Absolutely unused. All the values are only ever initialized and
then used at most in some debug printout functions.
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Only drm/i915 does the bookkeeping that makes the information useful,
and the information maintained is driver specific, so move it out of the
core and into its single user.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dave Airlie <airlied@redhat.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
airlied: fixup race against drm info by filling out
tmp before adding it to proc.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
It hasn't been used in ages, and having the user tell your how much
memory is being freed at free time is a recipe for disaster even if it
was ever used.
Signed-off-by: Eric Anholt <eric@anholt.net>
The old mechanism to formatting proc files is extremely ugly. The
seq_file API was designed specifically for cases like this and greatly
simplifies the process.
Also, most of the files in /proc really don't belong there. This patch
introduces the infrastructure for putting these into debugfs and exposes
all of the proc files in debugfs as well.
This contains the i915 hooks rewrite as well, to make bisectability better.
Signed-off-by: Ben Gamari <bgamari@gmail.com>
Signed-off-by: Eric Anholt <eric@anholt.net>
Signed-off-by: Dave Airlie <airlied@redhat.com>
This changes drm_local_map to use a resource_size for its "offset"
member instead of an unsigned long, thus allowing 32-bit machines
with a >32-bit physical address space to be able to store there
their register or framebuffer addresses when those are above 4G,
such as when using a PCI video card on a recent AMCC 440 SoC.
This patch isn't as "trivial" as it sounds: A few functions needed
to have some unsigned long/int changed to resource_size_t and a few
printk's had to be adjusted.
But also, because userspace isn't capable of passing such offsets,
I had to modify drm_find_matching_map() to ignore the offset passed
in for maps of type _DRM_FRAMEBUFFER or _DRM_REGISTERS.
If we ever support multiple _DRM_FRAMEBUFFER or _DRM_REGISTERS maps
for a given device, we might have to change that trick, but I don't
think that happens on any current driver.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Dave Airlie <airlied@linux.ie>
Once upon a time, the DRM made the distinction between the drm_map
data structure exchanged with user space and the drm_local_map used
in the kernel.
For some reasons, while the BSD port still has that "feature", the
linux part abused drm_map for kernel internal usage as the local
map only existed as a typedef of the struct drm_map.
This patch fixes it by declaring struct drm_local_map separately
(though its content is currently identical to the userspace variant),
and changing the kernel code to only use that, except when it's a
user<->kernel interface (ie. ioctl).
This allows subsequent changes to the in-kernel format
I've also replaced the use of drm_local_map_t with struct drm_local_map
in a couple of places. Mostly by accident but they are the same (the
former is a typedef of the later) and I have some remote plans and
half finished patch to completely kill the drm_local_map_t typedef
so I left those bits in.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Eric Anholt <eric@anholt.net>
Signed-off-by: Dave Airlie <airlied@linux.ie>
This is step one towards having multiple masters sharing a drm
device in order to get fast-user-switching to work.
It splits out the information associated with the drm master
into a separate kref counted structure, and allocates this when
a master opens the device node. It also allows the current master
to abdicate (say while VT switched), and a new master to take over
the hardware.
It moves the Intel and radeon drivers to using the sarea from
within the new master structures.
Signed-off-by: Dave Airlie <airlied@redhat.com>
Use "%zd" for size_t, and make sure to have a space between the numbers
instead of depending on the field width.
I don't like warnings in my default targeted build.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GEM allows the creation of persistent buffer objects accessible by the
graphics device through new ioctls for managing execution of commands on the
device. The userland API is almost entirely driver-specific to ensure that
any driver building on this model can easily map the interface to individual
driver requirements.
GEM is used by the 2d driver for managing its internal state allocations and
will be used for pixmap storage to reduce memory consumption and enable
zero-copy GLX_EXT_texture_from_pixmap, and in the 3d driver is used to enable
GL_EXT_framebuffer_object and GL_ARB_pixel_buffer_object.
Signed-off-by: Eric Anholt <eric@anholt.net>
Signed-off-by: Dave Airlie <airlied@redhat.com>
With the coming of kernel based modesetting and the memory manager stuff,
the everything in one directory approach was getting very ugly and
starting to be unmanageable.
This restructures the drm along the lines of other kernel components.
It creates a drivers/gpu/drm directory and moves the hw drivers into
subdirectores. It moves the includes into an include/drm, and
sets up the unifdef for the userspace headers we should be exporting.
Signed-off-by: Dave Airlie <airlied@redhat.com>