The conversion to per bus type registration functions means we don't need
to do module_get()s to hold the bus types in memory (their users will link
to them) so we removed all those calls. This left module_put() calls in
the cleanup paths which aren't needed and which cause unbalanced puts if
we ever try to unload anything.
Reported-by: Jonathan Cameron <jic23@cam.ac.uk>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Commit b33f9cbd67 ("regmap: Specify a module license") added a
MODULES_LICENSE to this file without adding an include of module.h.
module.h should have been included anyway, since this file has
EXPORT_SYMBOLs as well. With the pending module.h split up, this would
probably have caused build problems.
Cc: Stephen Warren <swarren@nvidia.com>
Cc: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_REGMAP_I2C/SPI are set to m when selected by a tristate config
option that's set to m. The regmap modules don't specify a license, so
fail to link to regmap_init at load time, since that is EXPORT_SYMBOL_GPL.
Fix this by specifying a license for the regmap modules.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
We should be reading the number of bytes we were asked for, not the size
of a single register.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@ti.com>
Acked-by: Wolfram Sang <w.sang@pengutronix.de>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@ti.com>
Acked-by: Wolfram Sang <w.sang@pengutronix.de>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
There are many places in the tree where we implement register access for
devices on non-memory mapped buses, especially I2C and SPI. Since hardware
designers seem to have settled on a relatively consistent set of register
interfaces this can be effectively factored out into shared code. There
are a standard set of formats for marshalling data for exchange with the
device, with the actual I/O mechanisms generally being simple byte
streams.
We create an abstraction for marshaling data into formats which can be
sent on the control interfaces, and create a standard method for
plugging in actual transport underneath that.
This is mostly a refactoring and renaming of the bottom level of the
existing code for sharing register I/O which we have in ASoC. A
subsequent patch in this series converts ASoC to use this. The main
difference in interface is that reads return values by writing to a
location provided by a pointer rather than in the return value, ensuring
we can use the full range of the type for register data. We also use
unsigned types rather than ints for the same reason.
As some of the devices can have very large register maps the existing
ASoC code also contains infrastructure for managing register caches.
This cache work will be moved over in a future stage to allow for
separate review, the current patch only deals with the physical I/O.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@ti.com>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Wolfram Sang <w.sang@pengutronix.de>
Acked-by: Grant Likely <grant.likely@secretlab.ca>