Commit 0aaa29a56e ("mm, page_alloc: reserve pageblocks for high-order
atomic allocations on demand") added an unnecessary and unused parameter
to __rmqueue. It was a parameter that was used in an earlier version of
the patch and then left behind. This patch cleans it up.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function removes a section, not a block. Rename to reflect actual
functionality.
Signed-off-by: Seth Jennings <sjennings@variantweb.net>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Russ Anderson <rja@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, section_count is calculated in add_memory_block(). However,
init_memory_block() increments section_count as well, which, at first,
seems like it would lead to an off-by-one error. There is no harm done
because add_memory_block() immediately overwrites the
mem->section_count, but it is messy.
This commit moves the increment out of the common init_memory_block()
(called by both add_memory_block() and register_new_memory()) and adds
it to register_new_memory().
Signed-off-by: Seth Jennings <sjennings@variantweb.net>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Russ Anderson <rja@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The MemAvailable item in /proc/meminfo is to give users a hint of how
much memory is allocatable without causing swapping, so it excludes the
zones' low watermarks as unavailable to userspace.
However, for a userspace allocation, kswapd will actually reclaim until
the free pages hit a combination of the high watermark and the page
allocator's lowmem protection that keeps a certain amount of DMA and
DMA32 memory from userspace as well.
Subtract the full amount we know to be unavailable to userspace from the
number of free pages when calculating MemAvailable.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dirty balance reserve that dirty throttling has to consider is
merely memory not available to userspace allocations. There is nothing
writeback-specific about it. Generalize the name so that it's reusable
outside of that context.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_cache_read has been historically using page_cache_alloc_cold to
allocate a new page. This means that mapping_gfp_mask is used as the
base for the gfp_mask. Many filesystems are setting this mask to
GFP_NOFS to prevent from fs recursion issues. page_cache_read is called
from the vm_operations_struct::fault() context during the page fault.
This context doesn't need the reclaim protection normally.
ceph and ocfs2 which call filemap_fault from their fault handlers seem
to be OK because they are not taking any fs lock before invoking generic
implementation. xfs which takes XFS_MMAPLOCK_SHARED is safe from the
reclaim recursion POV because this lock serializes truncate and punch
hole with the page faults and it doesn't get involved in the reclaim.
There is simply no reason to deliberately use a weaker allocation
context when a __GFP_FS | __GFP_IO can be used. The GFP_NOFS protection
might be even harmful. There is a push to fail GFP_NOFS allocations
rather than loop within allocator indefinitely with a very limited
reclaim ability. Once we start failing those requests the OOM killer
might be triggered prematurely because the page cache allocation failure
is propagated up the page fault path and end up in
pagefault_out_of_memory.
We cannot play with mapping_gfp_mask directly because that would be racy
wrt. parallel page faults and it might interfere with other users who
really rely on NOFS semantic from the stored gfp_mask. The mask is also
inode proper so it would even be a layering violation. What we can do
instead is to push the gfp_mask into struct vm_fault and allow fs layer
to overwrite it should the callback need to be called with a different
allocation context.
Initialize the default to (mapping_gfp_mask | __GFP_FS | __GFP_IO)
because this should be safe from the page fault path normally. Why do
we care about mapping_gfp_mask at all then? Because this doesn't hold
only reclaim protection flags but it also might contain zone and
movability restrictions (GFP_DMA32, __GFP_MOVABLE and others) so we have
to respect those.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Jan Kara <jack@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sysctl_compaction_handler() is the handler function for compact_memory
tunable knob under /proc/sys/vm, add the missing knob name to make this
more accurate in comment.
No functional change.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
x86: arch_mmap_rnd() uses hard-coded values, 8 for 32-bit and 28 for
64-bit, to generate the random offset for the mmap base address. This
value represents a compromise between increased ASLR effectiveness and
avoiding address-space fragmentation. Replace it with a Kconfig option,
which is sensibly bounded, so that platform developers may choose where
to place this compromise. Keep default values as new minimums.
Signed-off-by: Daniel Cashman <dcashman@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Nick Kralevich <nnk@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hector Marco-Gisbert <hecmargi@upv.es>
Cc: Borislav Petkov <bp@suse.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arm64: arch_mmap_rnd() uses STACK_RND_MASK to generate the random offset
for the mmap base address. This value represents a compromise between
increased ASLR effectiveness and avoiding address-space fragmentation.
Replace it with a Kconfig option, which is sensibly bounded, so that
platform developers may choose where to place this compromise. Keep
default values as new minimums.
Signed-off-by: Daniel Cashman <dcashman@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Nick Kralevich <nnk@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hector Marco-Gisbert <hecmargi@upv.es>
Cc: Borislav Petkov <bp@suse.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arm: arch_mmap_rnd() uses a hard-code value of 8 to generate the random
offset for the mmap base address. This value represents a compromise
between increased ASLR effectiveness and avoiding address-space
fragmentation. Replace it with a Kconfig option, which is sensibly
bounded, so that platform developers may choose where to place this
compromise. Keep 8 as the minimum acceptable value.
[arnd@arndb.de: ARM: avoid ARCH_MMAP_RND_BITS for NOMMU]
Signed-off-by: Daniel Cashman <dcashman@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Nick Kralevich <nnk@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hector Marco-Gisbert <hecmargi@upv.es>
Cc: Borislav Petkov <bp@suse.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Address Space Layout Randomization (ASLR) provides a barrier to
exploitation of user-space processes in the presence of security
vulnerabilities by making it more difficult to find desired code/data
which could help an attack. This is done by adding a random offset to
the location of regions in the process address space, with a greater
range of potential offset values corresponding to better protection/a
larger search-space for brute force, but also to greater potential for
fragmentation.
The offset added to the mmap_base address, which provides the basis for
the majority of the mappings for a process, is set once on process exec
in arch_pick_mmap_layout() and is done via hard-coded per-arch values,
which reflect, hopefully, the best compromise for all systems. The
trade-off between increased entropy in the offset value generation and
the corresponding increased variability in address space fragmentation
is not absolute, however, and some platforms may tolerate higher amounts
of entropy. This patch introduces both new Kconfig values and a sysctl
interface which may be used to change the amount of entropy used for
offset generation on a system.
The direct motivation for this change was in response to the
libstagefright vulnerabilities that affected Android, specifically to
information provided by Google's project zero at:
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
The attack presented therein, by Google's project zero, specifically
targeted the limited randomness used to generate the offset added to the
mmap_base address in order to craft a brute-force-based attack.
Concretely, the attack was against the mediaserver process, which was
limited to respawning every 5 seconds, on an arm device. The hard-coded
8 bits used resulted in an average expected success rate of defeating
the mmap ASLR after just over 10 minutes (128 tries at 5 seconds a
piece). With this patch, and an accompanying increase in the entropy
value to 16 bits, the same attack would take an average expected time of
over 45 hours (32768 tries), which makes it both less feasible and more
likely to be noticed.
The introduced Kconfig and sysctl options are limited by per-arch
minimum and maximum values, the minimum of which was chosen to match the
current hard-coded value and the maximum of which was chosen so as to
give the greatest flexibility without generating an invalid mmap_base
address, generally a 3-4 bits less than the number of bits in the
user-space accessible virtual address space.
When decided whether or not to change the default value, a system
developer should consider that mmap_base address could be placed
anywhere up to 2^(value) bits away from the non-randomized location,
which would introduce variable-sized areas above and below the mmap_base
address such that the maximum vm_area_struct size may be reduced,
preventing very large allocations.
This patch (of 4):
ASLR only uses as few as 8 bits to generate the random offset for the
mmap base address on 32 bit architectures. This value was chosen to
prevent a poorly chosen value from dividing the address space in such a
way as to prevent large allocations. This may not be an issue on all
platforms. Allow the specification of a minimum number of bits so that
platforms desiring greater ASLR protection may determine where to place
the trade-off.
Signed-off-by: Daniel Cashman <dcashman@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Nick Kralevich <nnk@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hector Marco-Gisbert <hecmargi@upv.es>
Cc: Borislav Petkov <bp@suse.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following flag comparison in mmap_region makes no sense:
if (!(vm_flags & MAP_FIXED))
return -ENOMEM;
The condition is always false and thus the above "return -ENOMEM" is
never executed. The vm_flags must not be compared with MAP_FIXED flag.
The vm_flags may only be compared with VM_* flags. MAP_FIXED has the
same value as VM_MAYREAD.
Hitting the rlimit is a slow path and find_vma_intersection should
realize that there is no overlapping VMA for !MAP_FIXED case pretty
quickly.
Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zone_reclaimable_pages counts how many pages are reclaimable in the
given zone. This currently includes all pages on file lrus and anon
lrus if there is an available swap storage. We do not consider
NR_ISOLATED_{ANON,FILE} counters though which is not correct because
these counters reflect temporarily isolated pages which are still
reclaimable because they either get back to their LRU or get freed
either by the page reclaim or page migration.
The number of these pages might be sufficiently high to confuse users of
zone_reclaimable_pages (e.g. mbind can migrate large ranges of memory
at once).
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bdev_write_page() is used by swapout and by writepage where we cannot
use __GFP_FS or __GFP_IO. So it is misleading to mention GFP_KERNEL
here.
blk_queue_enter() only actually looks at __GFP_DIRECT_RECLAIM, so no
bugs were harmed in the making of this patch.
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two bits defined for cg_proto->flags - MEMCG_SOCK_ACTIVATED
and MEMCG_SOCK_ACTIVE - both are set in tcp_update_limit, but the former
is never cleared while the latter can be cleared by unsetting the limit.
This allows to disable tcp socket accounting for new sockets after it
was enabled by writing -1 to memory.kmem.tcp.limit_in_bytes while still
guaranteeing that memcg_socket_limit_enabled static key will be
decremented on memcg destruction.
This functionality looks dubious, because it is not clear what a use
case would be. By enabling tcp accounting a user accepts the price. If
they then find the performance degradation unacceptable, they can always
restart their workload with tcp accounting disabled. It does not seem
there is any need to flip it while the workload is running.
Besides, it contradicts to how kmem accounting API works: writing
whatever to memory.kmem.limit_in_bytes enables kmem accounting for the
cgroup in question, after which it cannot be disabled. Therefore one
might expect that writing -1 to memory.kmem.tcp.limit_in_bytes just
enables socket accounting w/o limiting it, which might be useful by
itself, but it isn't true.
Since this API peculiarity is not documented anywhere, I propose to drop
it. This will allow to simplify the code by dropping cg_proto->flags.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We assume there is enough inactive page cache if the size of inactive
file lru is greater than the size of active file lru, in which case we
force-scan file lru ignoring anonymous pages. While this logic works
fine when there are plenty of page cache pages, it fails if the size of
file lru is small (several MB): in this case (lru_size >> prio) will be
0 for normal scan priorities, as a result, if inactive file lru happens
to be larger than active file lru, anonymous pages of a cgroup will
never get evicted unless the system experiences severe memory pressure,
even if there are gigabytes of unused anonymous memory there, which is
unfair in respect to other cgroups, whose workloads might be page cache
oriented.
This patch attempts to fix this by elaborating the "enough inactive page
cache" check: it makes it not only check that inactive lru size > active
lru size, but also that we will scan something from the cgroup at the
current scan priority. If these conditions do not hold, we proceed to
SCAN_FRACT as usual.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several shortcomings with the accounting of shared memory
(SysV shm, shared anonymous mapping, mapping of a tmpfs file). The
values in /proc/<pid>/status and <...>/statm don't allow to distinguish
between shmem memory and a shared mapping to a regular file, even though
theirs implication on memory usage are quite different: during reclaim,
file mapping can be dropped or written back on disk, while shmem needs a
place in swap.
Also, to distinguish the memory occupied by anonymous and file mappings,
one has to read the /proc/pid/statm file, which has a field for the file
mappings (again, including shmem) and total memory occupied by these
mappings (i.e. equivalent to VmRSS in the <...>/status file. Getting
the value for anonymous mappings only is thus not exactly user-friendly
(the statm file is intended to be rather efficiently machine-readable).
To address both of these shortcomings, this patch adds a breakdown of
VmRSS in /proc/<pid>/status via new fields RssAnon, RssFile and
RssShmem, making use of the previous preparatory patch. These fields
tell the user the memory occupied by private anonymous pages, mapped
regular files and shmem, respectively. Other existing fields in /status
and /statm files are left without change. The /statm file can be
extended in the future, if there's a need for that.
Example (part of) /proc/pid/status output including the new Rss* fields:
VmPeak: 2001008 kB
VmSize: 2001004 kB
VmLck: 0 kB
VmPin: 0 kB
VmHWM: 5108 kB
VmRSS: 5108 kB
RssAnon: 92 kB
RssFile: 1324 kB
RssShmem: 3692 kB
VmData: 192 kB
VmStk: 136 kB
VmExe: 4 kB
VmLib: 1784 kB
VmPTE: 3928 kB
VmPMD: 20 kB
VmSwap: 0 kB
HugetlbPages: 0 kB
[vbabka@suse.cz: forward-porting, tweak changelog]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently looking at /proc/<pid>/status or statm, there is no way to
distinguish shmem pages from pages mapped to a regular file (shmem pages
are mapped to /dev/zero), even though their implication in actual memory
use is quite different.
The internal accounting currently counts shmem pages together with
regular files. As a preparation to extend the userspace interfaces,
this patch adds MM_SHMEMPAGES counter to mm_rss_stat to account for
shmem pages separately from MM_FILEPAGES. The next patch will expose it
to userspace - this patch doesn't change the exported values yet, by
adding up MM_SHMEMPAGES to MM_FILEPAGES at places where MM_FILEPAGES was
used before. The only user-visible change after this patch is the OOM
killer message that separates the reported "shmem-rss" from "file-rss".
[vbabka@suse.cz: forward-porting, tweak changelog]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Following the previous patch, further reduction of /proc/pid/smaps cost
is possible for private writable shmem mappings with unpopulated areas
where the page walk invokes the .pte_hole function. We can use radix
tree iterator for each such area instead of calling find_get_entry() in
a loop. This is possible at the extra maintenance cost of introducing
another shmem function shmem_partial_swap_usage().
To demonstrate the diference, I have measured this on a process that
creates a private writable 2GB mapping of a partially swapped out
/dev/shm/file (which cannot employ the optimizations from the prvious
patch) and doesn't populate it at all. I time how long does it take to
cat /proc/pid/smaps of this process 100 times.
Before this patch:
real 0m3.831s
user 0m0.180s
sys 0m3.212s
After this patch:
real 0m1.176s
user 0m0.180s
sys 0m0.684s
The time is similar to the case where a radix tree iterator is employed
on the whole mapping.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous patch has improved swap accounting for shmem mapping, which
however made /proc/pid/smaps more expensive for shmem mappings, as we
consult the radix tree for each pte_none entry, so the overal complexity
is O(n*log(n)).
We can reduce this significantly for mappings that cannot contain COWed
pages, because then we can either use the statistics tha shmem object
itself tracks (if the mapping contains the whole object, or the swap
usage of the whole object is zero), or use the radix tree iterator,
which is much more effective than repeated find_get_entry() calls.
This patch therefore introduces a function shmem_swap_usage(vma) and
makes /proc/pid/smaps use it when possible. Only for writable private
mappings of shmem objects (i.e. tmpfs files) with the shmem object
itself (partially) swapped outwe have to resort to the find_get_entry()
approach.
Hopefully such mappings are relatively uncommon.
To demonstrate the diference, I have measured this on a process that
creates a 2GB mapping and dirties single pages with a stride of 2MB, and
time how long does it take to cat /proc/pid/smaps of this process 100
times.
Private writable mapping of a /dev/shm/file (the most complex case):
real 0m3.831s
user 0m0.180s
sys 0m3.212s
Shared mapping of an almost full mapping of a partially swapped /dev/shm/file
(which needs to employ the radix tree iterator).
real 0m1.351s
user 0m0.096s
sys 0m0.768s
Same, but with /dev/shm/file not swapped (so no radix tree walk needed)
real 0m0.935s
user 0m0.128s
sys 0m0.344s
Private anonymous mapping:
real 0m0.949s
user 0m0.116s
sys 0m0.348s
The cost is now much closer to the private anonymous mapping case, unless
the shmem mapping is private and writable.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, /proc/pid/smaps will always show "Swap: 0 kB" for
shmem-backed mappings, even if the mapped portion does contain pages
that were swapped out. This is because unlike private anonymous
mappings, shmem does not change pte to swap entry, but pte_none when
swapping the page out. In the smaps page walk, such page thus looks
like it was never faulted in.
This patch changes smaps_pte_entry() to determine the swap status for
such pte_none entries for shmem mappings, similarly to how
mincore_page() does it. Swapped out shmem pages are thus accounted for.
For private mappings of tmpfs files that COWed some of the pages, swaped
out status of the original shmem pages is naturally ignored. If some of
the private copies was also swapped out, they are accounted via their
page table swap entries, so the resulting reported swap usage is then a
sum of both swapped out private copies, and swapped out shmem pages that
were not COWed. No double accounting can thus happen.
The accounting is arguably still not as precise as for private anonymous
mappings, since now we will count also pages that the process in
question never accessed, but another process populated them and then let
them become swapped out. I believe it is still less confusing and
subtle than not showing any swap usage by shmem mappings at all.
Swapped out counter might of interest of users who would like to prevent
from future swapins during performance critical operation and pre-fault
them at their convenience. Especially for larger swapped out regions
the cost of swapin is much higher than a fresh page allocation. So a
differentiation between pte_none vs. swapped out is important for those
usecases.
One downside of this patch is that it makes /proc/pid/smaps more
expensive for shmem mappings, as we consult the radix tree for each
pte_none entry, so the overal complexity is O(n*log(n)). I have
measured this on a process that creates a 2GB mapping and dirties single
pages with a stride of 2MB, and time how long does it take to cat
/proc/pid/smaps of this process 100 times.
Private anonymous mapping:
real 0m0.949s
user 0m0.116s
sys 0m0.348s
Mapping of a /dev/shm/file:
real 0m3.831s
user 0m0.180s
sys 0m3.212s
The difference is rather substantial, so the next patch will reduce the
cost for shared or read-only mappings.
In a less controlled experiment, I've gathered pids of processes on my
desktop that have either '/dev/shm/*' or 'SYSV*' in smaps. This
included the Chrome browser and some KDE processes. Again, I've run cat
/proc/pid/smaps on each 100 times.
Before this patch:
real 0m9.050s
user 0m0.518s
sys 0m8.066s
After this patch:
real 0m9.221s
user 0m0.541s
sys 0m8.187s
This suggests low impact on average systems.
Note that this patch doesn't attempt to adjust the SwapPss field for
shmem mappings, which would need extra work to determine who else could
have the pages mapped. Thus the value stays zero except for COWed
swapped out pages in a shmem mapping, which are accounted as usual.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This series is based on Jerome Marchand's [1] so let me quote the first
paragraph from there:
There are several shortcomings with the accounting of shared memory
(sysV shm, shared anonymous mapping, mapping to a tmpfs file). The
values in /proc/<pid>/status and statm don't allow to distinguish
between shmem memory and a shared mapping to a regular file, even though
their implications on memory usage are quite different: at reclaim, file
mapping can be dropped or written back on disk while shmem needs a place
in swap. As for shmem pages that are swapped-out or in swap cache, they
aren't accounted at all.
The original motivation for myself is that a customer found (IMHO
rightfully) confusing that e.g. top output for process swap usage is
unreliable with respect to swapped out shmem pages, which are not
accounted for.
The fundamental difference between private anonymous and shmem pages is
that the latter has PTE's converted to pte_none, and not swapents. As
such, they are not accounted to the number of swapents visible e.g. in
/proc/pid/status VmSwap row. It might be theoretically possible to use
swapents when swapping out shmem (without extra cost, as one has to
change all mappers anyway), and on swap in only convert the swapent for
the faulting process, leaving swapents in other processes until they
also fault (so again no extra cost). But I don't know how many
assumptions this would break, and it would be too disruptive change for
a relatively small benefit.
Instead, my approach is to document the limitation of VmSwap, and
provide means to determine the swap usage for shmem areas for those who
are interested and willing to pay the price, using /proc/pid/smaps.
Because outside of ipcs, I don't think it's possible to currently to
determine the usage at all. The previous patchset [1] did introduce new
shmem-specific fields into smaps output, and functions to determine the
values. I take a simpler approach, noting that smaps output already has
a "Swap: X kB" line, where currently X == 0 always for shmem areas. I
think we can just consider this a bug and provide the proper value by
consulting the radix tree, as e.g. mincore_page() does. In the patch
changelog I explain why this is also not perfect (and cannot be without
swapents), but still arguably much better than showing a 0.
The last two patches are adapted from Jerome's patchset and provide a
VmRSS breakdown to RssAnon, RssFile and RssShm in /proc/pid/status.
Hugh noted that this is a welcome addition, and I agree that it might
help e.g. debugging process memory usage at albeit non-zero, but still
rather low cost of extra per-mm counter and some page flag checks.
[1] http://lwn.net/Articles/611966/
This patch (of 6):
The documentation for /proc/pid/status does not mention that the value
of VmSwap counts only swapped out anonymous private pages, and not
swapped out pages of the underlying shmem objects (for shmem mappings).
This is not obvious, so document this limitation.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make memmap_valid_within return bool due to this particular function
only using either one or zero as its return value.
No functional change.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To make the intention clearer, use list_{next,first}_entry instead of
list_entry.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_slowpath is looping over ALLOC_NO_WATERMARKS requests if
__GFP_NOFAIL is requested. This is fragile because we are basically
relying on somebody else to make the reclaim (be it the direct reclaim
or OOM killer) for us. The caller might be holding resources (e.g.
locks) which block other other reclaimers from making any progress for
example. Remove the retry loop and rely on __alloc_pages_slowpath to
invoke all allowed reclaim steps and retry logic.
We have to be careful about __GFP_NOFAIL allocations from the
PF_MEMALLOC context even though this is a very bad idea to begin with
because no progress can be gurateed at all. We shouldn't break the
__GFP_NOFAIL semantic here though. It could be argued that this is
essentially GFP_NOWAIT context which we do not support but PF_MEMALLOC
is much harder to check for existing users because they might happen
deep down the code path performed much later after setting the flag so
we cannot really rule out there is no kernel path triggering this
combination.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_high_priority doesn't do anything special other than it
calls get_page_from_freelist and loops around GFP_NOFAIL allocation
until it succeeds. It would be better if the first part was done in
__alloc_pages_slowpath where we modify the zonelist because this would
be easier to read and understand. Opencoding the function into its only
caller allows to simplify it a bit as well.
This patch doesn't introduce any functional changes.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hardcoding index to zonelists array in gfp_zonelist() is not a good
idea, let's enumerate it to improve readability.
No functional change.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix CONFIG_NUMA=n build]
[n-horiguchi@ah.jp.nec.com: fix warning in comparing enumerator]
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a0b8cab3b9 ("mm: remove lru parameter from
__pagevec_lru_add and remove parts of pagevec API") there's no
user of this function anymore, so remove it.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make memblock_is_memory() and memblock_is_reserved return bool to
improve readability due to these particular functions only using either
one or zero as their return value.
No functional change.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make is_file_hugepages() return bool to improve readability due to this
particular function only using either one or zero as its return value.
This patch also removed the if condition to make is_file_hugepages
return directly.
No functional change.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move node_id zone_idx shrink flags into trace function, so thay we don't
need caculate these args if the trace is disabled, and will make this
function have less arguments.
Signed-off-by: yalin wang <yalin.wang2010@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, we have tracepoint in test_pages_isolated() to notify pfn which
cannot be isolated. But, in alloc_contig_range(), some error path
doesn't call test_pages_isolated() so it's still hard to know exact pfn
that causes allocation failure.
This patch change this situation by calling test_pages_isolated() in
almost error path. In allocation failure case, some overhead is added
by this change, but, allocation failure is really rare event so it would
not matter.
In fatal signal pending case, we don't call test_pages_isolated()
because this failure is intentional one.
There was a bogus outer_start problem due to unchecked buddy order and
this patch also fix it. Before this patch, it didn't matter, because
end result is same thing. But, after this patch, tracepoint will report
failed pfn so it should be accurate.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cma allocation should be guranteeded to succeed. But sometimes it can
fail in the current implementation. To track down the problem, we need
to know which page is problematic and this new tracepoint will report
it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is preparation step to report test failed pfn in new tracepoint to
analyze cma allocation failure problem. There is no functional change
in this patch.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When running the SPECint_rate gcc on some very large boxes it was
noticed that the system was spending lots of time in
mpol_shared_policy_lookup(). The gamess benchmark can also show it and
is what I mostly used to chase down the issue since the setup for that I
found to be easier.
To be clear the binaries were on tmpfs because of disk I/O requirements.
We then used text replication to avoid icache misses and having all the
copies banging on the memory where the instruction code resides. This
results in us hitting a bottleneck in mpol_shared_policy_lookup() since
lookup is serialised by the shared_policy lock.
I have only reproduced this on very large (3k+ cores) boxes. The
problem starts showing up at just a few hundred ranks getting worse
until it threatens to livelock once it gets large enough. For example
on the gamess benchmark at 128 ranks this area consumes only ~1% of
time, at 512 ranks it consumes nearly 13%, and at 2k ranks it is over
90%.
To alleviate the contention in this area I converted the spinlock to an
rwlock. This allows a large number of lookups to happen simultaneously.
The results were quite good reducing this consumtion at max ranks to
around 2%.
[akpm@linux-foundation.org: tidy up code comments]
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__phys_to_pfn and __pfn_to_phys are symmetric, PHYS_PFN and PFN_PHYS are
semmetric:
- y = (phys_addr_t)x << PAGE_SHIFT
- y >> PAGE_SHIFT = (phys_add_t)x
- (unsigned long)(y >> PAGE_SHIFT) = x
[akpm@linux-foundation.org: use macro arg name `x']
[arnd@arndb.de: include linux/pfn.h for PHYS_PFN definition]
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move trace_reclaim_flags() into trace function, so that we don't need
caculate these flags if the trace is disabled.
Signed-off-by: yalin wang <yalin.wang2010@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before usage page pointer initialized by NULL is reinitialized by
follow_page_mask(). Drop useless init of page pointer in the beginning
of loop.
Signed-off-by: Alexey Klimov <klimov.linux@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg. For the list, see below:
- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems. This is the most tedious part, because
most filesystems overwrite the alloc_inode method.
The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds. Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make vmalloc family functions allocate vmalloc area pages with
alloc_kmem_pages so that if __GFP_ACCOUNT is set they will be accounted
to memcg. This is needed, at least, to account alloc_fdmem allocations.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, if we want to account all objects of a particular kmem cache,
we have to pass __GFP_ACCOUNT to each kmem_cache_alloc call, which is
inconvenient. This patch introduces SLAB_ACCOUNT flag which if passed
to kmem_cache_create will force accounting for every allocation from
this cache even if __GFP_ACCOUNT is not passed.
This patch does not make any of the existing caches use this flag - it
will be done later in the series.
Note, a cache with SLAB_ACCOUNT cannot be merged with a cache w/o
SLAB_ACCOUNT, because merged caches share the same kmem_cache struct and
hence cannot have different sets of SLAB_* flags. Thus using this flag
will probably reduce the number of merged slabs even if kmem accounting
is not used (only compiled in).
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Suggested-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Black-list kmem accounting policy (aka __GFP_NOACCOUNT) turned out to be
fragile and difficult to maintain, because there seem to be many more
allocations that should not be accounted than those that should be.
Besides, false accounting an allocation might result in much worse
consequences than not accounting at all, namely increased memory
consumption due to pinned dead kmem caches.
So this patch switches kmem accounting to the white-policy: now only
those kmem allocations that are marked as __GFP_ACCOUNT are accounted to
memcg. Currently, no kmem allocations are marked like this. The
following patches will mark several kmem allocations that are known to
be easily triggered from userspace and therefore should be accounted to
memcg.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 8f4fc071b1 ("gfp: add __GFP_NOACCOUNT").
Black-list kmem accounting policy (aka __GFP_NOACCOUNT) turned out to be
fragile and difficult to maintain, because there seem to be many more
allocations that should not be accounted than those that should be.
Besides, false accounting an allocation might result in much worse
consequences than not accounting at all, namely increased memory
consumption due to pinned dead kmem caches.
So it was decided to switch to the white-list policy. This patch
reverts bits introducing the black-list policy. The white-list policy
will be introduced later in the series.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, all kmem allocations (namely every kmem_cache_alloc, kmalloc,
alloc_kmem_pages call) are accounted to memory cgroup automatically.
Callers have to explicitly opt out if they don't want/need accounting
for some reason. Such a design decision leads to several problems:
- kmalloc users are highly sensitive to failures, many of them
implicitly rely on the fact that kmalloc never fails, while memcg
makes failures quite plausible.
- A lot of objects are shared among different containers by design.
Accounting such objects to one of containers is just unfair.
Moreover, it might lead to pinning a dead memcg along with its kmem
caches, which aren't tiny, which might result in noticeable increase
in memory consumption for no apparent reason in the long run.
- There are tons of short-lived objects. Accounting them to memcg will
only result in slight noise and won't change the overall picture, but
we still have to pay accounting overhead.
For more info, see
- http://lkml.kernel.org/r/20151105144002.GB15111%40dhcp22.suse.cz
- http://lkml.kernel.org/r/20151106090555.GK29259@esperanza
Therefore this patchset switches to the white list policy. Now kmalloc
users have to explicitly opt in by passing __GFP_ACCOUNT flag.
Currently, the list of accounted objects is quite limited and only
includes those allocations that (1) are known to be easily triggered
from userspace and (2) can fail gracefully (for the full list see patch
no. 6) and it still misses many object types. However, accounting only
those objects should be a satisfactory approximation of the behavior we
used to have for most sane workloads.
This patch (of 6):
Revert 499611ed45 ("kernfs: do not account ino_ida allocations
to memcg").
Black-list kmem accounting policy (aka __GFP_NOACCOUNT) turned out to be
fragile and difficult to maintain, because there seem to be many more
allocations that should not be accounted than those that should be.
Besides, false accounting an allocation might result in much worse
consequences than not accounting at all, namely increased memory
consumption due to pinned dead kmem caches.
So it was decided to switch to the white-list policy. This patch reverts
bits introducing the black-list policy. The white-list policy will be
introduced later in the series.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new helper function get_first_slab() that get the first slab from
a kmem_cache_node.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the code with list_for_each_entry().
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the code with list_first_entry_or_null().
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>