

	23 with the zone bits for DMA, Normal, HighMem, Movable

	29 with the sparsemem section bits

	30 if PAE is enabled

	31 with this patch.

So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes.  If
that's not enough, the system can switch to discontigmem and re-gain the 6
or 7 sparsemem section bits.

Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:32 -07:00
Naoya Horiguchi
d4ae9916ea mm: soft-offline: close the race against page allocation
A process can be killed with SIGBUS(BUS_MCEERR_AR) when it tries to
allocate a page that was just freed on the way of soft-offline.  This is
undesirable because soft-offline (which is about corrected error) is
less aggressive than hard-offline (which is about uncorrected error),
and we can make soft-offline fail and keep using the page for good
reason like "system is busy."

Two main changes of this patch are:

- setting migrate type of the target page to MIGRATE_ISOLATE. As done
  in free_unref_page_commit(), this makes kernel bypass pcplist when
  freeing the page. So we can assume that the page is in freelist just
  after put_page() returns,

- setting PG_hwpoison on free page under zone->lock which protects
  freelists, so this allows us to avoid setting PG_hwpoison on a page
  that is decided to be allocated soon.

[akpm@linux-foundation.org: tweak set_hwpoison_free_buddy_page() comment]
Link: http://lkml.kernel.org/r/1531452366-11661-3-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <zy.zhengyi@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-23 18:48:43 -07:00
Matthew Wilcox
1d40a5ea01 mm: mark pages in use for page tables
Define a new PageTable bit in the page_type and use it to mark pages in
use as page tables.  This can be helpful when debugging crashdumps or
analysing memory fragmentation.  Add a KPF flag to report these pages to
userspace and update page-types.c to interpret that flag.

Note that only pages currently accounted as NR_PAGETABLES are tracked as
PageTable; this does not include pgd/p4d/pud/pmd pages.  Those will be the
subject of a later patch.

Link: http://lkml.kernel.org/r/20180518194519.3820-4-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:37 -07:00
Matthew Wilcox
6e292b9be7 mm: split page_type out from _mapcount
We're already using a union of many fields here, so stop abusing the
_mapcount and make page_type its own field.  That implies renaming some of
the machinery that creates PageBuddy, PageBalloon and PageKmemcg; bring
back the PG_buddy, PG_balloon and PG_kmemcg names.

As suggested by Kirill, make page_type a bitmask.  Because it starts out
life as -1 (thanks to sharing the storage with _mapcount), setting a page
flag means clearing the appropriate bit.  This gives us space for probably
twenty or so extra bits (depending how paranoid we want to be about
_mapcount underflow).

Link: http://lkml.kernel.org/r/20180518194519.3820-3-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:37 -07:00
Pavel Tatashin
f165b378bb mm: uninitialized struct page poisoning sanity checking
During boot we poison struct page memory in order to ensure that no one
is accessing this memory until the struct pages are initialized in
__init_single_page().

This patch adds more scrutiny to this checking by making sure that flags
do not equal the poison pattern when they are accessed.  The pattern is
all ones.

Since node id is also stored in struct page, and may be accessed quite
early, we add this enforcement into page_to_nid() function as well.
Note, this is applicable only when NODE_NOT_IN_PAGE_FLAGS=n

[pasha.tatashin@oracle.com: v4]
  Link: http://lkml.kernel.org/r/20180215165920.8570-4-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180213193159.14606-4-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Miles Chen
3f56a2f803 mm: remove PG_highmem description
Commit cbe37d0937 ("[PATCH] mm: remove PG_highmem") removed PG_highmem
to save a page flag.  So the description of PG_highmem is no longer
needed.

Link: http://lkml.kernel.org/r/1517391212-2950-1-git-send-email-miles.chen@mediatek.com
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
8745808fda mm, arch: remove empty_bad_page*
empty_bad_page() and empty_bad_pte_table() seem to be relics from old
days which is not used by any code for a long time.  I have tried to
find when exactly but this is not really all that straightforward due to
many code movements - traces disappear around 2.4 times.

Anyway no code really references neither empty_bad_page nor
empty_bad_pte_table.  We only allocate the storage which is not used by
anybody so remove them.

Link: http://lkml.kernel.org/r/20171004150045.30755-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Ralf Baechle <ralf@linus-mips.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: David Howells <dhowells@redhat.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:03 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Huang Ying
225311a464 mm: test code to write THP to swap device as a whole
To support delay splitting THP (Transparent Huge Page) after swapped
out, we need to enhance swap writing code to support to write a THP as a
whole.  This will improve swap write IO performance.

As Ming Lei <ming.lei@redhat.com> pointed out, this should be based on
multipage bvec support, which hasn't been merged yet.  So this patch is
only for testing the functionality of the other patches in the series.
And will be reimplemented after multipage bvec support is merged.

Link: http://lkml.kernel.org/r/20170724051840.2309-7-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Shaohua Li <shli@kernel.org>
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying
38d8b4e6bd mm, THP, swap: delay splitting THP during swap out
Patch series "THP swap: Delay splitting THP during swapping out", v11.

This patchset is to optimize the performance of Transparent Huge Page
(THP) swap.

Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine.  Because the
performance of the storage device improved faster than that of single
logical CPU.  And it seems that the trend will not change in the near
future.  On the other hand, the THP becomes more and more popular
because of increased memory size.  So it becomes necessary to optimize
THP swap performance.

The advantages of the THP swap support include:

 - Batch the swap operations for the THP to reduce lock
   acquiring/releasing, including allocating/freeing the swap space,
   adding/deleting to/from the swap cache, and writing/reading the swap
   space, etc. This will help improve the performance of the THP swap.

 - The THP swap space read/write will be 2M sequential IO. It is
   particularly helpful for the swap read, which are usually 4k random
   IO. This will improve the performance of the THP swap too.

 - It will help the memory fragmentation, especially when the THP is
   heavily used by the applications. The 2M continuous pages will be
   free up after THP swapping out.

 - It will improve the THP utilization on the system with the swap
   turned on. Because the speed for khugepaged to collapse the normal
   pages into the THP is quite slow. After the THP is split during the
   swapping out, it will take quite long time for the normal pages to
   collapse back into the THP after being swapped in. The high THP
   utilization helps the efficiency of the page based memory management
   too.

There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device.  To deal with that, the THP swap in should be turned
on only when necessary.  For example, it can be selected via
"always/never/madvise" logic, to be turned on globally, turned off
globally, or turned on only for VMA with MADV_HUGEPAGE, etc.

This patchset is the first step for the THP swap support.  The plan is
to delay splitting THP step by step, finally avoid splitting THP during
the THP swapping out and swap out/in the THP as a whole.

As the first step, in this patchset, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache.  This will
reduce lock acquiring/releasing for the locks used for the swap cache
management.

With the patchset, the swap out throughput improves 15.5% (from about
3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case
with 8 processes.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

This patch (of 5):

In this patch, splitting huge page is delayed from almost the first step
of swapping out to after allocating the swap space for the THP
(Transparent Huge Page) and adding the THP into the swap cache.  This
will batch the corresponding operation, thus improve THP swap out
throughput.

This is the first step for the THP swap optimization.  The plan is to
delay splitting the THP step by step and avoid splitting the THP
finally.

In this patch, one swap cluster is used to hold the contents of each THP
swapped out.  So, the size of the swap cluster is changed to that of the
THP (Transparent Huge Page) on x86_64 architecture (512).  For other
architectures which want such THP swap optimization,
ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for
the architecture.  In effect, this will enlarge swap cluster size by 2
times on x86_64.  Which may make it harder to find a free cluster when
the swap space becomes fragmented.  So that, this may reduce the
continuous swap space allocation and sequential write in theory.  The
performance test in 0day shows no regressions caused by this.

In the future of THP swap optimization, some information of the swapped
out THP (such as compound map count) will be recorded in the
swap_cluster_info data structure.

The mem cgroup swap accounting functions are enhanced to support charge
or uncharge a swap cluster backing a THP as a whole.

The swap cluster allocate/free functions are added to allocate/free a
swap cluster for a THP.  A fair simple algorithm is used for swap
cluster allocation, that is, only the first swap device in priority list
will be tried to allocate the swap cluster.  The function will fail if
the trying is not successful, and the caller will fallback to allocate a
single swap slot instead.  This works good enough for normal cases.  If
the difference of the number of the free swap clusters among multiple
swap devices is significant, it is possible that some THPs are split
earlier than necessary.  For example, this could be caused by big size
difference among multiple swap devices.

The swap cache functions is enhanced to support add/delete THP to/from
the swap cache as a set of (HPAGE_PMD_NR) sub-pages.  This may be
enhanced in the future with multi-order radix tree.  But because we will
split the THP soon during swapping out, that optimization doesn't make
much sense for this first step.

The THP splitting functions are enhanced to support to split THP in swap
cache during swapping out.  The page lock will be held during allocating
the swap cluster, adding the THP into the swap cache and splitting the
THP.  So in the code path other than swapping out, if the THP need to be
split, the PageSwapCache(THP) will be always false.

The swap cluster is only available for SSD, so the THP swap optimization
in this patchset has no effect for HDD.

[ying.huang@intel.com: fix two issues in THP optimize patch]
  Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com
[hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size]
Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option]
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Linus Torvalds
b91e1302ad mm: optimize PageWaiters bit use for unlock_page()
In commit 6290602709 ("mm: add PageWaiters indicating tasks are
waiting for a page bit") Nick Piggin made our page locking no longer
unconditionally touch the hashed page waitqueue, which not only helps
performance in general, but is particularly helpful on NUMA machines
where the hashed wait queues can bounce around a lot.

However, the "clear lock bit atomically and then test the waiters bit"
sequence turns out to be much more expensive than it needs to be,
because you get a nasty stall when trying to access the same word that
just got updated atomically.

On architectures where locking is done with LL/SC, this would be trivial
to fix with a new primitive that clears one bit and tests another
atomically, but that ends up not working on x86, where the only atomic
operations that return the result end up being cmpxchg and xadd.  The
atomic bit operations return the old value of the same bit we changed,
not the value of an unrelated bit.

On x86, we could put the lock bit in the high bit of the byte, and use
"xadd" with that bit (where the overflow ends up not touching other
bits), and look at the other bits of the result.  However, an even
simpler model is to just use a regular atomic "and" to clear the lock
bit, and then the sign bit in eflags will indicate the resulting state
of the unrelated bit #7.

So by moving the PageWaiters bit up to bit #7, we can atomically clear
the lock bit and test the waiters bit on x86 too.  And architectures
with LL/SC (which is all the usual RISC suspects), the particular bit
doesn't matter, so they are fine with this approach too.

This avoids the extra access to the same atomic word, and thus avoids
the costly stall at page unlock time.

The only downside is that the interface ends up being a bit odd and
specialized: clear a bit in a byte, and test the sign bit.  Nick doesn't
love the resulting name of the new primitive, but I'd rather make the
name be descriptive and very clear about the limitation imposed by
trying to work across all relevant architectures than make it be some
generic thing that doesn't make the odd semantics explicit.

So this introduces the new architecture primitive

    clear_bit_unlock_is_negative_byte();

and adds the trivial implementation for x86.  We have a generic
non-optimized fallback (that just does a "clear_bit()"+"test_bit(7)"
combination) which can be overridden by any architecture that can do
better.  According to Nick, Power has the same hickup x86 has, for
example, but some other architectures may not even care.

All these optimizations mean that my page locking stress-test (which is
just executing a lot of small short-lived shell scripts: "make test" in
the git source tree) no longer makes our page locking look horribly bad.
Before all these optimizations, just the unlock_page() costs were just
over 3% of all CPU overhead on "make test".  After this, it's down to
0.66%, so just a quarter of the cost it used to be.

(The difference on NUMA is bigger, but there this micro-optimization is
likely less noticeable, since the big issue on NUMA was not the accesses
to 'struct page', but the waitqueue accesses that were already removed
by Nick's earlier commit).

Acked-by: Nick Piggin <npiggin@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Bob Peterson <rpeterso@redhat.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andrew Lutomirski <luto@kernel.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-29 11:03:15 -08:00
Nicholas Piggin
6290602709 mm: add PageWaiters indicating tasks are waiting for a page bit
Add a new page flag, PageWaiters, to indicate the page waitqueue has
tasks waiting. This can be tested rather than testing waitqueue_active
which requires another cacheline load.

This bit is always set when the page has tasks on page_waitqueue(page),
and is set and cleared under the waitqueue lock. It may be set when
there are no tasks on the waitqueue, which will cause a harmless extra
wakeup check that will clears the bit.

The generic bit-waitqueue infrastructure is no longer used for pages.
Instead, waitqueues are used directly with a custom key type. The
generic code was not flexible enough to have PageWaiters manipulation
under the waitqueue lock (which simplifies concurrency).

This improves the performance of page lock intensive microbenchmarks by
2-3%.

Putting two bits in the same word opens the opportunity to remove the
memory barrier between clearing the lock bit and testing the waiters
bit, after some work on the arch primitives (e.g., ensuring memory
operand widths match and cover both bits).

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Bob Peterson <rpeterso@redhat.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andrew Lutomirski <luto@kernel.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-25 11:54:48 -08:00
Nicholas Piggin
6326fec112 mm: Use owner_priv bit for PageSwapCache, valid when PageSwapBacked
A page is not added to the swap cache without being swap backed,
so PageSwapBacked mappings can use PG_owner_priv_1 for PageSwapCache.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Bob Peterson <rpeterso@redhat.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andrew Lutomirski <luto@kernel.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-25 11:54:48 -08:00
Kirill A. Shutemov
e2f0a0db95 page-flags: relax policy for PG_mappedtodisk and PG_reclaim
These flags are in use for file THP.

Link: http://lkml.kernel.org/r/1466021202-61880-23-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov
9a73f61bdb thp, mlock: do not mlock PTE-mapped file huge pages
As with anon THP, we only mlock file huge pages if we can prove that the
page is not mapped with PTE.  This way we can avoid mlock leak into
non-mlocked vma on split.

We rely on PageDoubleMap() under lock_page() to check if the the page
may be PTE mapped.  PG_double_map is set by page_add_file_rmap() when
the page mapped with PTEs.

Link: http://lkml.kernel.org/r/1466021202-61880-21-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Vladimir Davydov
4949148ad4 mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use
alloc_kmem_pages helper with __GFP_ACCOUNT flag.  A page allocated with
this helper should finally be freed using free_kmem_pages, otherwise it
won't be uncharged.

This API suits its current users fine, but it turns out to be impossible
to use along with page reference counting, i.e.  when an allocation is
supposed to be freed with put_page, as it is the case with pipe or unix
socket buffers.

To overcome this limitation, this patch moves charging/uncharging to
generic page allocator paths, i.e.  to __alloc_pages_nodemask and
free_pages_prepare, and zaps alloc/free_kmem_pages helpers.  This way,
one can use any of the available page allocation functions to get the
allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT,
just like in case of kmalloc and friends.  A charged page will be
automatically uncharged on free.

To make it possible, we need to mark pages charged to kmemcg somehow.
To avoid introducing a new page flag, we make use of page->_mapcount for
marking such pages.  Since pages charged to kmemcg are not supposed to
be mapped to userspace, it should work just fine.  There are other
(ab)users of page->_mapcount - buddy and balloon pages - but we don't
conflict with them.

In case kmemcg is compiled out or not used at runtime, this patch
introduces no overhead to generic page allocator paths.  If kmemcg is
used, it will be plus one gfp flags check on alloc and plus one
page->_mapcount check on free, which shouldn't hurt performance, because
the data accessed are hot.

Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Vladimir Davydov
632c0a1aff mm: clean up non-standard page->_mapcount users
- Add a proper comment to page->_mapcount.

 - Introduce a macro for generating helper functions.

 - Place all special page->_mapcount values next to each other so that
   readers can see all possible values and so we don't get duplicates.

Link: http://lkml.kernel.org/r/502f49000e0b63e6c62e338fac6b420bf34fb526.1464079537.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Minchan Kim
bda807d444 mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough
to make high-order pages.  But recently, embedded system(e.g., webOS,
android) uses lots of non-movable pages(e.g., zram, GPU memory) so we
have seen several reports about troubles of small high-order allocation.
For fixing the problem, there were several efforts (e,g,.  enhance
compaction algorithm, SLUB fallback to 0-order page, reserved memory,
vmalloc and so on) but if there are lots of non-movable pages in system,
their solutions are void in the long run.

So, this patch is to support facility to change non-movable pages with
movable.  For the feature, this patch introduces functions related to
migration to address_space_operations as well as some page flags.

If a driver want to make own pages movable, it should define three
functions which are function pointers of struct
address_space_operations.

1. bool (*isolate_page) (struct page *page, isolate_mode_t mode);

What VM expects on isolate_page function of driver is to return *true*
if driver isolates page successfully.  On returing true, VM marks the
page as PG_isolated so concurrent isolation in several CPUs skip the
page for isolation.  If a driver cannot isolate the page, it should
return *false*.

Once page is successfully isolated, VM uses page.lru fields so driver
shouldn't expect to preserve values in that fields.

2. int (*migratepage) (struct address_space *mapping,
		struct page *newpage, struct page *oldpage, enum migrate_mode);

After isolation, VM calls migratepage of driver with isolated page.  The
function of migratepage is to move content of the old page to new page
and set up fields of struct page newpage.  Keep in mind that you should
indicate to the VM the oldpage is no longer movable via
__ClearPageMovable() under page_lock if you migrated the oldpage
successfully and returns 0.  If driver cannot migrate the page at the
moment, driver can return -EAGAIN.  On -EAGAIN, VM will retry page
migration in a short time because VM interprets -EAGAIN as "temporal
migration failure".  On returning any error except -EAGAIN, VM will give
up the page migration without retrying in this time.

Driver shouldn't touch page.lru field VM using in the functions.

3. void (*putback_page)(struct page *);

If migration fails on isolated page, VM should return the isolated page
to the driver so VM calls driver's putback_page with migration failed
page.  In this function, driver should put the isolated page back to the
own data structure.

4. non-lru movable page flags

There are two page flags for supporting non-lru movable page.

* PG_movable

Driver should use the below function to make page movable under
page_lock.

	void __SetPageMovable(struct page *page, struct address_space *mapping)

It needs argument of address_space for registering migration family
functions which will be called by VM.  Exactly speaking, PG_movable is
not a real flag of struct page.  Rather than, VM reuses page->mapping's
lower bits to represent it.

	#define PAGE_MAPPING_MOVABLE 0x2
	page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;

so driver shouldn't access page->mapping directly.  Instead, driver
should use page_mapping which mask off the low two bits of page->mapping
so it can get right struct address_space.

For testing of non-lru movable page, VM supports __PageMovable function.
However, it doesn't guarantee to identify non-lru movable page because
page->mapping field is unified with other variables in struct page.  As
well, if driver releases the page after isolation by VM, page->mapping
doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at
__ClearPageMovable).  But __PageMovable is cheap to catch whether page
is LRU or non-lru movable once the page has been isolated.  Because LRU
pages never can have PAGE_MAPPING_MOVABLE in page->mapping.  It is also
good for just peeking to test non-lru movable pages before more
expensive checking with lock_page in pfn scanning to select victim.

For guaranteeing non-lru movable page, VM provides PageMovable function.
Unlike __PageMovable, PageMovable functions validates page->mapping and
mapping->a_ops->isolate_page under lock_page.  The lock_page prevents
sudden destroying of page->mapping.

Driver using __SetPageMovable should clear the flag via
__ClearMovablePage under page_lock before the releasing the page.

* PG_isolated

To prevent concurrent isolation among several CPUs, VM marks isolated
page as PG_isolated under lock_page.  So if a CPU encounters PG_isolated
non-lru movable page, it can skip it.  Driver doesn't need to manipulate
the flag because VM will set/clear it automatically.  Keep in mind that
if driver sees PG_isolated page, it means the page have been isolated by
VM so it shouldn't touch page.lru field.  PG_isolated is alias with
PG_reclaim flag so driver shouldn't use the flag for own purpose.

[opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru]
  Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test
Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: John Einar Reitan <john.reitan@foss.arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Yu Zhao
d2a1a1f0a9 mm: use unsigned long constant for page flags
struct page->flags is unsigned long, so when shifting bits we should use
UL suffix to match it.

Found this problem after I added 64-bit CPU specific page flags and
failed to compile the kernel:

  mm/page_alloc.c: In function '__free_one_page':
  mm/page_alloc.c:672:2: error: integer overflow in expression [-Werror=overflow]

Link: http://lkml.kernel.org/r/1461971723-16187-1-git-send-email-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Mel Gorman
175145748d mm, page_alloc: use new PageAnonHead helper in the free page fast path
The PageAnon check always checks for compound_head but this is a
relatively expensive check if the caller already knows the page is a
head page.  This patch creates a helper and uses it in the page free
path which only operates on head pages.

With this patch and "Only check PageCompound for high-order pages", the
performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                               vanilla           nocompound-v1r20
  Min      alloc-odr0-1               425.00 (  0.00%)           417.00 (  1.88%)
  Min      alloc-odr0-2               313.00 (  0.00%)           308.00 (  1.60%)
  Min      alloc-odr0-4               257.00 (  0.00%)           253.00 (  1.56%)
  Min      alloc-odr0-8               224.00 (  0.00%)           221.00 (  1.34%)
  Min      alloc-odr0-16              208.00 (  0.00%)           205.00 (  1.44%)
  Min      alloc-odr0-32              199.00 (  0.00%)           199.00 (  0.00%)
  Min      alloc-odr0-64              195.00 (  0.00%)           193.00 (  1.03%)
  Min      alloc-odr0-128             192.00 (  0.00%)           191.00 (  0.52%)
  Min      alloc-odr0-256             204.00 (  0.00%)           200.00 (  1.96%)
  Min      alloc-odr0-512             213.00 (  0.00%)           212.00 (  0.47%)
  Min      alloc-odr0-1024            219.00 (  0.00%)           219.00 (  0.00%)
  Min      alloc-odr0-2048            225.00 (  0.00%)           225.00 (  0.00%)
  Min      alloc-odr0-4096            230.00 (  0.00%)           231.00 ( -0.43%)
  Min      alloc-odr0-8192            235.00 (  0.00%)           234.00 (  0.43%)
  Min      alloc-odr0-16384           235.00 (  0.00%)           234.00 (  0.43%)
  Min      free-odr0-1                215.00 (  0.00%)           191.00 ( 11.16%)
  Min      free-odr0-2                152.00 (  0.00%)           136.00 ( 10.53%)
  Min      free-odr0-4                119.00 (  0.00%)           107.00 ( 10.08%)
  Min      free-odr0-8                106.00 (  0.00%)            96.00 (  9.43%)
  Min      free-odr0-16                97.00 (  0.00%)            87.00 ( 10.31%)
  Min      free-odr0-32                91.00 (  0.00%)            83.00 (  8.79%)
  Min      free-odr0-64                89.00 (  0.00%)            81.00 (  8.99%)
  Min      free-odr0-128               88.00 (  0.00%)            80.00 (  9.09%)
  Min      free-odr0-256              106.00 (  0.00%)            95.00 ( 10.38%)
  Min      free-odr0-512              116.00 (  0.00%)           111.00 (  4.31%)
  Min      free-odr0-1024             125.00 (  0.00%)           118.00 (  5.60%)
  Min      free-odr0-2048             133.00 (  0.00%)           126.00 (  5.26%)
  Min      free-odr0-4096             136.00 (  0.00%)           130.00 (  4.41%)
  Min      free-odr0-8192             138.00 (  0.00%)           130.00 (  5.80%)
  Min      free-odr0-16384            137.00 (  0.00%)           130.00 (  5.11%)

There is a sizable boost to the free allocator performance.  While there
is an apparent boost on the allocation side, it's likely a co-incidence
or due to the patches slightly reducing cache footprint.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrea Arcangeli
127393fbe5 mm: thp: kvm: fix memory corruption in KVM with THP enabled
After the THP refcounting change, obtaining a compound pages from
get_user_pages() no longer allows us to assume the entire compound page
is immediately mappable from a secondary MMU.

A secondary MMU doesn't want to call get_user_pages() more than once for
each compound page, in order to know if it can map the whole compound
page.  So a secondary MMU needs to know from a single get_user_pages()
invocation when it can map immediately the entire compound page to avoid
a flood of unnecessary secondary MMU faults and spurious
atomic_inc()/atomic_dec() (pages don't have to be pinned by MMU notifier
users).

Ideally instead of the page->_mapcount < 1 check, get_user_pages()
should return the granularity of the "page" mapping in the "mm" passed
to get_user_pages().  However it's non trivial change to pass the "pmd"
status belonging to the "mm" walked by get_user_pages up the stack (up
to the caller of get_user_pages).  So the fix just checks if there is
not a single pte mapping on the page returned by get_user_pages, and in
turn if the caller can assume that the whole compound page is mapped in
the current "mm" (in a pmd_trans_huge()).  In such case the entire
compound page is safe to map into the secondary MMU without additional
get_user_pages() calls on the surrounding tail/head pages.  In addition
of being faster, not having to run other get_user_pages() calls also
reduces the memory footprint of the secondary MMU fault in case the pmd
split happened as result of memory pressure.

Without this fix after a MADV_DONTNEED (like invoked by QEMU during
postcopy live migration or balloning) or after generic swapping (with a
failure in split_huge_page() that would only result in pmd splitting and
not a physical page split), KVM would map the whole compound page into
the shadow pagetables, despite regular faults or userfaults (like
UFFDIO_COPY) may map regular pages into the primary MMU as result of the
pte faults, leading to the guest mode and userland mode going out of
sync and not working on the same memory at all times.

Any other secondary MMU notifier manager (KVM is just one of the many
MMU notifier users) will need the same information if it doesn't want to
run a flood of get_user_pages_fast and it can support multiple
granularity in the secondary MMU mappings, so I think it is justified to
be exposed not just to KVM.

The other option would be to move transparent_hugepage_adjust to
mm/huge_memory.c but that currently has all kind of KVM data structures
in it, so it's definitely not a cut-and-paste work, so I couldn't do a
fix as cleaner as this one for 4.6.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: "Li, Liang Z" <liang.z.li@intel.com>
Cc: Amit Shah <amit.shah@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Denys Vlasenko
4b0f326163 include/linux/page-flags.h: force inlining of selected page flag modifications
Sometimes gcc mysteriously doesn't inline
very small functions we expect to be inlined. See

    https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66122

With this .config:
http://busybox.net/~vda/kernel_config_OPTIMIZE_INLINING_and_Os,
the following functions get deinlined many times.
Examples of disassembly:

<SetPageUptodate> (43 copies, 141 calls):
       55                      push   %rbp
       48 89 e5                mov    %rsp,%rbp
       f0 80 0f 08             lock orb $0x8,(%rdi)
       5d                      pop    %rbp
       c3                      retq

<PagePrivate> (10 copies, 134 calls):
       48 8b 07                mov    (%rdi),%rax
       55                      push   %rbp
       48 89 e5                mov    %rsp,%rbp
       48 c1 e8 0b             shr    $0xb,%rax
       83 e0 01                and    $0x1,%eax
       5d                      pop    %rbp
       c3                      retq

This patch fixes this via s/inline/__always_inline/.

Code size decrease after the patch is ~7k:

    text     data      bss       dec     hex filename
92125002 20826048 36417536 149368586 8e72f0a vmlinux
92118087 20826112 36417536 149361735 8e71447 vmlinux7_pageops_after

Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Graf <tgraf@suug.ch>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Naoya Horiguchi
832fc1de01 /proc/kpageflags: return KPF_BUDDY for "tail" buddy pages
Currently /proc/kpageflags returns nothing for "tail" buddy pages, which
is inconvenient when grasping how free pages are distributed.  This
patch sets KPF_BUDDY for such pages.

With this patch:

  $ grep MemFree /proc/meminfo ; tools/vm/page-types -b buddy
  MemFree:         3134992 kB
               flags      page-count       MB  symbolic-flags                     long-symbolic-flags
  0x0000000000000400          779272     3044  __________B_______________________________ buddy
  0x0000000000000c00            4385       17  __________BM______________________________ buddy,mmap
               total          783657     3061

783657 pages is 3134628 kB (roughly consistent with the global counter,)
so it's OK.

[akpm@linux-foundation.org: update comment, per Naoya]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov
53f9263bab mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound.  It
means we need to track mapcount on per small page basis.

Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined.  But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.

The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount.  This frees up ->_mapcount in subpages to
track PTE mapcount.

We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.

Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount.  When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.

page_mapcount() counts both: PTE and PMD mappings of the page.

Basically, we have mapcount for a subpage spread over two counters.  It
makes tricky to detect when last mapcount for a page goes away.

We introduced PageDoubleMap() for this.  When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.

This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.

[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
3ac808fdd2 mm, thp: remove compound_lock()
We are going to use migration entries to stabilize page counts.  It
means we don't need compound_lock() for that.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
685eaade56 page-flags: drop __TestClearPage*() helpers
Nobody uses them.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
822cdd1152 page-flags: look at head page if the flag is encoded in page->mapping
PageAnon() and PageKsm() look at lower bits of page->mapping to check if
the page is Anon or KSM.  page->mapping can be overloaded in tail pages.

Let's always look at head page to avoid false-positives.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
d2998c4de2 page-flags: define PG_uptodate behavior on compound pages
We use PG_uptodate on head pages on transparent huge page.  Let's use
PF_NO_TAIL.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
b9d418170a page-flags: define PG_uncached behavior on compound pages
So far, only IA64 uses PG_uncached and only on non-compound pages.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
e4f87d5d75 page-flags: define PG_mlocked behavior on compound pages
Transparent huge pages can be mlocked -- whole compund page at once.
Something went wrong if we're trying to mlock() tail page.  Let's use
PF_NO_TAIL.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
50ea78d676 page-flags: define PG_swapcache behavior on compound pages
Swap cannot handle compound pages so far.  Transparent huge pages are
split on the way to swap.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
da5efc408b page-flags: define PG_swapbacked behavior on compound pages
PG_swapbacked is used for transparent huge pages.  For head pages only.
Let's use PF_NO_TAIL policy.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
de09d31dd3 page-flags: define PG_reserved behavior on compound pages
As far as I can see there's no users of PG_reserved on compound pages.
Let's use PF_NO_COMPOUND here.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
c13985fa80 page-flags: define behavior of Xen-related flags on compound pages
PG_pinned and PG_savepinned are about page table's pages which are never
compound.

I'm not so sure about PG_foreign, but it seems we shouldn't see compound
pages there too.

Let's use PF_NO_COMPOUND for all of them.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
dcb351cd09 page-flags: define behavior SL*B-related flags on compound pages
SL*B uses compound pages and marks head pages with PG_slab.
__SetPageSlab() and __ClearPageSlab() are never called for tail pages.

The same situation with PG_slob_free in SLOB allocator.

PF_NO_TAIL is appropriate for these flags.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
8cb38fabb6 page-flags: define behavior of LRU-related flags on compound pages
Only head pages are ever on LRU.  Let's use PF_HEAD policy to avoid any
confusion for all LRU-related flags.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
df8c94d13c page-flags: define behavior of FS/IO-related flags on compound pages
It seems we don't have compound page on FS/IO path currently.  Use
PF_NO_COMPOUND to catch if we have.

The odd exception is PG_dirty: sound uses compound pages and maps them
with PTEs.  PF_NO_COMPOUND triggers VM_BUG_ON() in set_page_dirty() on
handling shared fault.  Let's use PF_HEAD for PG_dirty.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
48c935ad88 page-flags: define PG_locked behavior on compound pages
lock_page() must operate on the whole compound page.  It doesn't make
much sense to lock part of compound page.  Change code to use head
page's PG_locked, if tail page is passed.

This patch also gets rid of custom helper functions --
__set_page_locked() and __clear_page_locked().  They are replaced with
helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG.  Tail pages to these
helper would trigger VM_BUG_ON().

SLUB uses PG_locked as a bit spin locked.  IIUC, tail pages should never
appear there.  VM_BUG_ON() is added to make sure that this assumption is
correct.

[akpm@linux-foundation.org: fix fs/cifs/file.c]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
95ad97554a page-flags: introduce page flags policies wrt compound pages
This patch adds a third argument to macros which create function
definitions for page flags.  This argument defines how page-flags
helpers behave on compound functions.

For now we define four policies:

 - PF_ANY: the helper function operates on the page it gets, regardless
   if it's non-compound, head or tail.

 - PF_HEAD: the helper function operates on the head page of the
   compound page if it gets tail page.

 - PF_NO_TAIL: only head and non-compond pages are acceptable for this
   helper function.

 - PF_NO_COMPOUND: only non-compound pages are acceptable for this
   helper function.

For now we use policy PF_ANY for all helpers, which matches current
behaviour.

We do not enforce the policy for TESTPAGEFLAG, because we have flags
checked for random pages all over the kernel.  Noticeable exception to
this is PageTransHuge() which triggers VM_BUG_ON() for tail page.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
0e6d31a733 page-flags: move code around
The preparation patch: we are going to use compound_head(), PageTail()
and PageCompound() to define page-flags helpers.

Let's define them before macros.

We cannot user PageHead() helper in PageCompound() as it's not yet
defined -- use test_bit(PG_head, &page->flags) instead.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
d8c1bdeb5d page-flags: trivial cleanup for PageTrans* helpers
Use TESTPAGEFLAG_FALSE() to get it a bit cleaner.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
1d798ca3f1 mm: make compound_head() robust
Hugh has pointed that compound_head() call can be unsafe in some
context. There's one example:

	CPU0					CPU1

isolate_migratepages_block()
  page_count()
    compound_head()
      !!PageTail() == true
					put_page()
					  tail->first_page = NULL
      head = tail->first_page
					alloc_pages(__GFP_COMP)
					   prep_compound_page()
					     tail->first_page = head
					     __SetPageTail(p);
      !!PageTail() == true
    <head == NULL dereferencing>

The race is pure theoretical. I don't it's possible to trigger it in
practice. But who knows.

We can fix the race by changing how encode PageTail() and compound_head()
within struct page to be able to update them in one shot.

The patch introduces page->compound_head into third double word block in
front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
the rest bits are pointer to head page if bit zero is set.

The patch moves page->pmd_huge_pte out of word, just in case if an
architecture defines pgtable_t into something what can have the bit 0
set.

hugetlb_cgroup uses page->lru.next in the second tail page to store
pointer struct hugetlb_cgroup. The patch switch it to use page->private
in the second tail page instead. The space is free since ->first_page is
removed from the union.

The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
limitation, since there's now space in first tail page to store struct
hugetlb_cgroup pointer. But that's out of scope of the patch.

That means page->compound_head shares storage space with:

 - page->lru.next;
 - page->next;
 - page->rcu_head.next;

That's too long list to be absolutely sure, but looks like nobody uses
bit 0 of the word.

page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
call_rcu_lazy() is not allowed as it makes use of the bit and we can
get false positive PageTail().

[1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Vineet Gupta
3ca65c19dd mm: optimize PageHighMem() check
This came up when implementing HIHGMEM/PAE40 for ARC.  The kmap() /
kmap_atomic() generated code seemed needlessly bloated due to the way
PageHighMem() macro is implemented.  It derives the exact zone for page
and then does pointer subtraction with first zone to infer the zone_type.
The pointer arithmatic in turn generates the code bloat.

PageHighMem(page)
  is_highmem(page_zone(page))
     zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones

Instead use is_highmem_idx() to work on zone_type available in page flags

   ----- Before -----
80756348:	mov_s      r13,r0
8075634a:	ld_s       r2,[r13,0]
8075634c:	lsr_s      r2,r2,30
8075634e:	mpy        r2,r2,0x2a4
80756352:	add_s      r2,r2,0x80aef880
80756358:	ld_s       r3,[r2,28]
8075635a:	sub_s      r2,r2,r3
8075635c:	breq       r2,0x2a4,80756378 <kmap+0x48>
80756364:	breq       r2,0x548,80756378 <kmap+0x48>

   ----- After  -----
80756330:	mov_s      r13,r0
80756332:	ld_s       r2,[r13,0]
80756334:	lsr_s      r2,r2,30
80756336:	sub_s      r2,r2,1
80756338:	brlo       r2,2,80756348 <kmap+0x30>

For x86 defconfig build (32 bit only) it saves around 900 bytes.
For ARC defconfig with HIGHMEM, it saved around 2K bytes.

   ---->8-------
./scripts/bloat-o-meter x86/vmlinux-defconfig-pre x86/vmlinux-defconfig-post
add/remove: 0/0 grow/shrink: 0/36 up/down: 0/-934 (-934)
function                                     old     new   delta
saveable_page                                162     154      -8
saveable_highmem_page                        154     146      -8
skb_gro_reset_offset                         147     131     -16
...
...
__change_page_attr_set_clr                  1715    1678     -37
setup_data_read                              434     394     -40
mon_bin_event                               1967    1927     -40
swsusp_save                                 1148    1105     -43
_set_pages_array                             549     493     -56
   ---->8-------

e.g. For ARC kmap()

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jennifer Herbert <jennifer.herbert@citrix.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Vladimir Davydov
33c3fc71c8 mm: introduce idle page tracking
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g.  by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced.  However,
this method has two serious shortcomings:

 - it does not count unmapped file pages
 - it affects the reclaimer logic

To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g.  by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.

The Young page flag is used to avoid interference with the memory
reclaimer.  A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.

Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.

[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00
Naoya Horiguchi
f4c18e6f7b mm: check __PG_HWPOISON separately from PAGE_FLAGS_CHECK_AT_*
The race condition addressed in commit add05cecef ("mm: soft-offline:
don't free target page in successful page migration") was not closed
completely, because that can happen not only for soft-offline, but also
for hard-offline.  Consider that a slab page is about to be freed into
buddy pool, and then an uncorrected memory error hits the page just
after entering __free_one_page(), then VM_BUG_ON_PAGE(page->flags &
PAGE_FLAGS_CHECK_AT_PREP) is triggered, despite the fact that it's not
necessary because the data on the affected page is not consumed.

To solve it, this patch drops __PG_HWPOISON from page flag checks at
allocation/free time.  I think it's justified because __PG_HWPOISON
flags is defined to prevent the page from being reused, and setting it
outside the page's alloc-free cycle is a designed behavior (not a bug.)

For recent months, I was annoyed about BUG_ON when soft-offlined page
remains on lru cache list for a while, which is avoided by calling
put_page() instead of putback_lru_page() in page migration's success
path.  This means that this patch reverts a major change from commit
add05cecef about the new refcounting rule of soft-offlined pages, so
"reuse window" revives.  This will be closed by a subsequent patch.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dean Nelson <dnelson@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-07 04:39:42 +03:00
Naoya Horiguchi
7e1f049efb mm: hugetlb: cleanup using paeg_huge_active()
Now we have an easy access to hugepages' activeness, so existing helpers to
get the information can be cleaned up.

[akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:19 -07:00
Kirill A. Shutemov
e8c6158fef mm: consolidate all page-flags helpers in <linux/page-flags.h>
Currently we take a naive approach to page flags on compound pages - we
set the flag on the page without consideration if the flag makes sense
for tail page or for compound page in general.  This patchset try to
sort this out by defining per-flag policy on what need to be done if
page-flag helper operate on compound page.

The last patch in the patchset also sanitizes usege of page->mapping for
tail pages.  We don't define the meaning of page->mapping for tail
pages.  Currently it's always NULL, which can be inconsistent with head
page and potentially lead to problems.

For now I caught one case of illegal usage of page flags or ->mapping:
sound subsystem allocates pages with __GFP_COMP and maps them with PTEs.
It leads to setting dirty bit on tail pages and access to tail_page's
->mapping.  I don't see any bad behaviour caused by this, but worth
fixing anyway.

This patchset makes more sense if you take my THP refcounting into
account: we will see more compound pages mapped with PTEs and we need to
define behaviour of flags on compound pages to avoid bugs.

This patch (of 16):

We have page-flags helper function declarations/definitions spread over
several header files.  Let's consolidate them in <linux/page-flags.h>.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:17 -07:00