Commit Graph

638 Commits

Author SHA1 Message Date
Christoffer Dall
448fadc8a4 arm64: mm: Add additional parameter to uaccess_ttbr0_enable
Add an extra temporary register parameter to uaccess_ttbr0_enable which
is about to be required for arm64 PAN support.

This patch doesn't introduce any functional change but ensures that the
kernel compiles once the KVM/ARM tree is merged with the arm64 tree by
ensuring a trivially mergable conflict with commit
27a921e757
("arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN").

Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-01-09 21:08:52 +01:00
Christoph Hellwig
24b6d41643 mm: pass the vmem_altmap to vmemmap_free
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Christoph Hellwig
7b73d978a5 mm: pass the vmem_altmap to vmemmap_populate
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Will Deacon
0f15adbb28 arm64: Add skeleton to harden the branch predictor against aliasing attacks
Aliasing attacks against CPU branch predictors can allow an attacker to
redirect speculative control flow on some CPUs and potentially divulge
information from one context to another.

This patch adds initial skeleton code behind a new Kconfig option to
enable implementation-specific mitigations against these attacks for
CPUs that are affected.

Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-08 18:45:25 +00:00
Marc Zyngier
95e3de3590 arm64: Move post_ttbr_update_workaround to C code
We will soon need to invoke a CPU-specific function pointer after changing
page tables, so move post_ttbr_update_workaround out into C code to make
this possible.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-08 18:45:19 +00:00
Marc Zyngier
4fee947366 arm64: KVM: Add invalidate_icache_range helper
We currently tightly couple dcache clean with icache invalidation,
but KVM could do without the initial flush to PoU, as we've
already flushed things to PoC.

Let's introduce invalidate_icache_range which is limited to
invalidating the icache from the linear mapping (and thus
has none of the userspace fault handling complexity), and
wire it in KVM instead of flush_icache_range.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-01-08 15:20:43 +01:00
Catalin Marinas
a8ffaaa060 arm64: asid: Do not replace active_asids if already 0
Under some uncommon timing conditions, a generation check and
xchg(active_asids, A1) in check_and_switch_context() on P1 can race with
an ASID roll-over on P2. If P2 has not seen the update to
active_asids[P1], it can re-allocate A1 to a new task T2 on P2. P1 ends
up waiting on the spinlock since the xchg() returned 0 while P2 can go
through a second ASID roll-over with (T2,A1,G2) active on P2. This
roll-over copies active_asids[P1] == A1,G1 into reserved_asids[P1] and
active_asids[P2] == A1,G2 into reserved_asids[P2]. A subsequent
scheduling of T1 on P1 and T2 on P2 would match reserved_asids and get
their generation bumped to G3:

P1					P2
--                                      --
TTBR0.BADDR = T0
TTBR0.ASID = A0
asid_generation = G1
check_and_switch_context(T1,A1,G1)
  generation match
					check_and_switch_context(T2,A0,G0)
 				          new_context()
					    ASID roll-over
					    asid_generation = G2
					    flush_context()
					      active_asids[P1] = 0
					      asid_map[A1] = 0
					      reserved_asids[P1] = A0,G0
  xchg(active_asids, A1)
    active_asids[P1] = A1,G1
    xchg returns 0
  spin_lock_irqsave()
					    allocated ASID (T2,A1,G2)
					    asid_map[A1] = 1
					  active_asids[P2] = A1,G2
					...
					check_and_switch_context(T3,A0,G0)
					  new_context()
					    ASID roll-over
					    asid_generation = G3
					    flush_context()
					      active_asids[P1] = 0
					      asid_map[A1] = 1
					      reserved_asids[P1] = A1,G1
					      reserved_asids[P2] = A1,G2
					    allocated ASID (T3,A2,G3)
					    asid_map[A2] = 1
					  active_asids[P2] = A2,G3
  new_context()
    check_update_reserved_asid(A1,G1)
      matches reserved_asid[P1]
      reserved_asid[P1] = A1,G3
  updated T1 ASID to (T1,A1,G3)
					check_and_switch_context(T2,A1,G2)
					  new_context()
					    check_and_switch_context(A1,G2)
					      matches reserved_asids[P2]
					      reserved_asids[P2] = A1,G3
					  updated T2 ASID to (T2,A1,G3)

At this point, we have two tasks, T1 and T2 both using ASID A1 with the
latest generation G3. Any of them is allowed to be scheduled on the
other CPU leading to two different tasks with the same ASID on the same
CPU.

This patch changes the xchg to cmpxchg so that the active_asids is only
updated if non-zero to avoid a race with an ASID roll-over on a
different CPU.

The ASID allocation algorithm has been formally verified using the TLA+
model checker (see
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git/tree/asidalloc.tla
for the spec).

Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-05 11:29:11 +00:00
Catalin Marinas
1f911c3a11 Merge branch 'for-next/52-bit-pa' into for-next/core
* for-next/52-bit-pa:
  arm64: enable 52-bit physical address support
  arm64: allow ID map to be extended to 52 bits
  arm64: handle 52-bit physical addresses in page table entries
  arm64: don't open code page table entry creation
  arm64: head.S: handle 52-bit PAs in PTEs in early page table setup
  arm64: handle 52-bit addresses in TTBR
  arm64: limit PA size to supported range
  arm64: add kconfig symbol to configure physical address size
2017-12-22 17:40:58 +00:00
Kristina Martsenko
fa2a8445b1 arm64: allow ID map to be extended to 52 bits
Currently, when using VA_BITS < 48, if the ID map text happens to be
placed in physical memory above VA_BITS, we increase the VA size (up to
48) and create a new table level, in order to map in the ID map text.
This is okay because the system always supports 48 bits of VA.

This patch extends the code such that if the system supports 52 bits of
VA, and the ID map text is placed that high up, then we increase the VA
size accordingly, up to 52.

One difference from the current implementation is that so far the
condition of VA_BITS < 48 has meant that the top level table is always
"full", with the maximum number of entries, and an extra table level is
always needed. Now, when VA_BITS = 48 (and using 64k pages), the top
level table is not full, and we simply need to increase the number of
entries in it, instead of creating a new table level.

Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: reduce arguments to __create_hyp_mappings()]
[catalin.marinas@arm.com: reworked/renamed __cpu_uses_extended_idmap_level()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-12-22 17:37:33 +00:00
Kristina Martsenko
193383043f arm64: don't open code page table entry creation
Instead of open coding the generation of page table entries, use the
macros/functions that exist for this - pfn_p*d and p*d_populate. Most
code in the kernel already uses these macros, this patch tries to fix
up the few places that don't. This is useful for the next patch in this
series, which needs to change the page table entry logic, and it's
better to have that logic in one place.

The KVM extended ID map is special, since we're creating a level above
CONFIG_PGTABLE_LEVELS and the required function isn't available. Leave
it as is and add a comment to explain it. (The normal kernel ID map code
doesn't need this change because its page tables are created in assembly
(__create_page_tables)).

Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-12-22 17:36:34 +00:00
Kristina Martsenko
529c4b05a3 arm64: handle 52-bit addresses in TTBR
The top 4 bits of a 52-bit physical address are positioned at bits 2..5
in the TTBR registers. Introduce a couple of macros to move the bits
there, and change all TTBR writers to use them.

Leave TTBR0 PAN code unchanged, to avoid complicating it. A system with
52-bit PA will have PAN anyway (because it's ARMv8.1 or later), and a
system without 52-bit PA can only use up to 48-bit PAs. A later patch in
this series will add a kconfig dependency to ensure PAN is configured.

In addition, when using 52-bit PA there is a special alignment
requirement on the top-level table. We don't currently have any VA_BITS
configuration that would violate the requirement, but one could be added
in the future, so add a compile-time BUG_ON to check for it.

Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: added TTBR_BADD_MASK_52 comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-12-22 17:35:21 +00:00
Kristina Martsenko
787fd1d019 arm64: limit PA size to supported range
We currently copy the physical address size from
ID_AA64MMFR0_EL1.PARange directly into TCR.(I)PS. This will not work for
4k and 16k granule kernels on systems that support 52-bit physical
addresses, since 52-bit addresses are only permitted with the 64k
granule.

To fix this, fall back to 48 bits when configuring the PA size when the
kernel does not support 52-bit PAs. When it does, fall back to 52, to
avoid similar problems in the future if the PA size is ever increased
above 52.

Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: tcr_set_pa_size macro renamed to tcr_compute_pa_size]
[catalin.marinas@arm.com: comments added to tcr_compute_pa_size]
[catalin.marinas@arm.com: definitions added for TCR_*PS_SHIFT]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-12-22 17:34:52 +00:00
Mark Rutland
1d08a044cf arm64: fix CONFIG_DEBUG_WX address reporting
In ptdump_check_wx(), we pass walk_pgd() a start address of 0 (rather
than VA_START) for the init_mm. This means that any reported W&X
addresses are offset by VA_START, which is clearly wrong and can make
them appear like userspace addresses.

Fix this by telling the ptdump code that we're walking init_mm starting
at VA_START. We don't need to update the addr_markers, since these are
still valid bounds regardless.

Cc: <stable@vger.kernel.org>
Fixes: 1404d6f13e ("arm64: dump: Add checking for writable and exectuable pages")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Laura Abbott <labbott@redhat.com>
Reported-by: Timur Tabi <timur@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-14 10:18:23 +00:00
Dongjiu Geng
faa75e147b arm64: fault: avoid send SIGBUS two times
do_sea() calls arm64_notify_die() which will always signal
user-space. It also returns whether APEI claimed the external
abort as a RAS notification. If it returns failure do_mem_abort()
will signal user-space too.

do_mem_abort() wants to know if we handled the error, we always
call arm64_notify_die() so can always return success.

Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-13 09:58:13 +00:00
Steve Capper
f24e5834a2 arm64: Initialise high_memory global variable earlier
The high_memory global variable is used by
cma_declare_contiguous(.) before it is defined.

We don't notice this as we compute __pa(high_memory - 1), and it looks
like we're processing a VA from the direct linear map.

This problem becomes apparent when we flip the kernel virtual address
space and the linear map is moved to the bottom of the kernel VA space.

This patch moves the initialisation of high_memory before it used.

Cc: <stable@vger.kernel.org>
Fixes: f7426b983a ("mm: cma: adjust address limit to avoid hitting low/high memory boundary")
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 16:13:10 +00:00
Will Deacon
6c27c4082f arm64: kaslr: Put kernel vectors address in separate data page
The literal pool entry for identifying the vectors base is the only piece
of information in the trampoline page that identifies the true location
of the kernel.

This patch moves it into a page-aligned region of the .rodata section
and maps this adjacent to the trampoline text via an additional fixmap
entry, which protects against any accidental leakage of the trampoline
contents.

Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:41:20 +00:00
Will Deacon
51a0048beb arm64: mm: Map entry trampoline into trampoline and kernel page tables
The exception entry trampoline needs to be mapped at the same virtual
address in both the trampoline page table (which maps nothing else)
and also the kernel page table, so that we can swizzle TTBR1_EL1 on
exceptions from and return to EL0.

This patch maps the trampoline at a fixed virtual address in the fixmap
area of the kernel virtual address space, which allows the kernel proper
to be randomized with respect to the trampoline when KASLR is enabled.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:50 +00:00
Will Deacon
0c8ea531b7 arm64: mm: Allocate ASIDs in pairs
In preparation for separate kernel/user ASIDs, allocate them in pairs
for each mm_struct. The bottom bit distinguishes the two: if it is set,
then the ASID will map only userspace.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:38 +00:00
Will Deacon
27a921e757 arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN
With the ASID now installed in TTBR1, we can re-enable ARM64_SW_TTBR0_PAN
by ensuring that we switch to a reserved ASID of zero when disabling
user access and restore the active user ASID on the uaccess enable path.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:35 +00:00
Will Deacon
158d495899 arm64: mm: Rename post_ttbr0_update_workaround
The post_ttbr0_update_workaround hook applies to any change to TTBRx_EL1.
Since we're using TTBR1 for the ASID, rename the hook to make it clearer
as to what it's doing.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:32 +00:00
Will Deacon
85d13c0014 arm64: mm: Remove pre_ttbr0_update_workaround for Falkor erratum #E1003
The pre_ttbr0_update_workaround hook is called prior to context-switching
TTBR0 because Falkor erratum E1003 can cause TLB allocation with the wrong
ASID if both the ASID and the base address of the TTBR are updated at
the same time.

With the ASID sitting safely in TTBR1, we no longer update things
atomically, so we can remove the pre_ttbr0_update_workaround macro as
it's no longer required. The erratum infrastructure and documentation
is left around for #E1003, as it will be required by the entry
trampoline code in a future patch.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:29 +00:00
Will Deacon
7655abb953 arm64: mm: Move ASID from TTBR0 to TTBR1
In preparation for mapping kernelspace and userspace with different
ASIDs, move the ASID to TTBR1 and update switch_mm to context-switch
TTBR0 via an invalid mapping (the zero page).

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:25 +00:00
Will Deacon
3a33c76057 arm64: context: Fix comments and remove pointless smp_wmb()
The comments in the ASID allocator incorrectly hint at an MP-style idiom
using the asid_generation and the active_asids array. In fact, the
synchronisation is achieved using a combination of an xchg operation
and a spinlock, so update the comments and remove the pointless smp_wmb().

Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-01 13:05:08 +00:00
Jinbum Park
a349b30250 arm64: pgd: Mark pgd_cache as __ro_after_init
pgd_cache is setup once while init stage and never changed after
that, so it is good candidate for __ro_after_init

Signed-off-by: Jinbum Park <jinb.park7@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-01 13:05:04 +00:00
Mark Rutland
f81a348728 arm64: mm: cleanup stale AIVIVT references
Since commit:

  155433cb36 ("arm64: cache: Remove support for ASID-tagged VIVT I-caches")

... the kernel no longer cares about AIVIVT I-caches, as these were
removed from the architecture.

This patch removes the stale references to such I-caches.

The comment in flush_context() is also updated to clarify when and where
the TLB invalidation occurs.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-28 18:13:18 +00:00
Will Deacon
e17d8025f0 arm64/mm/kasan: don't use vmemmap_populate() to initialize shadow
The kasan shadow is currently mapped using vmemmap_populate() since that
provides a semi-convenient way to map pages into init_top_pgt.  However,
since that no longer zeroes the mapped pages, it is not suitable for
kasan, which requires zeroed shadow memory.

Add kasan_populate_shadow() interface and use it instead of
vmemmap_populate().  Besides, this allows us to take advantage of
gigantic pages and use them to populate the shadow, which should save us
some memory wasted on page tables and reduce TLB pressure.

Link: http://lkml.kernel.org/r/20171103185147.2688-3-pasha.tatashin@oracle.com
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:05 -08:00
Linus Torvalds
c9b012e5f4 arm64 updates for 4.15
Plenty of acronym soup here:
 
 - Initial support for the Scalable Vector Extension (SVE)
 - Improved handling for SError interrupts (required to handle RAS events)
 - Enable GCC support for 128-bit integer types
 - Remove kernel text addresses from backtraces and register dumps
 - Use of WFE to implement long delay()s
 - ACPI IORT updates from Lorenzo Pieralisi
 - Perf PMU driver for the Statistical Profiling Extension (SPE)
 - Perf PMU driver for Hisilicon's system PMUs
 - Misc cleanups and non-critical fixes
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
 TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
 W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
 VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
 ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
 v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
 =0qrg
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "The big highlight is support for the Scalable Vector Extension (SVE)
  which required extensive ABI work to ensure we don't break existing
  applications by blowing away their signal stack with the rather large
  new vector context (<= 2 kbit per vector register). There's further
  work to be done optimising things like exception return, but the ABI
  is solid now.

  Much of the line count comes from some new PMU drivers we have, but
  they're pretty self-contained and I suspect we'll have more of them in
  future.

  Plenty of acronym soup here:

   - initial support for the Scalable Vector Extension (SVE)

   - improved handling for SError interrupts (required to handle RAS
     events)

   - enable GCC support for 128-bit integer types

   - remove kernel text addresses from backtraces and register dumps

   - use of WFE to implement long delay()s

   - ACPI IORT updates from Lorenzo Pieralisi

   - perf PMU driver for the Statistical Profiling Extension (SPE)

   - perf PMU driver for Hisilicon's system PMUs

   - misc cleanups and non-critical fixes"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
  arm64: Make ARMV8_DEPRECATED depend on SYSCTL
  arm64: Implement __lshrti3 library function
  arm64: support __int128 on gcc 5+
  arm64/sve: Add documentation
  arm64/sve: Detect SVE and activate runtime support
  arm64/sve: KVM: Hide SVE from CPU features exposed to guests
  arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
  arm64/sve: KVM: Prevent guests from using SVE
  arm64/sve: Add sysctl to set the default vector length for new processes
  arm64/sve: Add prctl controls for userspace vector length management
  arm64/sve: ptrace and ELF coredump support
  arm64/sve: Preserve SVE registers around EFI runtime service calls
  arm64/sve: Preserve SVE registers around kernel-mode NEON use
  arm64/sve: Probe SVE capabilities and usable vector lengths
  arm64: cpufeature: Move sys_caps_initialised declarations
  arm64/sve: Backend logic for setting the vector length
  arm64/sve: Signal handling support
  arm64/sve: Support vector length resetting for new processes
  arm64/sve: Core task context handling
  arm64/sve: Low-level CPU setup
  ...
2017-11-15 10:56:56 -08:00
Rafael J. Wysocki
85595ada6c Merge branches 'acpi-pmic', 'acpi-apei' and 'acpi-x86'
* acpi-pmic:
  ACPI / PMIC: Add TI PMIC TPS68470 operation region driver

* acpi-apei:
  APEI / ERST: use 64-bit timestamps
  ACPI / APEI: Remove arch_apei_flush_tlb_one()
  arm64: mm: Remove arch_apei_flush_tlb_one()
  ACPI / APEI: Remove ghes_ioremap_area
  ACPI / APEI: Replace ioremap_page_range() with fixmap
  ACPI / APEI: remove the unused dead-code for SEA/NMI notification type
  ACPI / APEI: adjust a local variable type in ghes_ioremap_pfn_irq()

* acpi-x86:
  ACPI / x86: Extend KIOX000A quirk to cover all affected BIOS versions
2017-11-13 01:37:17 +01:00
James Morse
18b4b276b4 arm64: mm: Remove arch_apei_flush_tlb_one()
Nothing calls arch_apei_flush_tlb_one() anymore, instead relying on
__set_fixmap() to do the invalidation. Remove it.

Move the IPI-considered-harmful comment to __set_fixmap().

Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Tyler Baicar <tbaicar@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: All applicable <stable@vger.kernel.org>
2017-11-07 12:13:33 +01:00
James Morse
0fbeb31875 arm64: explicitly mask all exceptions
There are a few places where we want to mask all exceptions. Today we
do this in a piecemeal fashion, typically we expect the caller to
have masked irqs and the arch code masks debug exceptions, ignoring
serror which is probably masked.

Make it clear that 'mask all exceptions' is the intention by adding
helpers to do exactly that.

This will let us unmask SError without having to add 'oh and SError'
to these paths.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-02 15:55:40 +00:00
Will Deacon
80b6eb04b5 arm64: Don't walk page table for user faults in do_mem_abort
Commit 42dbf54e88 ("arm64: consistently log ESR and page table")
dumps page table entries for user faults hitting do_bad entries in the
fault handler table. Whilst this shouldn't really happen in practice,
it's not beyond the realms of possibility if e.g. running an old kernel
on a new CPU.

Generally, we want to avoid exposing physical addresses under the control
of userspace (see commit bf396c09c2 ("arm64: mm: don't print out page
table entries on EL0 faults")), so walk the page tables only on exceptions
from EL1.

Reported-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-02 13:52:48 +00:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Mark Rutland
42dbf54e88 arm64: consistently log ESR and page table
When we take a fault we can't handle, we try to dump some relevant
information, but we're not consistent about doing so.

In do_mem_abort(), we log the full ESR, but don't dump a page table
walk. In __do_kernel_fault, we dump an attempted decoding of the ESR
(but not the ESR itself) along with a page table walk.

Let's try to make things more consistent by dumping the full ESR in
mem_abort_decode(), and having do_mem_abort dump a page table walk. The
existing dump of the ESR in do_mem_abort() is rendered redundant, and
removed.

Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-27 16:26:47 +01:00
Julien Thierry
3f7c86b238 arm64: Update fault_info table with new exception types
Based on: ARM Architecture Reference Manual, ARMv8 (DDI 0487B.b).

ARMv8.1 introduces the optional feature ARMv8.1-TTHM which can trigger a
new type of memory abort. This exception is triggered when hardware update
of page table flags is not atomic in regards to other memory accesses.
Replace the corresponding unknown entry with a more accurate one.

Cf: Section D10.2.28 ESR_ELx, Exception Syndrome Register (p D10-2381),
section D4.4.11 Restriction on memory types for hardware updates on page
tables (p D4-2116 - D4-2117).

ARMv8.2 does not add new exception types, however it is worth mentioning
that when obligatory feature RAS (optional for ARMv8.{0,1}) is implemented,
exceptions related to "Synchronous parity or ECC error on memory access,
not on translation table walk" become reserved and should not occur.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-19 10:57:40 +01:00
Matthieu CASTET
359be67862 dma mapping : export caller to vmallocinfo
For example on arm64 board, this add info to "user" entries in vmallocinfo

Before :
[...]
0xffffff8008997000 0xffffff80089d8000 266240 user
[...]

Afer :
[...]
0xffffff8008997000 0xffffff80089d8000 266240 atomic_pool_init+0x0/0x1d8 user
[...]

This help to debug mapping issues, and is consistent with others entries
(ioremap, vmalloc, ...) that already provide caller.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Matthieu CASTET <matthieu.castet@parrot.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-04 13:43:00 +01:00
Mark Rutland
0a6de8b866 arm64: fix misleading data abort decoding
Currently data_abort_decode() dumps the ISS field as a decimal value
with a '0x' prefix, which is somewhat misleading.

Fix it to print as hexadecimal, as was intended.

Fixes: 1f9b8936f3 ("arm64: Decode information from ESR upon mem faults")
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-10-02 15:05:58 +01:00
Thomas Meyer
b4f4a27556 arm64: dma-mapping: Cocci spatch "vma_pages"
Use vma_pages function on vma object instead of explicit computation.
Found by coccinelle spatch "api/vma_pages.cocci"

Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-02 10:13:05 +01:00
Will Deacon
f67d5c4fbe arm64: mm: Remove useless and wrong comments from fault.c
Fault.c seems to be a magnet for useless and wrong comments, largely
due to its ancestry in other architectures where the code has since
moved on, but the comments have remained intact.

This patch removes both useless and incorrect comments, leaving only
those that say something correct and relevant.

Reported-by: Wenjia Zhou <zhiyuan_zhu@htc.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-02 10:13:05 +01:00
Will Deacon
760bfb47c3 arm64: fault: Route pte translation faults via do_translation_fault
We currently route pte translation faults via do_page_fault, which elides
the address check against TASK_SIZE before invoking the mm fault handling
code. However, this can cause issues with the path walking code in
conjunction with our word-at-a-time implementation because
load_unaligned_zeropad can end up faulting in kernel space if it reads
across a page boundary and runs into a page fault (e.g. by attempting to
read from a guard region).

In the case of such a fault, load_unaligned_zeropad has registered a
fixup to shift the valid data and pad with zeroes, however the abort is
reported as a level 3 translation fault and we dispatch it straight to
do_page_fault, despite it being a kernel address. This results in calling
a sleeping function from atomic context:

  BUG: sleeping function called from invalid context at arch/arm64/mm/fault.c:313
  in_atomic(): 0, irqs_disabled(): 0, pid: 10290
  Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
  [...]
  [<ffffff8e016cd0cc>] ___might_sleep+0x134/0x144
  [<ffffff8e016cd158>] __might_sleep+0x7c/0x8c
  [<ffffff8e016977f0>] do_page_fault+0x140/0x330
  [<ffffff8e01681328>] do_mem_abort+0x54/0xb0
  Exception stack(0xfffffffb20247a70 to 0xfffffffb20247ba0)
  [...]
  [<ffffff8e016844fc>] el1_da+0x18/0x78
  [<ffffff8e017f399c>] path_parentat+0x44/0x88
  [<ffffff8e017f4c9c>] filename_parentat+0x5c/0xd8
  [<ffffff8e017f5044>] filename_create+0x4c/0x128
  [<ffffff8e017f59e4>] SyS_mkdirat+0x50/0xc8
  [<ffffff8e01684e30>] el0_svc_naked+0x24/0x28
  Code: 36380080 d5384100 f9400800 9402566d (d4210000)
  ---[ end trace 2d01889f2bca9b9f ]---

Fix this by dispatching all translation faults to do_translation_faults,
which avoids invoking the page fault logic for faults on kernel addresses.

Cc: <stable@vger.kernel.org>
Reported-by: Ankit Jain <ankijain@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-09-29 16:47:40 +01:00
Linus Torvalds
04759194dc arm64 updates for 4.14:
- VMAP_STACK support, allowing the kernel stacks to be allocated in
   the vmalloc space with a guard page for trapping stack overflows. One
   of the patches introduces THREAD_ALIGN and changes the generic
   alloc_thread_stack_node() to use this instead of THREAD_SIZE (no
   functional change for other architectures)
 
 - Contiguous PTE hugetlb support re-enabled (after being reverted a
   couple of times). We now have the semantics agreed in the generic mm
   layer together with API improvements so that the architecture code can
   detect between contiguous and non-contiguous huge PTEs
 
 - Initial support for persistent memory on ARM: DC CVAP instruction
   exposed to user space (HWCAP) and the in-kernel pmem API implemented
 
 - raid6 improvements for arm64: faster algorithm for the delta syndrome
   and implementation of the recovery routines using Neon
 
 - FP/SIMD refactoring and removal of support for Neon in interrupt
   context. This is in preparation for full SVE support
 
 - PTE accessors converted from inline asm to cmpxchg so that we can
   use LSE atomics if available (ARMv8.1)
 
 - Perf support for Cortex-A35 and A73
 
 - Non-urgent fixes and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlmuunYACgkQa9axLQDI
 XvEH9BAAo8V94GOMkX6HkT+2hjkl7DQ9krjumzmfzLV5AdgHMMzBNozmWKOCzgh0
 yaxRcTUju3EyNeKhADr7yLiKDH8fnRPmYEJiVrwfgo7MaPApaCorr7LLIXfPGuxe
 DTBHw+oxRMjlmaHeATX4PBWfQxAx+vjjhHqv3Qpmvdm4nYqR+0hZomH2BNsu64fk
 AkSeUCxfCEyzSFIKuQM04M4zhSSZHz1tDxWI0b0RcK73qqEOuYZNkn6qxSKP5J4X
 b2Y2U8nmxJ5C2fXpDYZaK9shiJ4Vu7X3Ocf/M7hsJzGY5z4dhnmUmxpHROaNiSvo
 hCx7POYKyAPovps7zMSqcdsujkqOIQO8RHp4zGXx/pIr1RumjIiCY+RGpUYGibvU
 N4Px5hZNneuHaPZZ+sWjOOdNB28xyzeUp2UK9Bb6uHB+/3xssMAD8Fd/b2ZLnS6a
 YW3wrZmqA+ckfETsSRibabTs/ayqYHs2SDVwnlDJGtn+4Pw8oQpwGrwokxLQuuw3
 uF2sNEPhJz+dcy21q3udYAQE1qOJBlLqTptgP96CHoVqh8X6nYSi5obT7y30ln3n
 dhpZGOdi6R8YOouxgXS3Wg07pxn444L/VzDw5ku/5DkdryPOZCSRbk/2t8If6oDM
 2VD6PCbTx3hsGc7SZ7FdSwIysD2j446u40OMGdH2iLB5jWBwyOM=
 =vd0/
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - VMAP_STACK support, allowing the kernel stacks to be allocated in the
   vmalloc space with a guard page for trapping stack overflows. One of
   the patches introduces THREAD_ALIGN and changes the generic
   alloc_thread_stack_node() to use this instead of THREAD_SIZE (no
   functional change for other architectures)

 - Contiguous PTE hugetlb support re-enabled (after being reverted a
   couple of times). We now have the semantics agreed in the generic mm
   layer together with API improvements so that the architecture code
   can detect between contiguous and non-contiguous huge PTEs

 - Initial support for persistent memory on ARM: DC CVAP instruction
   exposed to user space (HWCAP) and the in-kernel pmem API implemented

 - raid6 improvements for arm64: faster algorithm for the delta syndrome
   and implementation of the recovery routines using Neon

 - FP/SIMD refactoring and removal of support for Neon in interrupt
   context. This is in preparation for full SVE support

 - PTE accessors converted from inline asm to cmpxchg so that we can use
   LSE atomics if available (ARMv8.1)

 - Perf support for Cortex-A35 and A73

 - Non-urgent fixes and cleanups

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (75 commits)
  arm64: cleanup {COMPAT_,}SET_PERSONALITY() macro
  arm64: introduce separated bits for mm_context_t flags
  arm64: hugetlb: Cleanup setup_hugepagesz
  arm64: Re-enable support for contiguous hugepages
  arm64: hugetlb: Override set_huge_swap_pte_at() to support contiguous hugepages
  arm64: hugetlb: Override huge_pte_clear() to support contiguous hugepages
  arm64: hugetlb: Handle swap entries in huge_pte_offset() for contiguous hugepages
  arm64: hugetlb: Add break-before-make logic for contiguous entries
  arm64: hugetlb: Spring clean huge pte accessors
  arm64: hugetlb: Introduce pte_pgprot helper
  arm64: hugetlb: set_huge_pte_at Add WARN_ON on !pte_present
  arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic cores
  arm64: dma-mapping: Mark atomic_pool as __ro_after_init
  arm64: dma-mapping: Do not pass data to gen_pool_set_algo()
  arm64: Remove the !CONFIG_ARM64_HW_AFDBM alternative code paths
  arm64: Ignore hardware dirty bit updates in ptep_set_wrprotect()
  arm64: Move PTE_RDONLY bit handling out of set_pte_at()
  kvm: arm64: Convert kvm_set_s2pte_readonly() from inline asm to cmpxchg()
  arm64: Convert pte handling from inline asm to using (cmp)xchg
  arm64: neon/efi: Make EFI fpsimd save/restore variables static
  ...
2017-09-05 09:53:37 -07:00
Mark Rutland
289d07a2dc arm64: mm: abort uaccess retries upon fatal signal
When there's a fatal signal pending, arm64's do_page_fault()
implementation returns 0. The intent is that we'll return to the
faulting userspace instruction, delivering the signal on the way.

However, if we take a fatal signal during fixing up a uaccess, this
results in a return to the faulting kernel instruction, which will be
instantly retried, resulting in the same fault being taken forever. As
the task never reaches userspace, the signal is not delivered, and the
task is left unkillable. While the task is stuck in this state, it can
inhibit the forward progress of the system.

To avoid this, we must ensure that when a fatal signal is pending, we
apply any necessary fixup for a faulting kernel instruction. Thus we
will return to an error path, and it is up to that code to make forward
progress towards delivering the fatal signal.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: stable@vger.kernel.org
Reviewed-by: Steve Capper <steve.capper@arm.com>
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-08-22 18:15:42 +01:00
Steve Capper
828f193dd6 arm64: hugetlb: Cleanup setup_hugepagesz
Replace a lot of if statements with switch and case labels to make it
much clearer which huge page sizes are supported.

Also, we prevent PUD_SIZE from being used on systems not running with
4KB PAGE_SIZE. Before if one supplied PUD_SIZE in these circumstances,
then unusuable huge page sizes would be in use.

Fixes: 084bd29810 ("ARM64: mm: HugeTLB support.")
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-22 17:47:12 +01:00
Punit Agrawal
5cd028b9d9 arm64: Re-enable support for contiguous hugepages
also known as -

Revert "Revert "Revert "commit 66b3923a1a ("arm64: hugetlb: add
support for PTE contiguous bit")"""

Now that our hugetlb implementation is compliant with the
break-before-make requirements of the architecture and we have addressed
some of the issues in core code required for properly dealing with
hardware poisoning of contiguous hugepages let's re-enable support for
contiguous hugepages.

This reverts commit 6ae979ab39.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-22 17:47:11 +01:00
Punit Agrawal
a8d623eefd arm64: hugetlb: Override set_huge_swap_pte_at() to support contiguous hugepages
The default implementation of set_huge_swap_pte_at() does not support
hugepages consisting of contiguous ptes. Override it to add support for
contiguous hugepages.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-22 17:47:11 +01:00
Punit Agrawal
c3e4ed5c3d arm64: hugetlb: Override huge_pte_clear() to support contiguous hugepages
The default huge_pte_clear() implementation does not clear contiguous
page table entries when it encounters contiguous hugepages that are
supported on arm64.

Fix this by overriding the default implementation to clear all the
entries associated with contiguous hugepages.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-22 17:47:10 +01:00
Punit Agrawal
30f3ac00ad arm64: hugetlb: Handle swap entries in huge_pte_offset() for contiguous hugepages
huge_pte_offset() was updated to correctly handle swap entries for
hugepages. With the addition of the size parameter, it is now possible
to disambiguate whether the request is for a regular hugepage or a
contiguous hugepage.

Fix huge_pte_offset() for contiguous hugepages by using the size to find
the correct page table entry.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-22 15:57:02 +01:00
Steve Capper
d8bdcff287 arm64: hugetlb: Add break-before-make logic for contiguous entries
It has become apparent that one has to take special care when modifying
attributes of memory mappings that employ the contiguous bit.

Both the requirement and the architecturally correct "Break-Before-Make"
technique of updating contiguous entries can be found described in:
ARM DDI 0487A.k_iss10775, "Misprogramming of the Contiguous bit",
page D4-1762.

The huge pte accessors currently replace the attributes of contiguous
pte entries in place thus can, on certain platforms, lead to TLB
conflict aborts or even erroneous results returned from TLB lookups.

This patch adds two helper functions -

* get_clear_flush(.) - clears a contiguous entry and returns the head
  pte (whilst taking care to retain dirty bit information that could
  have been modified by DBM).

* clear_flush(.) that clears a contiguous entry

A tlb invalidate is performed to then ensure that there is no
possibility of multiple tlb entries being present for the same region.

Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
(Added helper clear_flush(), updated commit log, and some cleanup)
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
[catalin.marinas@arm.com: remove CONFIG_ARM64_HW_AFDBM check]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-22 15:53:19 +01:00
Steve Capper
29a7287dce arm64: hugetlb: Spring clean huge pte accessors
This patch aims to re-structure the huge pte accessors without affecting
their functionality. Control flow is changed to reduce indentation and
expanded use is made of post for loop variable modification.

It is then much easier to add break-before-make semantics in a subsequent
patch.

Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-22 15:52:12 +01:00
Steve Capper
b5b0be86d7 arm64: hugetlb: Introduce pte_pgprot helper
Rather than xor pte bits in various places, use this helper function.

Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-22 15:51:55 +01:00
Steve Capper
d3ea795277 arm64: hugetlb: set_huge_pte_at Add WARN_ON on !pte_present
This patch adds a WARN_ON to set_huge_pte_at as the accessor assumes
that entries to be written down are all present. (There are separate
accessors to clear huge ptes).

We will need to handle the !pte_present case where memory offlining
is used on hugetlb pages. swap and migration entries will be supplied
to set_huge_pte_at in this case.

Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-22 15:41:16 +01:00
Vladimir Murzin
8165f70648 arm64: dma-mapping: Mark atomic_pool as __ro_after_init
atomic_pool is setup once while init stage and never changed after
that, so it is good candidate for __ro_after_init

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-21 16:24:53 +01:00
Vladimir Murzin
2fa59ec8cc arm64: dma-mapping: Do not pass data to gen_pool_set_algo()
gen_pool_first_fit_order_align() does not make use of additional data,
so pass plain NULL there.

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-21 16:24:53 +01:00
Catalin Marinas
af29678fe7 arm64: Remove the !CONFIG_ARM64_HW_AFDBM alternative code paths
Since the pte handling for hardware AF/DBM works even when the hardware
feature is not present, make the pte accessors implementation permanent
and remove the corresponding #ifdefs. The Kconfig option is kept as it
can still be used to disable the feature at the hardware level.

Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-21 11:13:11 +01:00
Catalin Marinas
73e86cb03c arm64: Move PTE_RDONLY bit handling out of set_pte_at()
Currently PTE_RDONLY is treated as a hardware only bit and not handled
by the pte_mkwrite(), pte_wrprotect() or the user PAGE_* definitions.
The set_pte_at() function is responsible for setting this bit based on
the write permission or dirty state. This patch moves the PTE_RDONLY
handling out of set_pte_at into the pte_mkwrite()/pte_wrprotect()
functions. The PAGE_* definitions to need to be updated to explicitly
include PTE_RDONLY when !PTE_WRITE.

The patch also removes the redundant PAGE_COPY(_EXEC) definitions as
they are identical to the corresponding PAGE_READONLY(_EXEC).

Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-21 11:12:50 +01:00
Catalin Marinas
3bbf7157ac arm64: Convert pte handling from inline asm to using (cmp)xchg
With the support for hardware updates of the access and dirty states,
the following pte handling functions had to be implemented using
exclusives: __ptep_test_and_clear_young(), ptep_get_and_clear(),
ptep_set_wrprotect() and ptep_set_access_flags(). To take advantage of
the LSE atomic instructions and also make the code cleaner, convert
these pte functions to use the more generic cmpxchg()/xchg().

Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-21 11:12:29 +01:00
Arnd Bergmann
caf5ef7d15 arm64: fix pmem interface definition
Defining the two functions as 'static inline' and exporting them
leads to the interesting case where we can use the interface
from loadable modules, but not from built-in drivers, as shown
in this link failure:

vers/nvdimm/claim.o: In function `nsio_rw_bytes':
claim.c:(.text+0x1b8): undefined reference to `arch_invalidate_pmem'
drivers/nvdimm/pmem.o: In function `pmem_dax_flush':
pmem.c:(.text+0x11c): undefined reference to `arch_wb_cache_pmem'
drivers/nvdimm/pmem.o: In function `pmem_make_request':
pmem.c:(.text+0x5a4): undefined reference to `arch_invalidate_pmem'
pmem.c:(.text+0x650): undefined reference to `arch_invalidate_pmem'
pmem.c:(.text+0x6d4): undefined reference to `arch_invalidate_pmem'

This removes the bogus 'static inline'.

Fixes: d50e071fda ("arm64: Implement pmem API support")
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-10 18:13:59 +01:00
Robin Murphy
d50e071fda arm64: Implement pmem API support
Add a clean-to-point-of-persistence cache maintenance helper, and wire
up the basic architectural support for the pmem driver based on it.

Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
[catalin.marinas@arm.com: move arch_*_pmem() functions to arch/arm64/mm/flush.c]
[catalin.marinas@arm.com: change dmb(sy) to dmb(osh)]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-09 12:15:45 +01:00
Robin Murphy
d46befef4c arm64: Convert __inval_cache_range() to area-based
__inval_cache_range() is already the odd one out among our data cache
maintenance routines as the only remaining range-based one; as we're
going to want an invalidation routine to call from C code for the pmem
API, let's tweak the prototype and name to bring it in line with the
clean operations, and to make its relationship with __dma_inv_area()
neatly mirror that of __clean_dcache_area_poc() and __dma_clean_area().
The loop clearing the early page tables gets mildly massaged in the
process for the sake of consistency.

Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-09 11:00:23 +01:00
Julien Thierry
1f9b8936f3 arm64: Decode information from ESR upon mem faults
When receiving unhandled faults from the CPU, description is very sparse.
Adding information about faults decoded from ESR.

Added defines to esr.h corresponding ESR fields. Values are based on ARM
Archtecture Reference Manual (DDI 0487B.a), section D7.2.28 ESR_ELx, Exception
Syndrome Register (ELx) (pages D7-2275 to D7-2280).

New output is of the form:
[   77.818059] Mem abort info:
[   77.820826]   Exception class = DABT (current EL), IL = 32 bits
[   77.826706]   SET = 0, FnV = 0
[   77.829742]   EA = 0, S1PTW = 0
[   77.832849] Data abort info:
[   77.835713]   ISV = 0, ISS = 0x00000070
[   77.839522]   CM = 0, WnR = 1

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
[catalin.marinas@arm.com: fix "%lu" in a pr_alert() call]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-07 09:58:33 +01:00
Catalin Marinas
6d332747fa arm64: Fix potential race with hardware DBM in ptep_set_access_flags()
In a system with DBM (dirty bit management) capable agents there is a
possible race between a CPU executing ptep_set_access_flags() (maybe
non-DBM capable) and a hardware update of the dirty state (clearing of
PTE_RDONLY). The scenario:

a) the pte is writable (PTE_WRITE set), clean (PTE_RDONLY set) and old
   (PTE_AF clear)
b) ptep_set_access_flags() is called as a result of a read access and it
   needs to set the pte to writable, clean and young (PTE_AF set)
c) a DBM-capable agent, as a result of a different write access, is
   marking the entry as young (setting PTE_AF) and dirty (clearing
   PTE_RDONLY)

The current ptep_set_access_flags() implementation would set the
PTE_RDONLY bit in the resulting value overriding the DBM update and
losing the dirty state.

This patch fixes such race by setting PTE_RDONLY to the most permissive
(lowest value) of the current entry and the new one.

Fixes: 66dbd6e61a ("arm64: Implement ptep_set_access_flags() for hardware AF/DBM")
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-08-04 13:26:11 +01:00
Linus Torvalds
3d9d7405c0 arm64 fixes:
- Ensure we have a guard page after the kernel image in vmalloc
 
 - Fix incorrect prefetch stride in copy_page
 
 - Ensure irqs are disabled in die()
 
 - Fix for event group validation in QCOM L2 PMU driver
 
 - Fix requesting of PMU IRQs on AMD Seattle
 
 - Minor cleanups and fixes
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJZey1iAAoJELescNyEwWM0w/0H/1RaHFUSoFUIoL+qFD0eGXcp
 hORI0sIHrUlHRONTFYMTyNko7kxELz5aDm6pc87dzBUNoUq3gxhqeEa0zsmwOPsQ
 m4iDa7r9xXT+nBITe2auAg6miEMX7Ym448dDrIyKNcRK+2SyZoFqS0vr8UVqs1P/
 NwdFGgpKHbV4r1Jeoosom+n7VnuyE0vYBKo8TlRks6NvQJoh2duiPkL+AsBgCfBq
 fznck7jIPL4z4kf4Fp/Yz1QsmMhkDSidPmGD/m97Bj4wvEbMwf0u8Dnv1tySK5wx
 NwKeN0Dn7JphtL5c5j+OGiri7gTcswjxHJ9f6d0Ez+2TwnjWFM6JNQ+xdVqFcxc=
 =EpS9
 -----END PGP SIGNATURE-----

Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 fixes from Will Deacon:
 "I'd been collecting these whilst we debugged a CPU hotplug failure,
  but we ended up diagnosing that one to tglx, who has taken a fix via
  the -tip tree separately.

  We're seeing some NFS issues that we haven't gotten to the bottom of
  yet, and we've uncovered some issues with our backtracing too so there
  might be another fixes pull before we're done.

  Summary:

   - Ensure we have a guard page after the kernel image in vmalloc

   - Fix incorrect prefetch stride in copy_page

   - Ensure irqs are disabled in die()

   - Fix for event group validation in QCOM L2 PMU driver

   - Fix requesting of PMU IRQs on AMD Seattle

   - Minor cleanups and fixes"

* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
  arm64: mmu: Place guard page after mapping of kernel image
  drivers/perf: arm_pmu: Request PMU SPIs with IRQF_PER_CPU
  arm64: sysreg: Fix unprotected macro argmuent in write_sysreg
  perf: qcom_l2: fix column exclusion check
  arm64/lib: copy_page: use consistent prefetch stride
  arm64/numa: Drop duplicate message
  perf: Convert to using %pOF instead of full_name
  arm64: Convert to using %pOF instead of full_name
  arm64: traps: disable irq in die()
  arm64: atomics: Remove '&' from '+&' asm constraint in lse atomics
  arm64: uaccess: Remove redundant __force from addr cast in __range_ok
2017-07-28 13:29:36 -07:00
Will Deacon
92bbd16e50 arm64: mmu: Place guard page after mapping of kernel image
The vast majority of virtual allocations in the vmalloc region are followed
by a guard page, which can help to avoid overruning on vma into another,
which may map a read-sensitive device.

This patch adds a guard page to the end of the kernel image mapping (i.e.
following the data/bss segments).

Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-07-28 10:32:14 +01:00
Punit Agrawal
ece4b206be arm64/numa: Drop duplicate message
When booting linux on a system without CONFIG_NUMA enabled, the
following messages are printed during boot -

NUMA: Faking a node at [mem 0x0000000000000000-0x00000083ffffffff]
NUMA: Adding memblock [0x8000000000 - 0x8000e7ffff] on node 0
NUMA: Adding memblock [0x8000e80000 - 0x83f65cffff] on node 0
NUMA: Adding memblock [0x83f65d0000 - 0x83f665ffff] on node 0
NUMA: Adding memblock [0x83f6660000 - 0x83f676ffff] on node 0
NUMA: Adding memblock [0x83f6770000 - 0x83f678ffff] on node 0
NUMA: Adding memblock [0x83f6790000 - 0x83fb82ffff] on node 0
NUMA: Adding memblock [0x83fb830000 - 0x83fbc0ffff] on node 0
NUMA: Adding memblock [0x83fbc10000 - 0x83fbdfffff] on node 0
NUMA: Adding memblock [0x83fbe00000 - 0x83fbffffff] on node 0
NUMA: Adding memblock [0x83fc000000 - 0x83fffbffff] on node 0
NUMA: Adding memblock [0x83fffc0000 - 0x83fffdffff] on node 0
NUMA: Adding memblock [0x83fffe0000 - 0x83ffffffff] on node 0
NUMA: Initmem setup node 0 [mem 0x8000000000-0x83ffffffff]
NUMA: NODE_DATA [mem 0x83fffec500-0x83fffedfff]

The information is then duplicated by core kernel messages right after
the above output.

Early memory node ranges
  node   0: [mem 0x0000008000000000-0x0000008000e7ffff]
  node   0: [mem 0x0000008000e80000-0x00000083f65cffff]
  node   0: [mem 0x00000083f65d0000-0x00000083f665ffff]
  node   0: [mem 0x00000083f6660000-0x00000083f676ffff]
  node   0: [mem 0x00000083f6770000-0x00000083f678ffff]
  node   0: [mem 0x00000083f6790000-0x00000083fb82ffff]
  node   0: [mem 0x00000083fb830000-0x00000083fbc0ffff]
  node   0: [mem 0x00000083fbc10000-0x00000083fbdfffff]
  node   0: [mem 0x00000083fbe00000-0x00000083fbffffff]
  node   0: [mem 0x00000083fc000000-0x00000083fffbffff]
  node   0: [mem 0x00000083fffc0000-0x00000083fffdffff]
  node   0: [mem 0x00000083fffe0000-0x00000083ffffffff]
Initmem setup node 0 [mem 0x0000008000000000-0x00000083ffffffff]

Remove the duplication of memblock layout information printed during
boot by dropping the messages from arm64 numa initialisation.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-07-20 17:03:53 +01:00
Vladimir Murzin
43fc509c3e dma-coherent: introduce interface for default DMA pool
Christoph noticed [1] that default DMA pool in current form overload
the DMA coherent infrastructure. In reply, Robin suggested [2] to
split the per-device vs. global pool interfaces, so allocation/release
from default DMA pool is driven by dma ops implementation.

This patch implements Robin's idea and provide interface to
allocate/release/mmap the default (aka global) DMA pool.

To make it clear that existing *_from_coherent routines work on
per-device pool rename them to *_from_dev_coherent.

[1] https://lkml.org/lkml/2017/7/7/370
[2] https://lkml.org/lkml/2017/7/7/431

Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Suggested-by: Robin Murphy <robin.murphy@arm.com>
Tested-by: Andras Szemzo <sza@esh.hu>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-07-20 16:09:10 +02:00
Rik van Riel
cf92251dc5 arm64/mmap: properly account for stack randomization in mmap_base
When RLIMIT_STACK is, for example, 256MB, the current code results in a
gap between the top of the task and mmap_base of 256MB, failing to take
into account the amount by which the stack address was randomized.  In
other words, the stack gets less than RLIMIT_STACK space.

Ensure that the gap between the stack and mmap_base always takes stack
randomization and the stack guard gap into account.

Obtained from Daniel Micay's linux-hardened tree.

Link: http://lkml.kernel.org/r/20170622200033.25714-3-riel@redhat.com
Signed-off-by: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Florian Weimer <fweimer@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00
Andrey Ryabinin
3f9ec80f7b arm64/kasan: don't allocate extra shadow memory
We used to read several bytes of the shadow memory in advance.
Therefore additional shadow memory mapped to prevent crash if
speculative load would happen near the end of the mapped shadow memory.

Now we don't have such speculative loads, so we no longer need to map
additional shadow memory.

Link: http://lkml.kernel.org/r/20170601162338.23540-3-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:33 -07:00
Linus Torvalds
9f45efb928 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:

 - a few hotfixes

 - various misc updates

 - ocfs2 updates

 - most of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (108 commits)
  mm, memory_hotplug: move movable_node to the hotplug proper
  mm, memory_hotplug: drop CONFIG_MOVABLE_NODE
  mm, memory_hotplug: drop artificial restriction on online/offline
  mm: memcontrol: account slab stats per lruvec
  mm: memcontrol: per-lruvec stats infrastructure
  mm: memcontrol: use generic mod_memcg_page_state for kmem pages
  mm: memcontrol: use the node-native slab memory counters
  mm: vmstat: move slab statistics from zone to node counters
  mm/zswap.c: delete an error message for a failed memory allocation in zswap_dstmem_prepare()
  mm/zswap.c: improve a size determination in zswap_frontswap_init()
  mm/zswap.c: delete an error message for a failed memory allocation in zswap_pool_create()
  mm/swapfile.c: sort swap entries before free
  mm/oom_kill: count global and memory cgroup oom kills
  mm: per-cgroup memory reclaim stats
  mm: kmemleak: treat vm_struct as alternative reference to vmalloc'ed objects
  mm: kmemleak: factor object reference updating out of scan_block()
  mm: kmemleak: slightly reduce the size of some structures on 64-bit architectures
  mm, mempolicy: don't check cpuset seqlock where it doesn't matter
  mm, cpuset: always use seqlock when changing task's nodemask
  mm, mempolicy: simplify rebinding mempolicies when updating cpusets
  ...
2017-07-06 22:27:08 -07:00
Linus Torvalds
f72e24a124 This is the first pull request for the new dma-mapping subsystem
In this new subsystem we'll try to properly maintain all the generic
 code related to dma-mapping, and will further consolidate arch code
 into common helpers.
 
 This pull request contains:
 
  - removal of the DMA_ERROR_CODE macro, replacing it with calls
    to ->mapping_error so that the dma_map_ops instances are
    more self contained and can be shared across architectures (me)
  - removal of the ->set_dma_mask method, which duplicates the
    ->dma_capable one in terms of functionality, but requires more
    duplicate code.
  - various updates for the coherent dma pool and related arm code
    (Vladimir)
  - various smaller cleanups (me)
 -----BEGIN PGP SIGNATURE-----
 
 iQI/BAABCAApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlldmw0LHGhjaEBsc3Qu
 ZGUACgkQD55TZVIEUYOiKA/+Ln1mFLSf3nfTzIHa24Bbk8ZTGr0B8TD4Vmyyt8iG
 oO3AeaTLn3d6ugbH/uih/tPz8PuyXsdiTC1rI/ejDMiwMTSjW6phSiIHGcStSR9X
 VFNhmMFacp7QpUpvxceV0XZYKDViAoQgHeGdp3l+K5h/v4AYePV/v/5RjQPaEyOh
 YLbCzETO+24mRWdJxdAqtTW4ovYhzj6XsiJ+pAjlV0+SWU6m5L5E+VAPNi1vqv1H
 1O2KeCFvVYEpcnfL3qnkw2timcjmfCfeFAd9mCUAc8mSRBfs3QgDTKw3XdHdtRml
 LU2WuA5cpMrOdBO4mVra2plo8E2szvpB1OZZXoKKdCpK3VGwVpVHcTvClK2Ks/3B
 GDLieroEQNu2ZIUIdWXf/g2x6le3BcC9MmpkAhnGPqCZ7skaIBO5Cjpxm0zTJAPl
 PPY3CMBBEktAvys6DcudOYGixNjKUuAm5lnfpcfTEklFdG0AjhdK/jZOplAFA6w4
 LCiy0rGHM8ZbVAaFxbYoFCqgcjnv6EjSiqkJxVI4fu/Q7v9YXfdPnEmE0PJwCVo5
 +i7aCLgrYshTdHr/F3e5EuofHN3TDHwXNJKGh/x97t+6tt326QMvDKX059Kxst7R
 rFukGbrYvG8Y7yXwrSDbusl443ta0Ht7T1oL4YUoJTZp0nScAyEluDTmrH1JVCsT
 R4o=
 =0Fso
 -----END PGP SIGNATURE-----

Merge tag 'dma-mapping-4.13' of git://git.infradead.org/users/hch/dma-mapping

Pull dma-mapping infrastructure from Christoph Hellwig:
 "This is the first pull request for the new dma-mapping subsystem

  In this new subsystem we'll try to properly maintain all the generic
  code related to dma-mapping, and will further consolidate arch code
  into common helpers.

  This pull request contains:

   - removal of the DMA_ERROR_CODE macro, replacing it with calls to
     ->mapping_error so that the dma_map_ops instances are more self
     contained and can be shared across architectures (me)

   - removal of the ->set_dma_mask method, which duplicates the
     ->dma_capable one in terms of functionality, but requires more
     duplicate code.

   - various updates for the coherent dma pool and related arm code
     (Vladimir)

   - various smaller cleanups (me)"

* tag 'dma-mapping-4.13' of git://git.infradead.org/users/hch/dma-mapping: (56 commits)
  ARM: dma-mapping: Remove traces of NOMMU code
  ARM: NOMMU: Set ARM_DMA_MEM_BUFFERABLE for M-class cpus
  ARM: NOMMU: Introduce dma operations for noMMU
  drivers: dma-mapping: allow dma_common_mmap() for NOMMU
  drivers: dma-coherent: Introduce default DMA pool
  drivers: dma-coherent: Account dma_pfn_offset when used with device tree
  dma: Take into account dma_pfn_offset
  dma-mapping: replace dmam_alloc_noncoherent with dmam_alloc_attrs
  dma-mapping: remove dmam_free_noncoherent
  crypto: qat - avoid an uninitialized variable warning
  au1100fb: remove a bogus dma_free_nonconsistent call
  MAINTAINERS: add entry for dma mapping helpers
  powerpc: merge __dma_set_mask into dma_set_mask
  dma-mapping: remove the set_dma_mask method
  powerpc/cell: use the dma_supported method for ops switching
  powerpc/cell: clean up fixed mapping dma_ops initialization
  tile: remove dma_supported and mapping_error methods
  xen-swiotlb: remove xen_swiotlb_set_dma_mask
  arm: implement ->dma_supported instead of ->set_dma_mask
  mips/loongson64: implement ->dma_supported instead of ->set_dma_mask
  ...
2017-07-06 19:20:54 -07:00
Punit Agrawal
7868a2087e mm/hugetlb: add size parameter to huge_pte_offset()
A poisoned or migrated hugepage is stored as a swap entry in the page
tables.  On architectures that support hugepages consisting of
contiguous page table entries (such as on arm64) this leads to ambiguity
in determining the page table entry to return in huge_pte_offset() when
a poisoned entry is encountered.

Let's remove the ambiguity by adding a size parameter to convey
additional information about the requested address.  Also fixup the
definition/usage of huge_pte_offset() throughout the tree.

Link: http://lkml.kernel.org/r/20170522133604.11392-4-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Hogan <james.hogan@imgtec.com> (odd fixer:METAG ARCHITECTURE)
Cc: Ralf Baechle <ralf@linux-mips.org> (supporter:MIPS)
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Steve Capper
f0b38d65c9 arm64: hugetlb: remove spurious calls to huge_ptep_offset()
We don't need to call huge_ptep_offset as our accessors are already
supplied with the pte_t *.  This patch removes those spurious calls.

[punit.agrawal@arm.com: resolve rebase conflicts due to patch re-ordering]
Link: http://lkml.kernel.org/r/20170524115409.31309-3-punit.agrawal@arm.com
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Steve Capper
bb9dd3df8e arm64: hugetlb: refactor find_num_contig()
Patch series "Support for contiguous pte hugepages", v4.

This patchset updates the hugetlb code to fix issues arising from
contiguous pte hugepages (such as on arm64).  Compared to v3, This
version addresses a build failure on arm64 by including two cleanup
patches.  Other than the arm64 cleanups, the rest are generic code
changes.  The remaining arm64 support based on these patches will be
posted separately.  The patches are based on v4.12-rc2.  Previous
related postings can be found at [0], [1], [2], and [3].

The patches fall into three categories -

* Patch 1-2 - arm64 cleanups required to greatly simplify changing
  huge_pte_offset() prototype in Patch 5.

  Catalin, Will - are you happy for these patches to go via mm?

* Patches 3-4 address issues with gup

* Patches 5-8 relate to passing a size argument to hugepage helpers to
  disambiguate the size of the referred page. These changes are
  required to enable arch code to properly handle swap entries for
  contiguous pte hugepages.

  The changes to huge_pte_offset() (patch 5) touch multiple
  architectures but I've managed to minimise these changes for the
  other affected functions - huge_pte_clear() and set_huge_pte_at().

These patches gate the enabling of contiguous hugepages support on arm64
which has been requested for systems using !4k page granule.

The ARM64 architecture supports two flavours of hugepages -

* Block mappings at the pud/pmd level

  These are regular hugepages where a pmd or a pud page table entry
  points to a block of memory. Depending on the PAGE_SIZE in use the
  following size of block mappings are supported -

          PMD	PUD
          ---	---
  4K:      2M	 1G
  16K:    32M
  64K:   512M

  For certain applications/usecases such as HPC and large enterprise
  workloads, folks are using 64k page size but the minimum hugepage size
  of 512MB isn't very practical.

To overcome this ...

* Using the Contiguous bit

  The architecture provides a contiguous bit in the translation table
  entry which acts as a hint to the mmu to indicate that it is one of a
  contiguous set of entries that can be cached in a single TLB entry.

  We use the contiguous bit in Linux to increase the mapping size at the
  pmd and pte (last) level.

  The number of supported contiguous entries varies by page size and
  level of the page table.

  Using the contiguous bit allows additional hugepage sizes -

           CONT PTE    PMD    CONT PMD    PUD
           --------    ---    --------    ---
    4K:         64K     2M         32M     1G
    16K:         2M    32M          1G
    64K:         2M   512M         16G

  Of these, 64K with 4K and 2M with 64K pages have been explicitly
  requested by a few different users.

Entries with the contiguous bit set are required to be modified all
together - which makes things like memory poisoning and migration
impossible to do correctly without knowing the size of hugepage being
dealt with - the reason for adding size parameter to a few of the
hugepage helpers in this series.

This patch (of 8):

As we regularly check for contiguous pte's in the huge accessors, remove
this extra check from find_num_contig.

[punit.agrawal@arm.com: resolve rebase conflicts due to patch re-ordering]
Link: http://lkml.kernel.org/r/20170524115409.31309-2-punit.agrawal@arm.com
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Will Deacon
3edb1dd13c Merge branch 'aarch64/for-next/ras-apei' into aarch64/for-next/core
Merge in arm64 ACPI RAS support (APEI/GHES) from Tyler Baicar.
2017-06-26 10:54:27 +01:00
Tyler Baicar
621f48e40e arm/arm64: KVM: add guest SEA support
Currently external aborts are unsupported by the guest abort
handling. Add handling for SEAs so that the host kernel reports
SEAs which occur in the guest kernel.

When an SEA occurs in the guest kernel, the guest exits and is
routed to kvm_handle_guest_abort(). Prior to this patch, a print
message of an unsupported FSC would be printed and nothing else
would happen. With this patch, the code gets routed to the APEI
handling of SEAs in the host kernel to report the SEA information.

Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 18:22:05 +01:00
Tyler Baicar
7edda0886b acpi: apei: handle SEA notification type for ARMv8
ARM APEI extension proposal added SEA (Synchronous External Abort)
notification type for ARMv8.
Add a new GHES error source handling function for SEA. If an error
source's notification type is SEA, then this function can be registered
into the SEA exception handler. That way GHES will parse and report
SEA exceptions when they occur.
An SEA can interrupt code that had interrupts masked and is treated as
an NMI. To aid this the page of address space for mapping APEI buffers
while in_nmi() is always reserved, and ghes_ioremap_pfn_nmi() is
changed to use the helper methods to find the prot_t to map with in
the same way as ghes_ioremap_pfn_irq().

Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 18:22:03 +01:00
Tyler Baicar
32015c2356 arm64: exception: handle Synchronous External Abort
SEA exceptions are often caused by an uncorrected hardware
error, and are handled when data abort and instruction abort
exception classes have specific values for their Fault Status
Code.
When SEA occurs, before killing the process, report the error
in the kernel logs.
Update fault_info[] with specific SEA faults so that the
new SEA handler is used.

Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
[will: use NULL instead of 0 when assigning si_addr]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 18:21:46 +01:00
Christoph Hellwig
e0d60ac10e arm64: remove DMA_ERROR_CODE
The dma alloc interface returns an error by return NULL, and the
mapping interfaces rely on the mapping_error method, which the dummy
ops already implement correctly.

Thus remove the DMA_ERROR_CODE define.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
2017-06-20 11:13:08 +02:00
Olav Haugan
577dfe16b8 arm64/dma-mapping: Remove extraneous null-pointer checks
The current null-pointer check in __dma_alloc_coherent and
__dma_free_coherent is not needed anymore since the
__dma_alloc/__dma_free functions won't be called if !dev (dummy ops will
be called instead).

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-15 11:40:22 +01:00
Punit Agrawal
0e3a902639 arm64: mm: Update perf accounting to handle poison faults
Re-organise the perf accounting for fault handling in preparation for
enabling handling of hardware poison faults in subsequent commits. The
change updates perf accounting to be inline with the behaviour on
x86.

With this update, the perf fault accounting -

  * Always report PERF_COUNT_SW_PAGE_FAULTS

  * Doesn't report anything else for VM_FAULT_ERROR (which includes
    hwpoison faults)

  * Reports PERF_COUNT_SW_PAGE_FAULTS_MAJ if it's a major
    fault (indicated by VM_FAULT_MAJOR)

  * Otherwise, reports PERF_COUNT_SW_PAGE_FAULTS_MIN

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 16:04:29 +01:00
Jonathan (Zhixiong) Zhang
e7c600f149 arm64: hwpoison: add VM_FAULT_HWPOISON[_LARGE] handling
Add VM_FAULT_HWPOISON[_LARGE] handling to the arm64 page fault
handler. Handling of VM_FAULT_HWPOISON[_LARGE] is very similar
to VM_FAULT_OOM, the only difference is that a different si_code
(BUS_MCEERR_AR) is passed to user space and si_addr_lsb field is
initialized.

Signed-off-by: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
(fix new __do_user_fault call-site)
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 16:04:29 +01:00
Punit Agrawal
f02ab08afb arm64: hugetlb: Fix huge_pte_offset to return poisoned page table entries
When memory failure is enabled, a poisoned hugepage pte is marked as a
swap entry. huge_pte_offset() does not return the poisoned page table
entries when it encounters PUD/PMD hugepages.

This behaviour of huge_pte_offset() leads to error such as below when
munmap is called on poisoned hugepages.

[  344.165544] mm/pgtable-generic.c:33: bad pmd 000000083af00074.

Fix huge_pte_offset() to return the poisoned pte which is then
appropriately handled by the generic layer code.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 16:04:28 +01:00
Will Deacon
1eb34b6e51 arm64: fault: Print info about page table structure when dumping pte
Whilst debugging a remote crash, I noticed that show_pte is unhelpful
when it comes to describing the structure of the page table being walked.
This is easily fixed by printing out the page table (swapper vs user),
page size and virtual address size when displaying the PGD address.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 12:33:54 +01:00
Kristina Martsenko
83016b2042 arm64: mm: print file name of faulting vma
Print out the name of the file associated with the vma that faulted.
This is usually the executable or shared library name. We already print
out the task name, but also printing the library name is useful for
pinpointing bugs to libraries.

Also print the base address and size of the vma, which together with the
PC (printed by __show_regs) gives the offset into the library.

Fault prints now look like:
test[2361]: unhandled level 2 translation fault (11) at 0x00000012, esr 0x92000006, in libfoo.so[ffffa0145000+1000]

This is already done on x86, for more details see commit 03252919b7
("x86: print which shared library/executable faulted in segfault etc.
messages v3").

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 12:33:37 +01:00
Kristina Martsenko
bf396c09c2 arm64: mm: don't print out page table entries on EL0 faults
When we take a fault from EL0 that can't be handled, we print out the
page table entries associated with the faulting address. This allows
userspace to print out any current page table entries, including kernel
(TTBR1) entries. Exposing kernel mappings like this could pose a
security risk, so don't print out page table information on EL0 faults.
(But still print it out for EL1 faults.) This also follows the same
behaviour as x86, printing out page table entries on kernel mode faults
but not user mode faults.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 12:33:37 +01:00
Kristina Martsenko
67ce16ec15 arm64: mm: print out correct page table entries
When we take a fault that can't be handled, we print out the page table
entries associated with the faulting address. In some cases we currently
print out the wrong entries. For a faulting TTBR1 address, we sometimes
print out TTBR0 table entries instead, and for a faulting TTBR0 address
we sometimes print out TTBR1 table entries. Fix this by choosing the
tables based on the faulting address.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[will: zero-extend addrs to 64-bit, don't walk swapper w/ TTBR0 addr]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 12:33:37 +01:00
Ard Biesheuvel
1151f838cb arm64: kernel: restrict /dev/mem read() calls to linear region
When running lscpu on an AArch64 system that has SMBIOS version 2.0
tables, it will segfault in the following way:

  Unable to handle kernel paging request at virtual address ffff8000bfff0000
  pgd = ffff8000f9615000
  [ffff8000bfff0000] *pgd=0000000000000000
  Internal error: Oops: 96000007 [#1] PREEMPT SMP
  Modules linked in:
  CPU: 0 PID: 1284 Comm: lscpu Not tainted 4.11.0-rc3+ #103
  Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
  task: ffff8000fa78e800 task.stack: ffff8000f9780000
  PC is at __arch_copy_to_user+0x90/0x220
  LR is at read_mem+0xcc/0x140

This is caused by the fact that lspci issues a read() on /dev/mem at the
offset where it expects to find the SMBIOS structure array. However, this
region is classified as EFI_RUNTIME_SERVICE_DATA (as per the UEFI spec),
and so it is omitted from the linear mapping.

So let's restrict /dev/mem read/write access to those areas that are
covered by the linear region.

Reported-by: Alexander Graf <agraf@suse.de>
Fixes: 4dffbfc48d ("arm64/efi: mark UEFI reserved regions as MEMBLOCK_NOMAP")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-01 18:26:26 +01:00
Tobias Klauser
6efd8499d9 arm64: mm: explicity include linux/vmalloc.h
arm64's mm/mmu.c uses vm_area_add_early, struct vm_area and other
definitions  but relies on implict inclusion of linux/vmalloc.h which
means that changes in other headers could break the build. Thus, add an
explicit include.

Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-05-30 11:07:42 +01:00
Kefeng Wang
c07ab957d9 arm64: Call __show_regs directly
Generic code expects show_regs() to also dump the stack, but arm64's
show_reg() does not do this. Some arm64 callers of show_regs() *only*
want the registers dumped, without the stack.

To enable generic code to work as expected, we need to make
show_regs() dump the stack. Where we only want the registers dumped,
we must use __show_regs().

This patch updates code to use __show_regs() where only registers are
desired. A subsequent patch will modify show_regs().

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-05-30 11:07:41 +01:00
Linus Torvalds
28b47809b2 IOMMU Updates for Linux v4.12
This includes:
 
 	* Some code optimizations for the Intel VT-d driver
 
 	* Code to switch off a previously enabled Intel IOMMU
 
 	* Support for 'struct iommu_device' for OMAP, Rockchip and
 	  Mediatek IOMMUs
 
 	* Some header optimizations for IOMMU core code headers and a
 	  few fixes that became necessary in other parts of the kernel
 	  because of that
 
 	* ACPI/IORT updates and fixes
 
 	* Some Exynos IOMMU optimizations
 
 	* Code updates for the IOMMU dma-api code to bring it closer to
 	  use per-cpu iova caches
 
 	* New command-line option to set default domain type allocated
 	  by the iommu core code
 
 	* Another command line option to allow the Intel IOMMU switched
 	  off in a tboot environment
 
 	* ARM/SMMU: TLB sync optimisations for SMMUv2, Support for using
 	  an IDENTITY domain in conjunction with DMA ops, Support for
 	  SMR masking, Support for 16-bit ASIDs (was previously broken)
 
 	* Various other small fixes and improvements
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABAgAGBQJZEY4XAAoJECvwRC2XARrjth0QAKV56zjnFclv39aDo6eCq9CT
 51+XT4bPY5VKQ2+Jx76TBNObHmGK+8KEMHfT9khpWJtFCDyy25SGckLry1nYqmZs
 tSTsbj4sOeCyKzOLITlRN9/OzKXkjKAxYuq+sQZZFDFYf3kCM/eag0dGAU6aVLNp
 tkIal3CSpGjCQ9M5JohrtQ1mwiGqCIkMIgvnBjRw+bfpLnQNG+VL6VU2G3RAkV2b
 5Vbdoy+P7ZQnJSZr/bibYL2BaQs2diR4gOppT5YbsfniMq4QYSjheu1xBboGX8b7
 sx8yuPi4370irSan0BDvlvdQdjBKIRiDjfGEKDhRwPhtvN6JREGakhEOC8MySQ37
 mP96B72Lmd+a7DEl5udOL7tQILA0DcUCX0aOyF714khnZuFU5tVlCotb/36xeJ+T
 FPc3RbEVQ90m8dYU6MNJ+ahtb/ZapxGTRfisIigB6wlnZa0Evabp9EJSce6oJMkm
 whbBhDubeEU18n9XAaofMbu+P2LAzq8cxiRMlsDvT4mIy7jO86jjCmhpu1Tfn2GY
 4wrEQZdWOMvhUsIhObXA0aC3BzC506uvnKPW3qy041RaxBuelWiBi29qzYbhxzkr
 DLDpWbUZNYPyFJjttpavyQb2/XRduBTJdVP1pQpkJNDsW5jLiBkpSqm9xNADapRY
 vLSYRX0JCIquaD+PAuxn
 =3aE8
 -----END PGP SIGNATURE-----

Merge tag 'iommu-updates-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu

Pull IOMMU updates from Joerg Roedel:

 - code optimizations for the Intel VT-d driver

 - ability to switch off a previously enabled Intel IOMMU

 - support for 'struct iommu_device' for OMAP, Rockchip and Mediatek
   IOMMUs

 - header optimizations for IOMMU core code headers and a few fixes that
   became necessary in other parts of the kernel because of that

 - ACPI/IORT updates and fixes

 - Exynos IOMMU optimizations

 - updates for the IOMMU dma-api code to bring it closer to use per-cpu
   iova caches

 - new command-line option to set default domain type allocated by the
   iommu core code

 - another command line option to allow the Intel IOMMU switched off in
   a tboot environment

 - ARM/SMMU: TLB sync optimisations for SMMUv2, Support for using an
   IDENTITY domain in conjunction with DMA ops, Support for SMR masking,
   Support for 16-bit ASIDs (was previously broken)

 - various other small fixes and improvements

* tag 'iommu-updates-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (63 commits)
  soc/qbman: Move dma-mapping.h include to qman_priv.h
  soc/qbman: Fix implicit header dependency now causing build fails
  iommu: Remove trace-events include from iommu.h
  iommu: Remove pci.h include from trace/events/iommu.h
  arm: dma-mapping: Don't override dma_ops in arch_setup_dma_ops()
  ACPI/IORT: Fix CONFIG_IOMMU_API dependency
  iommu/vt-d: Don't print the failure message when booting non-kdump kernel
  iommu: Move report_iommu_fault() to iommu.c
  iommu: Include device.h in iommu.h
  x86, iommu/vt-d: Add an option to disable Intel IOMMU force on
  iommu/arm-smmu: Return IOVA in iova_to_phys when SMMU is bypassed
  iommu/arm-smmu: Correct sid to mask
  iommu/amd: Fix incorrect error handling in amd_iommu_bind_pasid()
  iommu: Make iommu_bus_notifier return NOTIFY_DONE rather than error code
  omap3isp: Remove iommu_group related code
  iommu/omap: Add iommu-group support
  iommu/omap: Make use of 'struct iommu_device'
  iommu/omap: Store iommu_dev pointer in arch_data
  iommu/omap: Move data structures to omap-iommu.h
  iommu/omap: Drop legacy-style device support
  ...
2017-05-09 15:15:47 -07:00
Laura Abbott
d4bbc30bb0 arm64: use set_memory.h header
The set_memory_* functions have moved to set_memory.h.  Use that header
explicitly.

Link: http://lkml.kernel.org/r/1488920133-27229-4-git-send-email-labbott@redhat.com
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Linus Torvalds
ab182e67ec arm64 updates for 4.12:
- kdump support, including two necessary memblock additions:
   memblock_clear_nomap() and memblock_cap_memory_range()
 
 - ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
   numbers and weaker release consistency
 
 - arm64 ACPI platform MSI support
 
 - arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
   SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
   for DT perf bindings
 
 - architected timer errata framework (the arch/arm64 changes only)
 
 - support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
 
 - arm64 KVM refactoring to use common system register definitions
 
 - remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
   using it and deprecated in the architecture) together with some
   I-cache handling clean-up
 
 - PE/COFF EFI header clean-up/hardening
 
 - define BUG() instruction without CONFIG_BUG
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJZDKMoAAoJEGvWsS0AyF7xR+YP/0EMEz5MDfCv0PVYj7/AIa0G
 Zphl7OhysIkeDAz7urXw9Jdl0NfORNIqmD1vZNVSc321IyNp56Od+kWd82lBrOWB
 ad3nNT67pEmu0pAW7CO48ju3rTesEnEl3ra45E1tULeLihmv93jc4ZlfXgumlKq3
 /GE84XJ5ZFmluuhq1zgNefeUtyl1tbxTxHJ74+INF7dTd/5sJcphpqS4Dzpb+msT
 20WYliccQCBF9zBFUYHc2KjcXXKRQGxLulGS3MuoN2DLkD+U9YyR/OmA7SoXh2J2
 WXC5b0x856xTQJFCJ39pb7rw5xHjt3l5zfU3VLSvqEVL/+asBqCcgGNtNUgOW1Es
 dEHC6bc66Ley6mn7bbpFE3MK8D+K5q8HwMF6G5KDtIVB6DB/iQ6kzi5aXKoupxtb
 1EuU4OW6cDhmOFQYjgIDofLgqbmVvJofdF6+NfxasfZmWrMgHzv0rYvaCDnAV/Tr
 t7bhH7hf9/KcP/wpk86O2AMKKpgoNTqe1Qy8cWVFFLnut567Pb6zs/L3ZXfleoLv
 t613yM8Zj2fE05ja8ylMDjaasidNpXGttb08/4kAn06Daaoueqla0jmduAhy4aaV
 dQ3OFP9lJ5MFaFnMMTPfU3vtvNLMHuo9MZsYCrv5zCaNNs3lpAPUiPNh588ZscKa
 sWx4PEiaCi+wcOsLsJvh
 =SDkm
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - kdump support, including two necessary memblock additions:
   memblock_clear_nomap() and memblock_cap_memory_range()

 - ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
   numbers and weaker release consistency

 - arm64 ACPI platform MSI support

 - arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
   SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
   for DT perf bindings

 - architected timer errata framework (the arch/arm64 changes only)

 - support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API

 - arm64 KVM refactoring to use common system register definitions

 - remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
   using it and deprecated in the architecture) together with some
   I-cache handling clean-up

 - PE/COFF EFI header clean-up/hardening

 - define BUG() instruction without CONFIG_BUG

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
  arm64: Fix the DMA mmap and get_sgtable API with DMA_ATTR_FORCE_CONTIGUOUS
  arm64: Print DT machine model in setup_machine_fdt()
  arm64: pmu: Wire-up Cortex A53 L2 cache events and DTLB refills
  arm64: module: split core and init PLT sections
  arm64: pmuv3: handle pmuv3+
  arm64: Add CNTFRQ_EL0 trap handler
  arm64: Silence spurious kbuild warning on menuconfig
  arm64: pmuv3: use arm_pmu ACPI framework
  arm64: pmuv3: handle !PMUv3 when probing
  drivers/perf: arm_pmu: add ACPI framework
  arm64: add function to get a cpu's MADT GICC table
  drivers/perf: arm_pmu: split out platform device probe logic
  drivers/perf: arm_pmu: move irq request/free into probe
  drivers/perf: arm_pmu: split cpu-local irq request/free
  drivers/perf: arm_pmu: rename irq request/free functions
  drivers/perf: arm_pmu: handle no platform_device
  drivers/perf: arm_pmu: simplify cpu_pmu_request_irqs()
  drivers/perf: arm_pmu: factor out pmu registration
  drivers/perf: arm_pmu: fold init into alloc
  drivers/perf: arm_pmu: define armpmu_init_fn
  ...
2017-05-05 12:11:37 -07:00
Catalin Marinas
92f66f84d9 arm64: Fix the DMA mmap and get_sgtable API with DMA_ATTR_FORCE_CONTIGUOUS
While honouring the DMA_ATTR_FORCE_CONTIGUOUS on arm64 (commit
44176bb38f: "arm64: Add support for DMA_ATTR_FORCE_CONTIGUOUS to
IOMMU"), the existing uses of dma_mmap_attrs() and dma_get_sgtable()
have been broken by passing a physically contiguous vm_struct with an
invalid pages pointer through the common iommu API.

Since the coherent allocation with DMA_ATTR_FORCE_CONTIGUOUS uses CMA,
this patch simply reuses the existing swiotlb logic for mmap and
get_sgtable.

Note that the current implementation of get_sgtable (both swiotlb and
iommu) is broken if dma_declare_coherent_memory() is used since such
memory does not have a corresponding struct page. To be addressed in a
subsequent patch.

Fixes: 44176bb38f ("arm64: Add support for DMA_ATTR_FORCE_CONTIGUOUS to IOMMU")
Reported-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Tested-by: Andrzej Hajda <a.hajda@samsung.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-05-05 11:41:35 +01:00
Joerg Roedel
2c0248d688 Merge branches 'arm/exynos', 'arm/omap', 'arm/rockchip', 'arm/mediatek', 'arm/smmu', 'arm/core', 'x86/vt-d', 'x86/amd' and 'core' into next 2017-05-04 18:06:17 +02:00
Stefano Stabellini
e058632670 xen/arm,arm64: fix xen_dma_ops after 815dd18 "Consolidate get_dma_ops..."
The following commit:

  commit 815dd18788
  Author: Bart Van Assche <bart.vanassche@sandisk.com>
  Date:   Fri Jan 20 13:04:04 2017 -0800

      treewide: Consolidate get_dma_ops() implementations

rearranges get_dma_ops in a way that xen_dma_ops are not returned when
running on Xen anymore, dev->dma_ops is returned instead (see
arch/arm/include/asm/dma-mapping.h:get_arch_dma_ops and
include/linux/dma-mapping.h:get_dma_ops).

Fix the problem by storing dev->dma_ops in dev_archdata, and setting
dev->dma_ops to xen_dma_ops. This way, xen_dma_ops is returned naturally
by get_dma_ops. The Xen code can retrieve the original dev->dma_ops from
dev_archdata when needed. It also allows us to remove __generic_dma_ops
from common headers.

Signed-off-by: Stefano Stabellini <sstabellini@kernel.org>
Tested-by: Julien Grall <julien.grall@arm.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org>        [4.11+]
CC: linux@armlinux.org.uk
CC: catalin.marinas@arm.com
CC: will.deacon@arm.com
CC: boris.ostrovsky@oracle.com
CC: jgross@suse.com
CC: Julien Grall <julien.grall@arm.com>
2017-05-02 11:14:42 +02:00
Joerg Roedel
461a6946b1 iommu: Remove pci.h include from trace/events/iommu.h
The include file does not need any PCI specifics, so remove
that include. Also fix the places that relied on it.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
2017-04-29 00:20:49 +02:00
Sricharan R
b913efe78a arm64: dma-mapping: Remove the notifier trick to handle early setting of dma_ops
With arch_setup_dma_ops now being called late during device's probe after
the device's iommu is probed, the notifier trick required to handle the
early setup of dma_ops before the iommu group gets created is not
required. So removing the notifier's here.

Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
[rm: clean up even more]
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2017-04-20 16:31:08 +02:00
Will Deacon
6ae979ab39 Revert "Revert "arm64: hugetlb: partial revert of 66b3923a1a0f""
The use of the contiguous bit by our hugetlb implementation violates
the break-before-make requirements of the architecture and can lead to
silent data corruption or TLB conflict aborts. Once again, disable these
hugetlb sizes whilst it gets worked out.

This reverts commit ab2e1b8923.

Conflicts:
	arch/arm64/mm/hugetlbpage.c

Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-04-07 12:27:29 +01:00
Stephen Boyd
b824b93068 arm64: print a fault message when attempting to write RO memory
If a page is marked read only we should print out that fact,
instead of printing out that there was a page fault. Right now we
get a cryptic error message that something went wrong with an
unhandled fault, but we don't evaluate the esr to figure out that
it was a read/write permission fault.

Instead of seeing:

  Unable to handle kernel paging request at virtual address ffff000008e460d8
  pgd = ffff800003504000
  [ffff000008e460d8] *pgd=0000000083473003, *pud=0000000083503003, *pmd=0000000000000000
  Internal error: Oops: 9600004f [#1] PREEMPT SMP

we'll see:

  Unable to handle kernel write to read-only memory at virtual address ffff000008e760d8
  pgd = ffff80003d3de000
  [ffff000008e760d8] *pgd=0000000083472003, *pud=0000000083435003, *pmd=0000000000000000
  Internal error: Oops: 9600004f [#1] PREEMPT SMP

We also add a userspace address check into is_permission_fault()
so that the function doesn't return true for ttbr0 PAN faults
when it shouldn't.

Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-04-06 17:36:09 +01:00
AKASHI Takahiro
e62aaeac42 arm64: kdump: provide /proc/vmcore file
Arch-specific functions are added to allow for implementing a crash dump
file interface, /proc/vmcore, which can be viewed as a ELF file.

A user space tool, like kexec-tools, is responsible for allocating
a separate region for the core's ELF header within crash kdump kernel
memory and filling it in when executing kexec_load().

Then, its location will be advertised to crash dump kernel via a new
device-tree property, "linux,elfcorehdr", and crash dump kernel preserves
the region for later use with reserve_elfcorehdr() at boot time.

On crash dump kernel, /proc/vmcore will access the primary kernel's memory
with copy_oldmem_page(), which feeds the data page-by-page by ioremap'ing
it since it does not reside in linear mapping on crash dump kernel.

Meanwhile, elfcorehdr_read() is simple as the region is always mapped.

Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-04-05 18:31:38 +01:00
AKASHI Takahiro
254a41c0ba arm64: hibernate: preserve kdump image around hibernation
Since arch_kexec_protect_crashkres() removes a mapping for crash dump
kernel image, the loaded data won't be preserved around hibernation.

In this patch, helper functions, crash_prepare_suspend()/
crash_post_resume(), are additionally called before/after hibernation so
that the relevant memory segments will be mapped again and preserved just
as the others are.

In addition, to minimize the size of hibernation image, crash_is_nosave()
is added to pfn_is_nosave() in order to recognize only the pages that hold
loaded crash dump kernel image as saveable. Hibernation excludes any pages
that are marked as Reserved and yet "nosave."

Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-04-05 18:28:50 +01:00
Takahiro Akashi
98d2e1539b arm64: kdump: protect crash dump kernel memory
arch_kexec_protect_crashkres() and arch_kexec_unprotect_crashkres()
are meant to be called by kexec_load() in order to protect the memory
allocated for crash dump kernel once the image is loaded.

The protection is implemented by unmapping the relevant segments in crash
dump kernel memory, rather than making it read-only as other archs do,
to prevent coherency issues due to potential cache aliasing (with
mismatched attributes).

Page-level mappings are consistently used here so that we can change
the attributes of segments in page granularity as well as shrink the region
also in page granularity through /sys/kernel/kexec_crash_size, putting
the freed memory back to buddy system.

Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-04-05 18:28:35 +01:00