This renames pcibios_{add,remove}_pci_devices() to avoid conflicts
with names of the weak functions in PCI subsystem, which have the
prefix "pcibios". No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In current implementation, the PEs that are allocated or picked
from the reserved list are identified by PE number. The PE instance
has to be picked according to the PE number eventually. We have
same issue when PE is released.
For pnv_ioda_pick_m64_pe() and pnv_ioda_alloc_pe(), this returns
PE instance so that pnv_ioda_setup_bus_PE() can use the allocated
or reserved PE instance directly. Also, pnv_ioda_setup_bus_PE()
returns the reserved/allocated PE instance to be used in subsequent
patches. On the other hand, pnv_ioda_free_pe() uses PE instance
(not number) as its argument. No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In current implementation, the DMA32 segments required by one specific
PE isn't calculated with the information hold in the PE independently.
It conflicts with the PCI hotplug design: PE centralized, meaning the
PE's DMA32 segments should be calculated from the information hold in
the PE independently.
This introduces an array (@dma32_segmap) for every PHB to track the
DMA32 segmeng usage. Besides, this moves the logic calculating PE's
consumed DMA32 segments to pnv_pci_ioda1_setup_dma_pe() so that PE's
DMA32 segments are calculated/allocated from the information hold in
the PE (DMA32 weight). Also the logic is improved: we try to allocate
as much DMA32 segments as we can. It's acceptable that number of DMA32
segments less than the expected number are allocated.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PEs are put into PHB DMA32 list (phb->ioda.pe_dma_list) according
to their DMA32 weight. The PEs on the list are iterated to setup
their TCE32 tables at system booting time. The list is used for
once at boot time and no need to keep it.
This moves the logic calculating DMA32 weight of PHB and PE to
pnv_ioda_setup_dma() to drop PHB's DMA32 list. Also, every PE
traces the consumed DMA32 segment by @tce32_seg and @tce32_segcount
are useless and they're removed.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently, there is one macro (TCE32_TABLE_SIZE) representing the
TCE table size for one DMA32 segment. The constant representing
the DMA32 segment size (1 << 28) is still used in the code.
This defines PNV_IODA1_DMA32_SEGSIZE representing one DMA32
segment size. the TCE table size can be calcualted when the page
has fixed 4KB size. So all the related calculation depends on one
macro (PNV_IODA1_DMA32_SEGSIZE). No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This renames pnv_pci_ioda_setup_dma_pe() to pnv_pci_ioda1_setup_dma_pe()
as it's the counter-part of IODA2's pnv_pci_ioda2_setup_dma_pe().
No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This enables M64 window on P7IOC, which has been enabled on PHB3.
Different from PHB3 where 16 M64 BARs are supported and each of
them can be owned by one particular PE# exclusively or divided
evenly to 256 segments, every P7IOC PHB has 16 M64 BARs and each
of them are divided to 8 segments. So every P7IOC PHB supports
128 M64 segments in total. P7IOC has M64DT, which helps mapping
one particular M64 segment# to arbitrary PE#. PHB3 doesn't have
M64DT, indicating that one M64 segment can only be pinned to the
fixed PE#.
In order to unified M64 support M64 on P7IOC and PHB3, we just
provide 128 M64 segments on every P7IOC PHB and each of them is
pinned to the fixed PE# by bypassing the function of M64DT. In
turn, we just need different phb->init_m64() for P7IOC and PHB3
and maps M64 segment in pnv_ioda_reserve_m64_pe() for P7IOC, most
of the code are shared by them.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This renames those functions picking PE number based on consumed
M64 segments, mapping M64 segments to PEs as those functions are
going to be shared by IODA1/IODA2 in next patch. No logical changes
introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When unplugging PCI devices, their parent PEs might be offline.
The consumed M64 resource by the PEs should be released at that
time. As we track M32 segment consumption, this introduces an
array to the PHB to track the mapping between M64 segment and
PE number.
Note: M64 mapping isn't covered by pnv_ioda_setup_pe_seg() as
IODA2 doesn't support the mapping explicitly while it's supported
on IODA1. Until now, no M64 is supported on IODA1 in software.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently, the IO and M32 segments are mapped to the corresponding
PE based on the windows of the parent bridge of PE's primary bus.
It's not going to work when the windows of root port or upstream
port of the PCIe switch behind root port are extended to PHB's
apertures in order to support hotplug in subsequent patch.
This fixes the issue by mapping IO and M32 segments based on the
resources of the PCI devices included in the PE, instead of the
windows of the parent bridge of the PE's primary bus.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
pnv_ioda_setup_pe_seg() associates the IO and M32 segments with the
owner PE. The code mapping segments should be fixed and immune from
logic changes introduced to pnv_ioda_setup_pe_seg().
This moves the code mapping segments to helper pnv_ioda_setup_pe_res().
The data type for @rc is changed to "int64_t". Also, argument @hose is
removed from pnv_ioda_setup_pe() as it can be got from @pe. No functional
changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There are two arrays for IO and M32 segment maps on every PHB.
The index of the arrays are segment number and the value stored
in the corresponding element is PE number, indicating the segment
is assigned to the PE. Initially, all elements in those two arrays
are zeroes, meaning all segments are assigned to PE#0. It's wrong.
This fixes the initial values in the elements of those two arrays
to IODA_INVALID_PE, meaning all segments aren't assigned to any
PE.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This changes the data type of PE number from "int" to "unsigned int"
in order to match the fact PE number is never negative:
* The number of PE to which the specified PCI device is attached.
* The PE number map for SRIOV VFs.
* The returned PE number from pnv_ioda_alloc_pe().
* The returned PE number from pnv_ioda2_pick_m64_pe().
Suggested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This renames the fields related to PE number in "struct pnv_phb"
for better reflecting of their usages as Alexey suggested. No
logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This moves those fields in struct pnv_phb that are related to PE
allocation around. No logical change.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The last usage of pnv_phb::bdfn_to_pe() was removed in
ff57b454dd ("powerpc/eeh: Do probe on pci_dn"), so drop it.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This cleans up on below data struct instances to use tab instead of
space indent of statement to avoid complains from scripts/checkpatch.pl.
No logical changes introduced.
@pnv_pci_ioda_controller_ops
@pnv_npu_ioda_controller_ops
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Each PHB has one instance of "struct pci_controller_ops" that includes
various callbacks called by PCI subsystem. In the definition of this
struct, some callbacks have explicit names for its arguments, but the
left don't have.
This adds all explicit names of the arguments to the callbacks in
"struct pci_controller_ops" so that the code looks consistent. Also,
argument name @dev is replaced by @pdev as the later one is the
preferred name for PCI device.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The routine machine_check_pSeries_early() is only used on powernv, not
pseries. Hence rename machine_check_pSeries_early() to
machine_check_powernv_early().
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The function is used to update the MMU with software PTE. It can
be called by data access exception handler (0x300) or instruction
access exception handler (0x400). If the function is called by
0x400 handler, the local variable @access is set to _PAGE_EXEC
to indicate the software PTE should have that flag set. When the
function is called by 0x300 handler, @access is set to zero.
This improves the readability of the function by replacing if
statements with switch. No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The zone that contains the top of memory will be either ZONE_NORMAL
or ZONE_HIGHMEM depending on the kernel config. There are two functions
that require this information and both of them use an #ifdef to set
a local variable (top_zone). This is a little silly so lets just make it
a constant.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Cc: linux-mm@kvack.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There is a switch fallthough in instr_analyze() which can cause an
invalid instruction to be emulated as a different, valid, instruction.
The rld* (opcode 30) case extracts a sub-opcode from bits 3:1 of the
instruction word. However, the only valid values of this field are 001
and 000. These cases are correctly handled, but the others are not which
causes execution to fall through into case 31.
Breaking out of the switch causes the instruction to be marked as
unknown and allows the caller to deal with the invalid instruction in a
manner consistent with other invalid instructions.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit be96f63375 ("powerpc: Split out instruction analysis part of
emulate_step()") introduced ldarx and stdcx into the instructions in
sstep.c, which are not accepted by the assembler on powerpcspe, but does
seem to be accepted by the normal powerpc assembler even in 32 bit mode.
Wrap these two instructions in a __powerpc64__ check like it is
everywhere else in the file.
Fixes: be96f63375 ("powerpc: Split out instruction analysis part of emulate_step()")
Signed-off-by: Len Sorensen <lsorense@csclub.uwaterloo.ca>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
xmon has commands for reading and writing SPRs, but they don't work
currently for several reasons. They attempt to synthesize a small
function containing an mfspr or mtspr instruction and call it. However,
the instructions are on the stack, which is usually not executable.
Also, for 64-bit we set up a procedure descriptor, which is fine for the
big-endian ABIv1, but not correct for ABIv2. Finally, the code uses the
infrastructure for catching memory errors, but that only catches data
storage interrupts and machine check interrupts, but a failed
mfspr/mtspr can generate a program interrupt or a hypervisor emulation
assist interrupt, or be a no-op.
Instead of trying to synthesize a function on the fly, this adds two new
functions, xmon_mfspr() and xmon_mtspr(), which take an SPR number as an
argument and read or write the SPR. Because there is no Power ISA
instruction which takes an SPR number in a register, we have to generate
one of each possible mfspr and mtspr instruction, for all 1024 possible
SPRs. Thus we get just over 8k bytes of code for each of xmon_mfspr()
and xmon_mtspr(). However, this 16kB of code pales in comparison to the
> 130kB of PPC opcode tables used by the xmon disassembler.
To catch interrupts caused by the mfspr/mtspr instructions, we add a new
'catch_spr_faults' flag. If an interrupt occurs while it is set, we come
back into xmon() via program_check_interrupt(), _exception() and die(),
see that catch_spr_faults is set and do a longjmp to bus_error_jmp, back
into read_spr() or write_spr().
This adds a couple of other nice features: first, a "Sa" command that
attempts to read and print out the value of all 1024 SPRs. If any mfspr
instruction acts as a no-op, then the SPR is not implemented and not
printed.
Secondly, the Sr and Sw commands detect when an SPR is not
implemented (i.e. mfspr is a no-op) and print a message to that effect
rather than printing a bogus value.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With perf regs support enabled for powerpc, in commit ed4a4ef85c
("powerpc/perf: Add support for sampling interrupt register state"),
the support for obtaining perf user stack dump is already enabled. This
patch declares the support for same and also updates documentation to
mark the support for perf-regs and perf-stackdump.
Signed-off-by: Chandan Kumar <chandan.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With Linux page size of 64K and hardware only supporting 4K HPTE, if we
use subpage protection, we always fail for the subpage 0 as shown
below (using the selftest subpage_prot test):
520175565: (4520111850): Failed at 0x3fffad4b0000 (p=13,sp=0,w=0), want=fault, got=pass !
4520890210: (4520826495): Failed at 0x3fffad5b0000 (p=29,sp=0,w=0), want=fault, got=pass !
4521574251: (4521510536): Failed at 0x3fffad6b0000 (p=45,sp=0,w=0), want=fault, got=pass !
4522258324: (4522194609): Failed at 0x3fffad7b0000 (p=61,sp=0,w=0), want=fault, got=pass !
This is because hash preload wrongly inserts the HPTE entry for subpage
0 without looking at the subpage protection information.
Fix it by teaching should_hash_preload() not to preload if we have
subpage protection configured for that range.
It appears this has been broken since it was introduced in 2008.
Fixes: fa28237cfc ("[POWERPC] Provide a way to protect 4k subpages when using 64k pages")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Rework into should_hash_preload() to avoid build fails w/SLICES=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently we have a check in hash_preload() against the psize, which is
only included when CONFIG_PPC_MM_SLICES is enabled. We want to expand
this check in a subsequent patch, so factor it out to allow that. As a
bonus it removes the #ifdef in the C code.
Unfortunately we can't put this in the existing CONFIG_PPC_MM_SLICES
block because it would require a forward declaration.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
After obtaining a property from of_find_property() and before calling
of_remove_property() most code checks to ensure that the property
returned from of_find_property() is not null. The previous patch moved
this check to the start of the function of_remove_property() in order to
avoid the case where this check isn't done and a null value is passed.
This ensures the check is always conducted before taking locks and
attempting to remove the property. Thus it is no longer necessary to
perform a check for null values before invoking of_remove_property().
Update of_remove_property() call sites in order to remove redundant
checking for null property value as check is now performed within the
of_remove_property function().
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
[mpe: Unbreak some lines which are just >80 chars for readability]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The return value of of_get_property() isn't checked before it is passed
to the strstr() function, if it happens that the return value is null
then this will result in a null pointer being dereferenced.
Add a check to see if the return value of of_get_property() is null and
if it is continue straight on to the next node.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: Chris Smart <chris@distroguy.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When cfg_dbg() is enabled (i.e. mapped to printk()), gcc produces
errors as the __func__ parameter is missing (pnv_pci_cfg_read() has one);
this adds the missing parameter.
cfg_dbg() is just an inferior version of pr_devel() so use the latter
instead.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The code in machine_restart/power_off/halt() includes #ifdefs around
calls to smp_send_stop(), however these are not required as
include/linux/smp.h includes an empty version of this function for
CONFIG_SMP=n builds.
Signed-off-by: Chris Smart <chris@distroguy.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Support for the A2 cpu was removed in commit fb5a515704 ("powerpc:
Remove platforms/wsp and associated pieces"), and the externs:
__setup_cpu_a2 and __restore_cpu_a2 are still around and unused, so
remove them.
Signed-off-by: Rashmica Gupta <rashmicy@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The usage in mm mmu_context_nohash.c is bogus, because we set the
context.id value to MMU_NO_CONTEXT 4 lines previously in the same
function, meaning slice_mm_new_context() will always be true.
The book3s 64 usage was removed in the previous commit. So remove it as
unused.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
As part of the radix support we switched Book3s64 to use a value of ~0
for MMU_NO_CONTEXT. That is because id 0 is special on radix.
However that broke the logic in init_new_context(). The code there needs
to differentiate between a newly allocated context and one inherited via
fork. Previously it worked because a newly allocated context has an id
of zero (because it was just memset() to zero), which used to match
MMU_NO_CONTEXT, and therefore slice_mm_new_context() did the right
thing.
Instead check against a context.id value of zero instead of using
slice_mm_new_context().
Without this patch we never call slice_set_user_psize(), and end up with
a slice psize value of zero and we always end up using 4K HPTE.
Fixes: 1a472c9dba ("powerpc/mm/radix: Add tlbflush routines")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add #defines for Power ISA 3.0 software defined bits.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We use the existing "ibm,pa-features" device-tree property to enable
Radix MMU mode. This means we default to hash mode unless firmware tells
us it's OK to start using Radix mode.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds THP support for 4K Linux page size config with radix. We still
don't do THP with 4K Linux page size and hash page table. Hash page
table needs a 16MB hugepage and we can't do THP with 16MM hugepage and
4K Linux page size.
We add missing functions to 4K hash config to get it to build and
hash__has_transparent_hugepage() makes sure we don't enable THP for 4K
hash config. To catch wrong usage of THP related with 4K config, we add
BUG() in those dummy functions we added to get it compile.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The deposited pgtable_t is a pte fragment hence we cannot use page->lru
for linking then together. We use the first two 64 bits for pte fragment
as list_head type to link all deposited fragments together. On withdraw
we properly zero then out.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Only code movement in this patch. No functionality change.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We have hugepage at the pmd level with 4K radix config. Hence we don't
need to use hugepd format with radix.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With 4K page size radix config our level 1 page table size is 64K and it
should be naturally aligned.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Radix doesn't use the slice framework to find the page size. Hence use
vma to find the page size.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In this patch we make the number of pte fragments per level 4 page table
page a variable. Radix level 4 table size is 256 bytes and hence we can
have 256 fragments per level 4 page. We don't update the fragment count
in this patch. We need to do performance measurements to find the right
value for fragment count.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With radix there is no MMU cache. Hence we don't need to do anything in
update_mmu_cache().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The vmalloc range differs between hash and radix config. Hence make
VMALLOC_START and related constants a variable which will be runtime
initialized depending on whether hash or radix mode is active.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Fix missing init of ioremap_bot in pgtable_64.c for ppc64e]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>