The core will ensure that the device is in either STANDBY or OFF bias
before suspending, restoring the bias in the driver is unneeded. Some
drivers doing slightly more roundabout things have been left alone
for now.
Tested-by: Peter Ujfalusi <peter.ujfalusi@nokia.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
The SYSCLK source is automatically managed when configuring the PLL.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
One of the features of the multi CODEC work is that it embeds a struct
device in the CODEC to provide diagnostics via a sysfs class rather than
via the device tree, at which point it's much better to use the struct
device private data rather than having two places to store it. Provide
an accessor function to allow this change to be made more easily, and
update all the CODEC drivers are updated.
To ensure use of the accessor the private data structure member is
renamed, meaning that if code developed with older an older core that
still uses private_data is merged it will fail to build.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
The WM8960 headphone outputs can be run in capless mode with OUT3
used to drive a pseudo ground for the headphone drivers. In this
mode the mono mixer is not used, the mixer should be turned on
in concert with the headphone output drivers and the device bias
levels are managed differently.
Also tweak the existing bias management to remove the use of active
discharge while we're at it since that's often audible.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
Avoids machine files having to peer into sound/soc which is a bit
rude and icky.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
The driver name gets used by dev_() logging so use something a bit
more idiomatic.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
The DAPM widgets are now insntantiated by the core when creating the card
so there is no need for the individual CODEC drivers to do so.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
snd_soc_init_card() is always called as the last part of the CODEC probe
function so we can factor it out into the core card setup rather than
have each CODEC replicate the code to do the initialiastation. This will
be required to support multiple CODECs per card.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
The PM core will grow pm_link infrastructure in 2.6.33 which can be
used to implement the intended functionality of the ASoC-specific
device suspend and resume callbacks so drop them.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
More and more devices feature PLLs and FLLs with the ability to select
between multiple input clocks. In order to better support these devices
a new argument, source, has been added to the set_pll() configuration
API. Using set_clkdiv() is often difficult due to the need to stop the
PLL/FLL before any reconfiguration can be done.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
While writes tend to be able to use a fairly bus independant format to
do the writes reads are all bus specific. To allow us to factor out
this code include the bus type as a parameter when setting up the
cache.
Initially just use this to factor out hw_write_t for I2C.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
A lot of CODECs share the same register data formats and therefore
replicate the code to manage access to and caching of the register
map. In order to reduce code duplication centralised versions of
this code will be introduced with drivers able to configure the use
of the common code by calling the new snd_soc_codec_set_cache_io()
API call during startup.
As an initial user the 7 bit address/9 bit data format used by many
Wolfson devices is supported for write only CODECs and the drivers
with straightforward register cache implementations are converted to
use it.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
The WM8960 is a low power, high quality stereo codec designed for
portable digital audio applications.
Stereo class D speaker drivers provide 1W per channel into 8W loads.
Guaranteed low leakage, excellent PSRR and pop/click suppression
mechanisms enable direct battery connection for the speaker supply.
The device also integrates a complete microphone interface and a stereo
headphone driver. External component requirements are drastically
reduced as no separate microphone, speaker or headphone amplifiers are
required. Advanced on-chip digital signal processing performs automatic
level control for the microphone or line input.
Stereo 24-bit sigma-delta ADCs and DACs are used with low power
over-sampling digital interpolation and decimation filters and a
flexible digital audio interface.
The master clock can be input directly or generated internally by an
onboard PLL, supporting most commonly-used clocking schemes.
This driver was originally written by Liam Girdwood, with substantial
subsequent additions and updates for feature completeness and changes in
the ASoC framework from me.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>