Over the years, TCP BDP has increased by several orders of magnitude,
and some people are considering to reach the 2 Gbytes limit.
Even with current window scale limit of 14, ~1 Gbytes maps to ~740,000
MSS.
In presence of packet losses (or reorders), TCP stores incoming packets
into an out of order queue, and number of skbs sitting there waiting for
the missing packets to be received can be in the 10^5 range.
Most packets are appended to the tail of this queue, and when
packets can finally be transferred to receive queue, we scan the queue
from its head.
However, in presence of heavy losses, we might have to find an arbitrary
point in this queue, involving a linear scan for every incoming packet,
throwing away cpu caches.
This patch converts it to a RB tree, to get bounded latencies.
Yaogong wrote a preliminary patch about 2 years ago.
Eric did the rebase, added ofo_last_skb cache, polishing and tests.
Tested with network dropping between 1 and 10 % packets, with good
success (about 30 % increase of throughput in stress tests)
Next step would be to also use an RB tree for the write queue at sender
side ;)
Signed-off-by: Yaogong Wang <wygivan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Acked-By: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Over the years, TCP BDP has increased a lot, and is typically
in the order of ~10 Mbytes with help of clever Congestion Control
modules.
In presence of packet losses, TCP stores incoming packets into an out of
order queue, and number of skbs sitting there waiting for the missing
packets to be received can match the BDP (~10 Mbytes)
In some cases, TCP needs to make room for incoming skbs, and current
strategy can simply remove all skbs in the out of order queue as a last
resort, incurring a huge penalty, both for receiver and sender.
Unfortunately these 'last resort events' are quite frequent, forcing
sender to send all packets again, stalling the flow and wasting a lot of
resources.
This patch cleans only a part of the out of order queue in order
to meet the memory constraints.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: C. Stephen Gun <csg@google.com>
Cc: Van Jacobson <vanj@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull security subsystem updates from James Morris:
"Highlights:
- TPM core and driver updates/fixes
- IPv6 security labeling (CALIPSO)
- Lots of Apparmor fixes
- Seccomp: remove 2-phase API, close hole where ptrace can change
syscall #"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (156 commits)
apparmor: fix SECURITY_APPARMOR_HASH_DEFAULT parameter handling
tpm: Add TPM 2.0 support to the Nuvoton i2c driver (NPCT6xx family)
tpm: Factor out common startup code
tpm: use devm_add_action_or_reset
tpm2_i2c_nuvoton: add irq validity check
tpm: read burstcount from TPM_STS in one 32-bit transaction
tpm: fix byte-order for the value read by tpm2_get_tpm_pt
tpm_tis_core: convert max timeouts from msec to jiffies
apparmor: fix arg_size computation for when setprocattr is null terminated
apparmor: fix oops, validate buffer size in apparmor_setprocattr()
apparmor: do not expose kernel stack
apparmor: fix module parameters can be changed after policy is locked
apparmor: fix oops in profile_unpack() when policy_db is not present
apparmor: don't check for vmalloc_addr if kvzalloc() failed
apparmor: add missing id bounds check on dfa verification
apparmor: allow SYS_CAP_RESOURCE to be sufficient to prlimit another task
apparmor: use list_next_entry instead of list_entry_next
apparmor: fix refcount race when finding a child profile
apparmor: fix ref count leak when profile sha1 hash is read
apparmor: check that xindex is in trans_table bounds
...
The per-socket rate limit for 'challenge acks' was introduced in the
context of limiting ack loops:
commit f2b2c582e8 ("tcp: mitigate ACK loops for connections as tcp_sock")
And I think it can be extended to rate limit all 'challenge acks' on a
per-socket basis.
Since we have the global tcp_challenge_ack_limit, this patch allows for
tcp_challenge_ack_limit to be set to a large value and effectively rely on
the per-socket limit, or set tcp_challenge_ack_limit to a lower value and
still prevents a single connections from consuming the entire challenge ack
quota.
It further moves in the direction of eliminating the global limit at some
point, as Eric Dumazet has suggested. This a follow-up to:
Subject: tcp: make challenge acks less predictable
Cc: Eric Dumazet <edumazet@google.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Yue Cao <ycao009@ucr.edu>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Yue Cao claims that current host rate limiting of challenge ACKS
(RFC 5961) could leak enough information to allow a patient attacker
to hijack TCP sessions. He will soon provide details in an academic
paper.
This patch increases the default limit from 100 to 1000, and adds
some randomization so that the attacker can no longer hijack
sessions without spending a considerable amount of probes.
Based on initial analysis and patch from Linus.
Note that we also have per socket rate limiting, so it is tempting
to remove the host limit in the future.
v2: randomize the count of challenge acks per second, not the period.
Fixes: 282f23c6ee ("tcp: implement RFC 5961 3.2")
Reported-by: Yue Cao <ycao009@ucr.edu>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If set, these will take precedence over the parent's options during
both sending and child creation. If they're not set, the parent's
options (if any) will be used.
This is to allow the security_inet_conn_request() hook to modify the
IPv6 options in just the same way that it already may do for IPv4.
Signed-off-by: Huw Davies <huw@codeweavers.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Add in_flight (bytes in flight when packet was sent) field
to tx component of tcp_skb_cb and make it available to
congestion modules' pkts_acked() function through the
ack_sample function argument.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
RFC 5961 advises to only accept RST packets containing a seq number
matching the next expected seq number instead of the whole receive
window in order to avoid spoofing attacks.
However, this situation is not optimal in the case SACK is in use at the
time the RST is sent. I recently run into a scenario in which packet
losses were high while uploading data to a server, and userspace was
willing to frequently terminate connections by sending a RST. In
this case, the ACK sent on the receiver side (rcv_nxt) is frozen waiting
for a lost packet retransmission and SACK blocks are used to let the
client continue uploading data. At some point later on, the client sends
the RST (snd_nxt), which matches the next expected seq number of the
right-most SACK block on the receiver side which is going forward
receiving data.
In this scenario, as RFC 5961 defines, the RST SEQ doesn't match the
frozen main ACK at receiver side and thus gets dropped and a challenge
ACK is sent, which gets usually lost due to network conditions. The main
consequence is that the connection stays alive for a while even if it
made sense to accept the RST. This can get really bad if lots of
connections like this one are created in few seconds, allocating all the
resources of the server easily.
For security reasons, not all SACK blocks are checked (there could be a
big amount of SACK blocks => acceptable SEQ numbers). Furthermore, it
wouldn't make sense to check for RST in blocks other than the right-most
received one because the sender is not expected to be sending new data
after the RST. For simplicity, only up to the 4 most recently updated
SACK blocks (selective_acks[4] field) are compared to find the
right-most block, as usually those are the ones with bigger probability
to contain it.
This patch was tested in a 3.18 kernel and probed to improve the
situation in the scenario described above.
Signed-off-by: Pau Espin Pedrol <pau.espin@tessares.net>
Acked-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Tested-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Replace 2 arguments (cnt and rtt) in the congestion control modules'
pkts_acked() function with a struct. This will allow adding more
information without having to modify existing congestion control
modules (tcp_nv in particular needs bytes in flight when packet
was sent).
As proposed by Neal Cardwell in his comments to the tcp_nv patch.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_snd_una_update() and tcp_rcv_nxt_update() call
u64_stats_update_begin() either from process context or BH handler.
This triggers a lockdep splat on 32bit & SMP builds.
We could add u64_stats_update_begin_bh() variant but this would
slow down 32bit builds with useless local_disable_bh() and
local_enable_bh() pairs, since we own the socket lock at this point.
I add sock_owned_by_me() helper to have proper lockdep support
even on 64bit builds, and new u64_stats_update_begin_raw()
and u64_stats_update_end_raw methods.
Fixes: c10d9310ed ("tcp: do not assume TCP code is non preemptible")
Reported-by: Fabio Estevam <festevam@gmail.com>
Diagnosed-by: Francois Romieu <romieu@fr.zoreil.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Tested-by: Fabio Estevam <fabio.estevam@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
AFAIK, nothing in current TCP stack absolutely wants BH
being disabled once socket is owned by a thread running in
process context.
As mentioned in my prior patch ("tcp: give prequeue mode some care"),
processing a batch of packets might take time, better not block BH
at all.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
We want to to make TCP stack preemptible, as draining prequeue
and backlog queues can take lot of time.
Many SNMP updates were assuming that BH (and preemption) was disabled.
Need to convert some __NET_INC_STATS() calls to NET_INC_STATS()
and some __TCP_INC_STATS() to TCP_INC_STATS()
Before using this_cpu_ptr(net->ipv4.tcp_sk) in tcp_v4_send_reset()
and tcp_v4_send_ack(), we add an explicit preempt disabled section.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The SKBTX_ACK_TSTAMP flag is set in skb_shinfo->tx_flags when
the timestamp of the TCP acknowledgement should be reported on
error queue. Since accessing skb_shinfo is likely to incur a
cache-line miss at the time of receiving the ack, the
txstamp_ack bit was added in tcp_skb_cb, which is set iff
the SKBTX_ACK_TSTAMP flag is set for an skb. This makes
SKBTX_ACK_TSTAMP flag redundant.
Remove the SKBTX_ACK_TSTAMP and instead use the txstamp_ack bit
everywhere.
Note that this frees one bit in shinfo->tx_flags.
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Suggested-by: Willem de Bruijn <willemb@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rename NET_INC_STATS_BH() to __NET_INC_STATS()
and NET_ADD_STATS_BH() to __NET_ADD_STATS()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We now have proper per-listener but also per network namespace counters
for SYN packets that might be dropped.
We replace the kfree_skb() by consume_skb() to be drop monitor [1]
friendly, and remove an obsolete comment.
FastOpen SYN packets can carry payload in them just fine.
[1] perf record -a -g -e skb:kfree_skb sleep 1; perf report
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Linux TCP stack painfully segments all TSO/GSO packets before retransmits.
This was fine back in the days when TSO/GSO were emerging, with their
bugs, but we believe the dark age is over.
Keeping big packets in write queues, but also in stack traversal
has a lot of benefits.
- Less memory overhead, because write queues have less skbs
- Less cpu overhead at ACK processing.
- Better SACK processing, as lot of studies mentioned how
awful linux was at this ;)
- Less cpu overhead to send the rtx packets
(IP stack traversal, netfilter traversal, drivers...)
- Better latencies in presence of losses.
- Smaller spikes in fq like packet schedulers, as retransmits
are not constrained by TCP Small Queues.
1 % packet losses are common today, and at 100Gbit speeds, this
translates to ~80,000 losses per second.
Losses are often correlated, and we see many retransmit events
leading to 1-MSS train of packets, at the time hosts are already
under stress.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts were two cases of simple overlapping changes,
nothing serious.
In the UDP case, we need to add a hlist_add_tail_rcu()
to linux/rculist.h, because we've moved UDP socket handling
away from using nulls lists.
Signed-off-by: David S. Miller <davem@davemloft.net>
Last known hot point during SYNFLOOD attack is the clearing
of rx_opt.saw_tstamp in tcp_rcv_state_process()
It is not needed for a listener, so we move it where it matters.
Performance while a SYNFLOOD hits a single listener socket
went from 5 Mpps to 6 Mpps on my test server (24 cores, 8 NIC RX queues)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When removing sk_refcnt manipulation on synflood, I missed that
using skb_set_owner_w() was racy, if sk->sk_wmem_alloc had already
transitioned to 0.
We should hold sk_refcnt instead, but this is a big deal under attack.
(Doing so increase performance from 3.2 Mpps to 3.8 Mpps only)
In this patch, I chose to not attach a socket to syncookies skb.
Performance is now 5 Mpps instead of 3.2 Mpps.
Following patch will remove last known false sharing in
tcp_rcv_state_process()
Fixes: 3b24d854cb ("tcp/dccp: do not touch listener sk_refcnt under synflood")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Goal: packets dropped by a listener are accounted for.
This adds tcp_listendrop() helper, and clears sk_drops in sk_clone_lock()
so that children do not inherit their parent drop count.
Note that we no longer increment LINUX_MIB_LISTENDROPS counter when
sending a SYNCOOKIE, since the SYN packet generated a SYNACK.
We already have a separate LINUX_MIB_SYNCOOKIESSENT
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now ss can report sk_drops, we can instruct TCP to increment
this per socket counter when it drops an incoming frame, to refine
monitoring and debugging.
Following patch takes care of listeners drops.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, to avoid a cache line miss for accessing skb_shinfo,
tcp_ack_tstamp skips socket that do not have
SOF_TIMESTAMPING_TX_ACK bit set in sk_tsflags. This is
implemented based on an implicit assumption that the
SOF_TIMESTAMPING_TX_ACK is set via socket options for the
duration that ACK timestamps are needed.
To implement per-write timestamps, this check should be
removed and replaced with a per-packet alternative that
quickly skips packets missing ACK timestamps marks without
a cache-line miss.
To enable per-packet marking without a cache line miss, use
one bit in TCP_SKB_CB to mark a whether a SKB might need a
ack tx timestamp or not. Further checks in tcp_ack_tstamp are not
modified and work as before.
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For non-SACK connections, cwnd is lowered to inflight plus 3 packets
when the recovery ends. This is an optional feature in the NewReno
RFC 2582 to reduce the potential burst when cwnd is "re-opened"
after recovery and inflight is low.
This feature is questionably effective because of PRR: when
the recovery ends (i.e., snd_una == high_seq) NewReno holds the
CA_Recovery state for another round trip to prevent false fast
retransmits. But if the inflight is low, PRR will overwrite the
moderated cwnd in tcp_cwnd_reduction() later regardlessly. So if a
receiver responds bogus ACKs (i.e., acking future data) to speed up
transfer after recovery, it can only induce a burst up to a window
worth of data packets by acking up to SND.NXT. A restart from (short)
idle or receiving streched ACKs can both cause such bursts as well.
On the other hand, if the recovery ends because the sender
detects the losses were spurious (e.g., reordering). This feature
unconditionally lowers a reverted cwnd even though nothing
was lost.
By principle loss recovery module should not update cwnd. Further
pacing is much more effective to reduce burst. Hence this patch
removes the cwnd moderation feature.
v2 changes: revised commit message on bogus ACKs and burst, and
missing signature
Signed-off-by: Matt Mathis <mattmathis@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/phy/bcm7xxx.c
drivers/net/phy/marvell.c
drivers/net/vxlan.c
All three conflicts were cases of simple overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
There are some cases where rtt_us derives from deltas of jiffies,
instead of using usec timestamps.
Since we want to track minimal rtt, better to assume a delta of 0 jiffie
might be in fact be very close to 1 jiffie.
It is kind of sad jiffies_to_usecs(1) calls a function instead of simply
using a constant.
Fixes: f672258391 ("tcp: track min RTT using windowed min-filter")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Refactor and consolidate cwnd and rate updates into a new function
tcp_cong_control().
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This change enables congestion control to update cwnd based on
not only packet cumulatively acked but also packets delivered
out-of-order. This makes congestion control robust against packet
reordering because it may raise cwnd as long as packets are being
delivered once reordering has been detected (i.e., it only cares
the amount of packets delivered, not the ordering among them).
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A small refactoring that gets number of packets cumulatively acked
from tcp_clean_rtx_queue() directly.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch changes the accounting of how many packets are
newly acked or sacked when the sender receives an ACK.
The current approach basically computes
newly_acked_sacked = (prior_packets - prior_sacked) -
(tp->packets_out - tp->sacked_out)
where prior_packets and prior_sacked out are snapshot
at the beginning of the ACK processing.
The new approach tracks the delivery information via a new
TCP state variable "delivered" which monotically increases
as new packets are delivered in order or out-of-order.
The reason for this change is that the current approach is
brittle that produces negative or inaccurate estimate.
1) For non-SACK connections, an ACK that advances the SND.UNA
could reset the DUPACK counters (tp->sacked_out) in
tcp_process_loss() or tcp_fastretrans_alert(). This inflates
the inflight suddenly and causes under-estimate or even
negative estimate. Here is a real example:
before after (processing ACK)
packets_out 75 73
sacked_out 23 0
ca state Loss Open
The old approach computes (75-23) - (73 - 0) = -21 delivered
while the new approach computes 1 delivered since it
considers the 2nd-24th packets are delivered OOO.
2) MSS change would re-count packets_out and sacked_out so
the estimate is in-accurate and can even become negative.
E.g., the inflight is doubled when MSS is halved.
3) Spurious retransmission signaled by DSACK is not accounted
The new approach is simpler and more robust. For SACK connections,
tp->delivered increments as packets are being acked or sacked in
SACK and ACK processing.
For non-sack connections, it's done in tcp_remove_reno_sacks() and
tcp_add_reno_sack(). When an ACK advances the SND.UNA, tp->delivered
is incremented by the number of packets ACKed (less the current
number of DUPACKs received plus one packet hole). Upon receiving
a DUPACK, tp->delivered is incremented assuming one out-of-order
packet is delivered.
Upon receiving a DSACK, tp->delivered is incremtened assuming one
retransmission is delivered in tcp_sacktag_write_queue().
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently the cwnd is reduced and increased in various different
places. The reduction happens in various places in the recovery
state processing (tcp_fastretrans_alert) while the increase
happens afterward.
A better sequence is to identify lost packets and update
the congestion control state (icsk_ca_state) first. Then base
on the new state, up/down the cwnd in one central place. It's
more clear to reason cwnd changes.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The retransmission and F-RTO transmission currently happen inside
recovery state processing (tcp_fastretrans_alert) but before
congestion control. This refactoring moves the logic after both
s.t. we can determine how much to send (cwnd) before deciding what to
send.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When we acknowledge a FIN, it is not enough to ack the sequence number
and queue the skb into receive queue. We also have to call tcp_fin()
to properly update socket state and send proper poll() notifications.
It seems we also had the problem if we received a SYN packet with the
FIN flag set, but it does not seem an urgent issue, as no known
implementation can do that.
Fixes: 61d2bcae99 ("tcp: fastopen: accept data/FIN present in SYNACK message")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
RFC 7413 (TCP Fast Open) 4.2.2 states that the SYNACK message
MAY include data and/or FIN
This patch adds support for the client side :
If we receive a SYNACK with payload or FIN, queue the skb instead
of ignoring it.
Since we already support the same for SYN, we refactor the existing
code and reuse it. Note we need to clone the skb, so this operation
might fail under memory pressure.
Sara Dickinson pointed out FreeBSD server Fast Open implementation
was planned to generate such SYNACK in the future.
The server side might be implemented on linux later.
Reported-by: Sara Dickinson <sara@sinodun.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
RFC 4015 section 3.4 says the TCP sender MUST refrain from
reversing the congestion control state when the ACK signals
congestion through the ECN-Echo flag. Currently we may not
always do that when prior_ssthresh is reset upon receiving
ACKs with ECE marks. This patch fixes that.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit fixes a corner case in tcp_mark_head_lost() which was
causing the WARN_ON(len > skb->len) in tcp_fragment() to fire.
tcp_mark_head_lost() was assuming that if a packet has
tcp_skb_pcount(skb) of N, then it's safe to fragment off a prefix of
M*mss bytes, for any M < N. But with the tricky way TCP pcounts are
maintained, this is not always true.
For example, suppose the sender sends 4 1-byte packets and have the
last 3 packet sacked. It will merge the last 3 packets in the write
queue into an skb with pcount = 3 and len = 3 bytes. If another
recovery happens after a sack reneging event, tcp_mark_head_lost()
may attempt to split the skb assuming it has more than 2*MSS bytes.
This sounds very counterintuitive, but as the commit description for
the related commit c0638c247f ("tcp: don't fragment SACKed skbs in
tcp_mark_head_lost()") notes, this is because tcp_shifted_skb()
coalesces adjacent regions of SACKed skbs, and when doing this it
preserves the sum of their packet counts in order to reflect the
real-world dynamics on the wire. The c0638c247f commit tried to
avoid problems by not fragmenting SACKed skbs, since SACKed skbs are
where the non-proportionality between pcount and skb->len/mss is known
to be possible. However, that commit did not handle the case where
during a reneging event one of these weird SACKed skbs becomes an
un-SACKed skb, which tcp_mark_head_lost() can then try to fragment.
The fix is to simply mark the entire skb lost when this happens.
This makes the recovery slightly more aggressive in such corner
cases before we detect reordering. But once we detect reordering
this code path is by-passed because FACK is disabled.
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Patch 3759824da8 ("tcp: PRR uses CRB mode by default and SS mode
conditionally") introduced a bug that cwnd may become 0 when both
inflight and sndcnt are 0 (cwnd = inflight + sndcnt). This may lead
to a div-by-zero if the connection starts another cwnd reduction
phase by setting tp->prior_cwnd to the current cwnd (0) in
tcp_init_cwnd_reduction().
To prevent this we skip PRR operation when nothing is acked or
sacked. Then cwnd must be positive in all cases as long as ssthresh
is positive:
1) The proportional reduction mode
inflight > ssthresh > 0
2) The reduction bound mode
a) inflight == ssthresh > 0
b) inflight < ssthresh
sndcnt > 0 since newly_acked_sacked > 0 and inflight < ssthresh
Therefore in all cases inflight and sndcnt can not both be 0.
We check invalid tp->prior_cwnd to avoid potential div0 bugs.
In reality this bug is triggered only with a sequence of less common
events. For example, the connection is terminating an ECN-triggered
cwnd reduction with an inflight 0, then it receives reordered/old
ACKs or DSACKs from prior transmission (which acks nothing). Or the
connection is in fast recovery stage that marks everything lost,
but fails to retransmit due to local issues, then receives data
packets from other end which acks nothing.
Fixes: 3759824da8 ("tcp: PRR uses CRB mode by default and SS mode conditionally")
Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow accepted sockets to derive their sk_bound_dev_if setting from the
l3mdev domain in which the packets originated. A sysctl setting is added
to control the behavior which is similar to sk_mark and
sysctl_tcp_fwmark_accept.
This effectively allow a process to have a "VRF-global" listen socket,
with child sockets bound to the VRF device in which the packet originated.
A similar behavior can be achieved using sk_mark, but a solution using marks
is incomplete as it does not handle duplicate addresses in different L3
domains/VRFs. Allowing sockets to inherit the sk_bound_dev_if from l3mdev
domain provides a complete solution.
Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Dmitry provided a syzkaller (http://github.com/google/syzkaller)
generated program that triggers the WARNING at
net/ipv4/tcp.c:1729 in tcp_recvmsg() :
WARN_ON(tp->copied_seq != tp->rcv_nxt &&
!(flags & (MSG_PEEK | MSG_TRUNC)));
His program is specifically attempting a Cross SYN TCP exchange,
that we support (for the pleasure of hackers ?), but it looks we
lack proper tcp->copied_seq initialization.
Thanks again Dmitry for your report and testings.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_send_rcvq() is used for re-injecting data into tcp receive queue.
Problems :
- No check against size is performed, allowed user to fool kernel in
attempting very large memory allocations, eventually triggering
OOM when memory is fragmented.
- In case of fault during the copy we do not return correct errno.
Lets use alloc_skb_with_frags() to cook optimal skbs.
Fixes: 292e8d8c85 ("tcp: Move rcvq sending to tcp_input.c")
Fixes: c0e88ff0f2 ("tcp: Repair socket queues")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch implements the second half of RACK that uses the the most
recent transmit time among all delivered packets to detect losses.
tcp_rack_mark_lost() is called upon receiving a dubious ACK.
It then checks if an not-yet-sacked packet was sent at least
"reo_wnd" prior to the sent time of the most recently delivered.
If so the packet is deemed lost.
The "reo_wnd" reordering window starts with 1msec for fast loss
detection and changes to min-RTT/4 when reordering is observed.
We found 1msec accommodates well on tiny degree of reordering
(<3 pkts) on faster links. We use min-RTT instead of SRTT because
reordering is more of a path property but SRTT can be inflated by
self-inflicated congestion. The factor of 4 is borrowed from the
delayed early retransmit and seems to work reasonably well.
Since RACK is still experimental, it is now used as a supplemental
loss detection on top of existing algorithms. It is only effective
after the fast recovery starts or after the timeout occurs. The
fast recovery is still triggered by FACK and/or dupack threshold
instead of RACK.
We introduce a new sysctl net.ipv4.tcp_recovery for future
experiments of loss recoveries. For now RACK can be disabled by
setting it to 0.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is the first half of the RACK loss recovery.
RACK loss recovery uses the notion of time instead
of packet sequence (FACK) or counts (dupthresh). It's inspired by the
previous FACK heuristic in tcp_mark_lost_retrans(): when a limited
transmit (new data packet) is sacked, then current retransmitted
sequence below the newly sacked sequence must been lost,
since at least one round trip time has elapsed.
But it has several limitations:
1) can't detect tail drops since it depends on limited transmit
2) is disabled upon reordering (assumes no reordering)
3) only enabled in fast recovery ut not timeout recovery
RACK (Recently ACK) addresses these limitations with the notion
of time instead: a packet P1 is lost if a later packet P2 is s/acked,
as at least one round trip has passed.
Since RACK cares about the time sequence instead of the data sequence
of packets, it can detect tail drops when later retransmission is
s/acked while FACK or dupthresh can't. For reordering RACK uses a
dynamically adjusted reordering window ("reo_wnd") to reduce false
positives on ever (small) degree of reordering.
This patch implements tcp_advanced_rack() which tracks the
most recent transmission time among the packets that have been
delivered (ACKed or SACKed) in tp->rack.mstamp. This timestamp
is the key to determine which packet has been lost.
Consider an example that the sender sends six packets:
T1: P1 (lost)
T2: P2
T3: P3
T4: P4
T100: sack of P2. rack.mstamp = T2
T101: retransmit P1
T102: sack of P2,P3,P4. rack.mstamp = T4
T205: ACK of P4 since the hole is repaired. rack.mstamp = T101
We need to be careful about spurious retransmission because it may
falsely advance tp->rack.mstamp by an RTT or an RTO, causing RACK
to falsely mark all packets lost, just like a spurious timeout.
We identify spurious retransmission by the ACK's TS echo value.
If TS option is not applicable but the retransmission is acknowledged
less than min-RTT ago, it is likely to be spurious. We refrain from
using the transmission time of these spurious retransmissions.
The second half is implemented in the next patch that marks packet
lost using RACK timestamp.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>