Pull SMP hotplug notifier removal from Thomas Gleixner:
"This is the final cleanup of the hotplug notifier infrastructure. The
series has been reintgrated in the last two days because there came a
new driver using the old infrastructure via the SCSI tree.
Summary:
- convert the last leftover drivers utilizing notifiers
- fixup for a completely broken hotplug user
- prevent setup of already used states
- removal of the notifiers
- treewide cleanup of hotplug state names
- consolidation of state space
There is a sphinx based documentation pending, but that needs review
from the documentation folks"
* 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/armada-xp: Consolidate hotplug state space
irqchip/gic: Consolidate hotplug state space
coresight/etm3/4x: Consolidate hotplug state space
cpu/hotplug: Cleanup state names
cpu/hotplug: Remove obsolete cpu hotplug register/unregister functions
staging/lustre/libcfs: Convert to hotplug state machine
scsi/bnx2i: Convert to hotplug state machine
scsi/bnx2fc: Convert to hotplug state machine
cpu/hotplug: Prevent overwriting of callbacks
x86/msr: Remove bogus cleanup from the error path
bus: arm-ccn: Prevent hotplug callback leak
perf/x86/intel/cstate: Prevent hotplug callback leak
ARM/imx/mmcd: Fix broken cpu hotplug handling
scsi: qedi: Convert to hotplug state machine
When the state names got added a script was used to add the extra argument
to the calls. The script basically converted the state constant to a
string, but the cleanup to convert these strings into meaningful ones did
not happen.
Replace all the useless strings with 'subsys/xxx/yyy:state' strings which
are used in all the other places already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/20161221192112.085444152@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull ARM updates from Russell King:
- an update for clkdev registration error detection to simplify users
- add cpu capacity parsing from DT
- support for larger cachelines found on UniPhier caches
- documentation for udelay constants
- properly tag assembly function declarations
- remove unnecessary indirection of asm/mach-types.h
- switch to syscall table based generation to simplify future additions
of system calls, along with correpsonding commit for pkey syscalls
- remove redundant sa1101 header file
- RONX protect modules when they're in the vmalloc region
* 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: mm: allow set_memory_*() to be used on the vmalloc region
ARM: mm: fix set_memory_*() bounds checks
ARM: 8631/1: clkdev: Detect errors in clk_hw_register_clkdev() for mass registration
ARM: 8629/1: vfp: properly tag assembly function declarations in C code
ARM: 8622/3: add sysfs cpu_capacity attribute
ARM: 8621/3: parse cpu capacity-dmips-mhz from DT
ARM: 8623/1: mm: add ARM_L1_CACHE_SHIFT_7 for UniPhier outer cache
ARM: Update mach-types
ARM: sa1100: remove SA-1101 header file
ARM: 8619/1: udelay: document the various constants
ARM: wire up new pkey syscalls
ARM: convert to generated system call tables
ARM: remove indirection of asm/mach-types.h
Pull smp hotplug updates from Thomas Gleixner:
"This is the final round of converting the notifier mess to the state
machine. The removal of the notifiers and the related infrastructure
will happen around rc1, as there are conversions outstanding in other
trees.
The whole exercise removed about 2000 lines of code in total and in
course of the conversion several dozen bugs got fixed. The new
mechanism allows to test almost every hotplug step standalone, so
usage sites can exercise all transitions extensively.
There is more room for improvement, like integrating all the
pointlessly different architecture mechanisms of synchronizing,
setting cpus online etc into the core code"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
tracing/rb: Init the CPU mask on allocation
soc/fsl/qbman: Convert to hotplug state machine
soc/fsl/qbman: Convert to hotplug state machine
zram: Convert to hotplug state machine
KVM/PPC/Book3S HV: Convert to hotplug state machine
arm64/cpuinfo: Convert to hotplug state machine
arm64/cpuinfo: Make hotplug notifier symmetric
mm/compaction: Convert to hotplug state machine
iommu/vt-d: Convert to hotplug state machine
mm/zswap: Convert pool to hotplug state machine
mm/zswap: Convert dst-mem to hotplug state machine
mm/zsmalloc: Convert to hotplug state machine
mm/vmstat: Convert to hotplug state machine
mm/vmstat: Avoid on each online CPU loops
mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
tracing/rb: Convert to hotplug state machine
oprofile/nmi timer: Convert to hotplug state machine
net/iucv: Use explicit clean up labels in iucv_init()
x86/pci/amd-bus: Convert to hotplug state machine
x86/oprofile/nmi: Convert to hotplug state machine
...
This reverts commit 4dd1837d75.
Moving the exports for assembly code into the assembly files breaks
KSYM trimming, but also breaks modversions.
While fixing the KSYM trimming is trivial, fixing modversions brings
us to a technically worse position that we had prior to the above
change:
- We end up with the prototype definitions divorsed from everything
else, which means that adding or removing assembly level ksyms
become more fragile:
* if adding a new assembly ksyms export, a missed prototype in
asm-prototypes.h results in a successful build if no module in
the selected configuration makes use of the symbol.
* when removing a ksyms export, asm-prototypes.h will get forgotten,
with armksyms.c, you'll get a build error if you forget to touch
the file.
- We end up with the same amount of include files and prototypes,
they're just in a header file instead of a .c file with their
exports.
As for lines of code, we don't get much of a size reduction:
(original commit)
47 files changed, 131 insertions(+), 208 deletions(-)
(fix for ksyms trimming)
7 files changed, 18 insertions(+), 5 deletions(-)
(two fixes for modversions)
1 file changed, 34 insertions(+)
3 files changed, 7 insertions(+), 2 deletions(-)
which results in a net total of only 25 lines deleted.
As there does not seem to be much benefit from this change of approach,
revert the change.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
smp_call_function_single() has been removed because the function is already
invoked on the target CPU.
[ tglx: Added protection agaist hotplug back according to discussion with Will ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: rt@linuxtronix.de
Cc: Will Deacon <will.deacon@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/20161117183541.8588-16-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add a sysfs cpu_capacity attribute with which it is possible to read and
write (thus over-writing default values) CPUs capacity. This might be
useful in situations where values needs changing after boot.
The new attribute shows up as:
/sys/devices/system/cpu/cpu*/cpu_capacity
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
With the introduction of cpu capacity-dmips-mhz bindings, CPU capacities
can now be calculated from values extracted from DT and information
coming from cpufreq. Add parsing of DT information at boot time, and
complement it with cpufreq information. We keep code that can produce
same information, based on different DT properties and hard-coded
values, as fall-back for backward compatibility.
Caveat: the information provided by this patch will start to be used in
the future. We need to #define arch_scale_cpu_capacity to something
provided in arch, so that scheduler's default implementation (which gets
used if arch_scale_cpu_capacity is not defined) is overwritten.
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 7619751f8c ("ARM: 8595/2: apply more __ro_after_init") caused
a regression with XIP kernels by moving the __ro_after_init data into
the read-only section. With XIP kernels, the read-only section is
located in read-only memory from the very beginning.
Work around this by moving the __ro_after_init data back into the .data
section, which will be in RAM, and hence will be writable.
It should be noted that in doing so, this remains writable after init.
Fixes: 7619751f8c ("ARM: 8595/2: apply more __ro_after_init")
Reported-by: Andrea Merello <andrea.merello@gmail.com>
Tested-by: Andrea Merello <andrea.merello@gmail.com> [ XIP stm32 ]
Tested-by: Alexandre Torgue <alexandre.torgue@st.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Recent kernels have changed their behaviour to be more inconsistent
when handling printk continuations. With todays kernels, the output
looks sane on the console, but dmesg splits individual printk()s which
do not have the KERN_CONT prefix into separate lines.
Since the assembly code is not trivial to add the KERN_CONT, and we
ideally want to avoid using KERN_CONT (as multiple printk()s can race
between different threads), convert the assembly dumping the register
values to C code, and have the C code build the output a line at a
time before dumping to the console.
This avoids the KERN_CONT issue, and also avoids situations where the
output is intermixed with other console activity.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Convert ARM to use a similar mechanism to x86 to generate the unistd.h
system call numbers and the various kernel system call tables. This
means that rather than having to edit three places (asm/unistd.h for
the total number of system calls, uapi/asm/unistd.h for the system call
numbers, and arch/arm/kernel/calls.S for the call table) we have only
one place to edit, making the process much more simple.
The scripts have knowledge of the table padding requirements, so there's
no need to worry about __NR_syscalls not fitting within the immediate
constant field of ALU instructions anymore.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Pull kbuild updates from Michal Marek:
- EXPORT_SYMBOL for asm source by Al Viro.
This does bring a regression, because genksyms no longer generates
checksums for these symbols (CONFIG_MODVERSIONS). Nick Piggin is
working on a patch to fix this.
Plus, we are talking about functions like strcpy(), which rarely
change prototypes.
- Fixes for PPC fallout of the above by Stephen Rothwell and Nick
Piggin
- fixdep speedup by Alexey Dobriyan.
- preparatory work by Nick Piggin to allow architectures to build with
-ffunction-sections, -fdata-sections and --gc-sections
- CONFIG_THIN_ARCHIVES support by Stephen Rothwell
- fix for filenames with colons in the initramfs source by me.
* 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild: (22 commits)
initramfs: Escape colons in depfile
ppc: there is no clear_pages to export
powerpc/64: whitelist unresolved modversions CRCs
kbuild: -ffunction-sections fix for archs with conflicting sections
kbuild: add arch specific post-link Makefile
kbuild: allow archs to select link dead code/data elimination
kbuild: allow architectures to use thin archives instead of ld -r
kbuild: Regenerate genksyms lexer
kbuild: genksyms fix for typeof handling
fixdep: faster CONFIG_ search
ia64: move exports to definitions
sparc32: debride memcpy.S a bit
[sparc] unify 32bit and 64bit string.h
sparc: move exports to definitions
ppc: move exports to definitions
arm: move exports to definitions
s390: move exports to definitions
m68k: move exports to definitions
alpha: move exports to actual definitions
x86: move exports to actual definitions
...
Currently, all callers to randomize_range() set the length to 0 and
calculate end by adding a constant to the start address. We can simplify
the API to remove a bunch of needless checks and variables.
Use the new randomize_addr(start, range) call to set the requested
address.
Link: http://lkml.kernel.org/r/20160803233913.32511-4-jason@lakedaemon.net
Signed-off-by: Jason Cooper <jason@lakedaemon.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: "Russell King - ARM Linux" <linux@arm.linux.org.uk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When doing an nmi backtrace of many cores, most of which are idle, the
output is a little overwhelming and very uninformative. Suppress
messages for cpus that are idling when they are interrupted and just
emit one line, "NMI backtrace for N skipped: idling at pc 0xNNN".
We do this by grouping all the cpuidle code together into a new
.cpuidle.text section, and then checking the address of the interrupted
PC to see if it lies within that section.
This commit suitably tags x86 and tile idle routines, and only adds in
the minimal framework for other architectures.
Link: http://lkml.kernel.org/r/1472487169-14923-5-git-send-email-cmetcalf@mellanox.com
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org> [arm]
Tested-by: Petr Mladek <pmladek@suse.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently on arm there is code that checks whether it should call
dump_stack() explicitly, to avoid trying to raise an NMI when the
current context is not preemptible by the backtrace IPI. Similarly, the
forthcoming arch/tile support uses an IPI mechanism that does not
support generating an NMI to self.
Accordingly, move the code that guards this case into the generic
mechanism, and invoke it unconditionally whenever we want a backtrace of
the current cpu. It seems plausible that in all cases, dump_stack()
will generate better information than generating a stack from the NMI
handler. The register state will be missing, but that state is likely
not particularly helpful in any case.
Or, if we think it is helpful, we should be capturing and emitting the
current register state in all cases when regs == NULL is passed to
nmi_cpu_backtrace().
Link: http://lkml.kernel.org/r/1472487169-14923-3-git-send-email-cmetcalf@mellanox.com
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org> [arm]
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Aaron Tomlin <atomlin@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "improvements to the nmi_backtrace code" v9.
This patch series modifies the trigger_xxx_backtrace() NMI-based remote
backtracing code to make it more flexible, and makes a few small
improvements along the way.
The motivation comes from the task isolation code, where there are
scenarios where we want to be able to diagnose a case where some cpu is
about to interrupt a task-isolated cpu. It can be helpful to see both
where the interrupting cpu is, and also an approximation of where the
cpu that is being interrupted is. The nmi_backtrace framework allows us
to discover the stack of the interrupted cpu.
I've tested that the change works as desired on tile, and build-tested
x86, arm, mips, and sparc64. For x86 I confirmed that the generic
cpuidle stuff as well as the architecture-specific routines are in the
new cpuidle section. For arm, mips, and sparc I just build-tested it
and made sure the generic cpuidle routines were in the new cpuidle
section, but I didn't attempt to figure out which the platform-specific
idle routines might be. That might be more usefully done by someone
with platform experience in follow-up patches.
This patch (of 4):
Currently you can only request a backtrace of either all cpus, or all
cpus but yourself. It can also be helpful to request a remote backtrace
of a single cpu, and since we want that, the logical extension is to
support a cpumask as the underlying primitive.
This change modifies the existing lib/nmi_backtrace.c code to take a
cpumask as its basic primitive, and modifies the linux/nmi.h code to use
the new "cpumask" method instead.
The existing clients of nmi_backtrace (arm and x86) are converted to
using the new cpumask approach in this change.
The other users of the backtracing API (sparc64 and mips) are converted
to use the cpumask approach rather than the all/allbutself approach.
The mips code ignored the "include_self" boolean but with this change it
will now also dump a local backtrace if requested.
Link: http://lkml.kernel.org/r/1472487169-14923-2-git-send-email-cmetcalf@mellanox.com
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org> [arm]
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull ARM updates from Russell King:
- Correct ARMs dma-mapping to use the correct printk format strings.
- Avoid defining OBJCOPYFLAGS globally which upsets lkdtm rodata
testing.
- Cleanups to ARMs asm/memory.h include.
- L2 cache cleanups.
- Allow flat nommu binaries to be executed on ARM MMU systems.
- Kernel hardening - add more read-only after init annotations,
including making some kernel vdso variables const.
- Ensure AMBA primecell clocks are appropriately defaulted.
- ARM breakpoint cleanup.
- Various StrongARM 11x0 and companion chip (SA1111) updates to bring
this legacy platform to use more modern APIs for (eg) GPIOs and
interrupts, which will allow us in the future to reduce some of the
board-level driver clutter and elimate function callbacks into board
code via platform data. There still appears to be interest in these
platforms!
- Remove the now redundant secure_flush_area() API.
- Module PLT relocation optimisations. Ard says: This series of 4
patches optimizes the ARM PLT generation code that is invoked at
module load time, to get rid of the O(n^2) algorithm that results in
pathological load times of 10 seconds or more for large modules on
certain STB platforms.
- ARMv7M cache maintanence support.
- L2 cache PMU support
* 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm: (35 commits)
ARM: sa1111: provide to_sa1111_device() macro
ARM: sa1111: add sa1111_get_irq()
ARM: sa1111: clean up duplication in IRQ chip implementation
ARM: sa1111: implement a gpio_chip for SA1111 GPIOs
ARM: sa1111: move irq cleanup to separate function
ARM: sa1111: use devm_clk_get()
ARM: sa1111: use devm_kzalloc()
ARM: sa1111: ensure we only touch RAB bus type devices when removing
ARM: 8611/1: l2x0: add PMU support
ARM: 8610/1: V7M: Add dsb before jumping in handler mode
ARM: 8609/1: V7M: Add support for the Cortex-M7 processor
ARM: 8608/1: V7M: Indirect proc_info construction for V7M CPUs
ARM: 8607/1: V7M: Wire up caches for V7M processors with cache support.
ARM: 8606/1: V7M: introduce cache operations
ARM: 8605/1: V7M: fix notrace variant of save_and_disable_irqs
ARM: 8604/1: V7M: Add support for reading the CTR with read_cpuid_cachetype()
ARM: 8603/1: V7M: Add addresses for mem-mapped V7M cache operations
ARM: 8602/1: factor out CSSELR/CCSIDR operations that use cp15 directly
ARM: kernel: avoid brute force search on PLT generation
ARM: kernel: sort relocation sections before allocating PLTs
...
Pull low-level x86 updates from Ingo Molnar:
"In this cycle this topic tree has become one of those 'super topics'
that accumulated a lot of changes:
- Add CONFIG_VMAP_STACK=y support to the core kernel and enable it on
x86 - preceded by an array of changes. v4.8 saw preparatory changes
in this area already - this is the rest of the work. Includes the
thread stack caching performance optimization. (Andy Lutomirski)
- switch_to() cleanups and all around enhancements. (Brian Gerst)
- A large number of dumpstack infrastructure enhancements and an
unwinder abstraction. The secret long term plan is safe(r) live
patching plus maybe another attempt at debuginfo based unwinding -
but all these current bits are standalone enhancements in a frame
pointer based debug environment as well. (Josh Poimboeuf)
- More __ro_after_init and const annotations. (Kees Cook)
- Enable KASLR for the vmemmap memory region. (Thomas Garnier)"
[ The virtually mapped stack changes are pretty fundamental, and not
x86-specific per se, even if they are only used on x86 right now. ]
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
x86/asm: Get rid of __read_cr4_safe()
thread_info: Use unsigned long for flags
x86/alternatives: Add stack frame dependency to alternative_call_2()
x86/dumpstack: Fix show_stack() task pointer regression
x86/dumpstack: Remove dump_trace() and related callbacks
x86/dumpstack: Convert show_trace_log_lvl() to use the new unwinder
oprofile/x86: Convert x86_backtrace() to use the new unwinder
x86/stacktrace: Convert save_stack_trace_*() to use the new unwinder
perf/x86: Convert perf_callchain_kernel() to use the new unwinder
x86/unwind: Add new unwind interface and implementations
x86/dumpstack: Remove NULL task pointer convention
fork: Optimize task creation by caching two thread stacks per CPU if CONFIG_VMAP_STACK=y
sched/core: Free the stack early if CONFIG_THREAD_INFO_IN_TASK
lib/syscall: Pin the task stack in collect_syscall()
x86/process: Pin the target stack in get_wchan()
x86/dumpstack: Pin the target stack when dumping it
kthread: Pin the stack via try_get_task_stack()/put_task_stack() in to_live_kthread() function
sched/core: Add try_get_task_stack() and put_task_stack()
x86/entry/64: Fix a minor comment rebase error
iommu/amd: Don't put completion-wait semaphore on stack
...
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJX7k31AAoJELescNyEwWM0XX0H/iOaWCfKlWOhvBsStGUCsLrK
XryTzQT2KjdnLKf3jwP+1ateCuBR5ROurYxoDCX5/7mD63c5KiI338Vbv61a1lE1
AAwjt1stmQVUg/j+kqnuQwB/0DYg+2C8se3D3q5Iyn7zc19cDZJEGcBHNrvLMufc
XgHrgHgl/rzBDDlHJXleknDFge/MfhU5/Q1vJMRRb4JYrpAtmIokzCO75CYMRcCT
ND2QbmppKtsyuFPGUTVbAFzJlP6dGKb3eruYta7/ct5d0pJQxav3u98D2yWGfjdM
YaYq1EmX5Pol7rWumqLtk0+mA9yCFcKLLc+PrJu20Vx0UkvOq8G8Xt70sHNvZU8=
=gdPM
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"It's a bit all over the place this time with no "killer feature" to
speak of. Support for mismatched cache line sizes should help people
seeing whacky JIT failures on some SoCs, and the big.LITTLE perf
updates have been a long time coming, but a lot of the changes here
are cleanups.
We stray outside arch/arm64 in a few areas: the arch/arm/ arch_timer
workaround is acked by Russell, the DT/OF bits are acked by Rob, the
arch_timer clocksource changes acked by Marc, CPU hotplug by tglx and
jump_label by Peter (all CC'd).
Summary:
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (100 commits)
arm64: tlbflush.h: add __tlbi() macro
arm64: Kconfig: remove SMP dependence for NUMA
arm64: Kconfig: select OF/ACPI_NUMA under NUMA config
arm64: fix dump_backtrace/unwind_frame with NULL tsk
arm/arm64: arch_timer: Use archdata to indicate vdso suitability
arm64: arch_timer: Work around QorIQ Erratum A-008585
arm64: arch_timer: Add device tree binding for A-008585 erratum
arm64: Correctly bounds check virt_addr_valid
arm64: migrate exception table users off module.h and onto extable.h
arm64: pmu: Hoist pmu platform device name
arm64: pmu: Probe default hw/cache counters
arm64: pmu: add fallback probe table
MAINTAINERS: Update ARM PMU PROFILING AND DEBUGGING entry
arm64: Improve kprobes test for atomic sequence
arm64/kvm: use alternative auto-nop
arm64: use alternative auto-nop
arm64: alternative: add auto-nop infrastructure
arm64: lse: convert lse alternatives NOP padding to use __nops
arm64: barriers: introduce nops and __nops macros for NOP sequences
arm64: sysreg: replace open-coded mrs_s/msr_s with {read,write}_sysreg_s
...
Whilst MPIDR values themselves are less than 32 bits, it is still
perfectly valid for a DT to have #address-cells > 1 in the CPUs node,
resulting in the "reg" property having leading zero cell(s). In that
situation, the big-endian nature of the data conspires with the current
behaviour of only reading the first cell to cause the kernel to think
all CPUs have ID 0, and become resoundingly unhappy as a consequence.
Take the full property length into account when parsing CPUs so as to
be correct under any circumstances.
Cc: Russell King <linux@armlinux.org.uk>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Instead of comparing the name to a magic string, use archdata to
explicitly communicate whether the arch timer is suitable for
direct vdso access.
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Scott Wood <oss@buserror.net>
Signed-off-by: Will Deacon <will.deacon@arm.com>
By using a common attr_groups array, the common arm_pmu code can set up
common files (e.g. cpumask) for us in subsequent patches.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch does the plumbing required to invoke the V7M cache code added
in earlier patches in this series, although there is no users for that
yet.
In order to honour the I/D cache disable config options, this patch changes
the mechanism by which the CCR is set on boot, to be more like V7A/R.
Signed-off-by: Jonathan Austin <jonathan.austin@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Andras Szemzo <sza@esh.hu>
Tested-by: Joachim Eastwood <manabian@gmail.com>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
With the addition of caches to the V7M Architecture a new Cache Type
Register (CTR) is defined at 0xE000ED7C. This register serves the same
purpose as the V7A/R version and accessed via the read_cpuid_cachetype.
Signed-off-by: Jonathan Austin <jonathan.austin@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Andras Szemzo <sza@esh.hu>
Tested-by: Joachim Eastwood <manabian@gmail.com>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Currently we use raw cp15 operations to access the cache setup data.
This patch abstracts the CSSELR and CCSIDR accessors out to a header so
that the implementation for them can be switched out as we do with other
cpu/cachetype operations.
Signed-off-by: Jonathan Austin <jonathan.austin@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Andras Szemzo <sza@esh.hu>
Tested-by: Joachim Eastwood <manabian@gmail.com>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Given that we now sort the relocation sections in a way that guarantees
that entries that can share a single PLT entry end up adjacently, there
is no a longer a need to go over the entire list to look for an existing
entry that matches our jump target. If such a match exists, it was the
last one to be emitted, so we can simply check the preceding slot.
Note that this will still work correctly in the [theoretical] presence of
call/jump relocations against SHN_UNDEF symbols with non-zero addends,
although not optimally. Since the relocations are presented in the same
order that we checked them for duplicates, any duplicates that we failed
to spot the first time around will be accounted for in the PLT allocation
so there is guaranteed to be sufficient space for them when actually
emitting the PLT.
For instance, the following sequence of relocations:
000004d8 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
000004fc 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
0000050e 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
00000520 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
00000532 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
00000544 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
00000556 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
00000568 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
0000057a 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
0000058c 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
0000059e 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
000005b0 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
000005c2 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
000005d4 00058b0a R_ARM_THM_CALL 00000000 warn_slowpath_null
may result in several PLT entries to be allocated, and also emitted, if
any of the entries in the middle refer to a Place that contains a non-zero
addend (i.e., one for all the preceding zero-addend relocations, one for
all the following zero-addend relocations, and one for the non-zero addend
relocation itself)
Tested-by: Jongsung Kim <neidhard.kim@lge.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
The PLT allocation routines try to establish an upper bound on the
number of PLT entries that will be required at relocation time, and
optimize this by disregarding duplicates (i.e., PLT entries that will
end up pointing to the same function). This is currently a O(n^2)
algorithm, but we can greatly simplify this by
- sorting the relocation section so that relocations that can use the
same PLT entry will be listed adjacently,
- disregard jump/call relocations with addends; these are highly unusual,
for relocations against SHN_UNDEF symbols, and so we can simply allocate
a PLT entry for each one we encounter, without trying to optimize away
duplicates.
Tested-by: Jongsung Kim <neidhard.kim@lge.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
When CONFIG_ARM_MODULE_PLTS is enabled, jump and call instructions in
modules no longer need to be within 16 MB (8 MB for Thumb2) of their
targets. If they are further away, a PLT entry will be generated on the
fly for each of them, which extends the range to the entire 32-bit
address space.
However, since these PLT entries will become the branch targets of the
original jump and call instructions, the PLT itself needs to be in
range, or we end up in the same situation we started in. Since the PLT
is in a separate section, this essentially means that all jumps and calls
inside the same module must be resolvable without PLT entries.
The PLT allocation code executes before the module itself is loaded in
its final location, and so it has to use a worst-case estimate for
which jumps and calls will require an entry in the PLT at relocation
time. As an optimization, this code deduplicates entries pointing to
the same symbol, using a O(n^2) algorithm. However, it does not take
the above into account, i.e., that PLT entries will only be needed for
jump and call relocations against symbols that are not defined in the
module.
So disregard relocations against symbols that are defined in the module
itself.
As an additional minor optimization, ignore input sections that lack
the SHF_EXECINSTR flag. Since jump and call relocations operate on
executable instructions only, there is no need to look in sections that
do not contain executable code.
Tested-by: Jongsung Kim <neidhard.kim@lge.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
The PLT code uses a separate .init.plt section to allocate PLT entries
for jump and call instructions in __init code. However, even for fairly
sizable modules like mac80211.ko, we only end up with a couple of PLT
entries in the .init section, and so we can simplify the code
significantly by emitting all PLT entries into the same section.
Tested-by: Jongsung Kim <neidhard.kim@lge.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Storing this value will help prevent unwinders from getting out of sync
with the function graph tracer ret_stack. Now instead of needing a
stateful iterator, they can compare the return address pointer to find
the right ret_stack entry.
Note that an array of 50 ftrace_ret_stack structs is allocated for every
task. So when an arch implements this, it will add either 200 or 400
bytes of memory usage per task (depending on whether it's a 32-bit or
64-bit platform).
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a95cfcc39e8f26b89a430c56926af0bb217bc0a1.1471607358.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the non-secure copies of banked registers lack architecturally
defined reset values, there is no actual guarantee when entering in Hyp
from secure-only firmware that the Non-Secure PL1 state will look the
way that kernel entry (in particular the decompressor stub) expects.
So far, we've been getting away with it thanks to implementation details
of ARMv7 cores and/or bootloader behaviour, but for the sake of forwards
compatibility let's try to ensure that we have a minimally sane state
before dropping down into it.
Cc: Russell King <linux@armlinux.org.uk>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Pull ARM fixes from Russell King:
"Only three fixes this time:
- Emil found an overflow problem with the memory layout sanity check.
- Ard Biesheuvel noticed that late-allocated page tables (for EFI)
weren't being properly constructed.
- Guenter Roeck reported a problem found on qemu caused by the recent
addr_limit changes"
* 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: fix address limit restoration for undefined instructions
ARM: 8591/1: mm: use fully constructed struct pages for EFI pgd allocations
ARM: 8590/1: sanity_check_meminfo(): avoid overflow on vmalloc_limit
vdso_data_mapping is never modified, so mark it as const.
vdso_total_pages, vdso_data_page, vdso_text_mapping and cntvct_ok are
initialized by vdso_init(), thereafter are read only.
The fact that they are read only after init makes them candidates for
__ro_after_init declarations.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Nathan Lynch <nathan_lynch@mentor.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Guided by grsecurity's analogous __read_only markings in arch/arm,
this applies several uses of __ro_after_init to structures that are
only updated during __init.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add access checks to sys_oabi_epoll_wait() and sys_oabi_semtimedop().
This fixes CVE-2016-3857, a local privilege escalation under
CONFIG_OABI_COMPAT.
Cc: stable@vger.kernel.org
Reported-by: Chiachih Wu <wuchiachih@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Dave Weinstein <olorin@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During boot, sometimes the kernel will test to see if an instruction
causes an undefined instruction exception. Unfortunately, the exit
path for these exceptions did not restore the address limit, which
causes the rootfs mount code to fail. Fix the missing address limit
restoration.
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
The jump table can reference text found in an __exit section. Thus,
instead of discarding it at build time, include EXIT_TEXT as part of
__init and it will be released when the system boots.
Link: http://lkml.kernel.org/r/60284113bb759121e8ae3e99af1535647e52123f.1467837322.git.jbaron@akamai.com
Signed-off-by: Jason Baron <jbaron@akamai.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Joe Perches <joe@perches.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge yet more updates from Andrew Morton:
- the rest of ocfs2
- various hotfixes, mainly MM
- quite a bit of misc stuff - drivers, fork, exec, signals, etc.
- printk updates
- firmware
- checkpatch
- nilfs2
- more kexec stuff than usual
- rapidio updates
- w1 things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (111 commits)
ipc: delete "nr_ipc_ns"
kcov: allow more fine-grained coverage instrumentation
init/Kconfig: add clarification for out-of-tree modules
config: add android config fragments
init/Kconfig: ban CONFIG_LOCALVERSION_AUTO with allmodconfig
relay: add global mode support for buffer-only channels
init: allow blacklisting of module_init functions
w1:omap_hdq: fix regression
w1: add helper macro module_w1_family
w1: remove need for ida and use PLATFORM_DEVID_AUTO
rapidio/switches: add driver for IDT gen3 switches
powerpc/fsl_rio: apply changes for RIO spec rev 3
rapidio: modify for rev.3 specification changes
rapidio: change inbound window size type to u64
rapidio/idt_gen2: fix locking warning
rapidio: fix error handling in mbox request/release functions
rapidio/tsi721_dma: advance queue processing from transfer submit call
rapidio/tsi721: add messaging mbox selector parameter
rapidio/tsi721: add PCIe MRRS override parameter
rapidio/tsi721_dma: add channel mask and queue size parameters
...
Provide kexec with the boot view of memory by overriding the normal
kexec translation functions added in a previous patch. We also need to
fix a call to memblock in machine_kexec_prepare() so that we provide it
with a running-view physical address rather than a boot- view physical
address.
Link: http://lkml.kernel.org/r/E1b8koa-0004Hl-Ey@rmk-PC.armlinux.org.uk
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Keerthy <j-keerthy@ti.com>
Cc: Pratyush Anand <panand@redhat.com>
Cc: Vitaly Andrianov <vitalya@ti.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Simon Horman <horms@verge.net.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Advertise the location of bootable RAM to kexec-tools. kexec needs to
know where it can place the kernel in RAM, and so be executable when the
system needs to jump into it.
Advertise these areas in /proc/iomem with a "System RAM (boot alias)"
tag.
Link: http://lkml.kernel.org/r/E1b8ko4-0004HA-GF@rmk-PC.armlinux.org.uk
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Reviewed-by: Pratyush Anand <panand@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Keerthy <j-keerthy@ti.com>
Cc: Vitaly Andrianov <vitalya@ti.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Simon Horman <horms@verge.net.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Advertise a resource which describes where the crash kernel is located
in the boot view of RAM. This allows kexec-tools to have this vital
information.
Link: http://lkml.kernel.org/r/E1b8knz-0004H4-Bd@rmk-PC.armlinux.org.uk
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Baoquan He <bhe@redhat.com>
Cc: Keerthy <j-keerthy@ti.com>
Cc: Pratyush Anand <panand@redhat.com>
Cc: Vitaly Andrianov <vitalya@ti.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Simon Horman <horms@verge.net.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>