Commit Graph

413 Commits

Author SHA1 Message Date
Mathieu Desnoyers
227a4aadc7 sched/membarrier: Fix p->mm->membarrier_state racy load
The membarrier_state field is located within the mm_struct, which
is not guaranteed to exist when used from runqueue-lock-free iteration
on runqueues by the membarrier system call.

Copy the membarrier_state from the mm_struct into the scheduler runqueue
when the scheduler switches between mm.

When registering membarrier for mm, after setting the registration bit
in the mm membarrier state, issue a synchronize_rcu() to ensure the
scheduler observes the change. In order to take care of the case
where a runqueue keeps executing the target mm without swapping to
other mm, iterate over each runqueue and issue an IPI to copy the
membarrier_state from the mm_struct into each runqueue which have the
same mm which state has just been modified.

Move the mm membarrier_state field closer to pgd in mm_struct to use
a cache line already touched by the scheduler switch_mm.

The membarrier_execve() (now membarrier_exec_mmap) hook now needs to
clear the runqueue's membarrier state in addition to clear the mm
membarrier state, so move its implementation into the scheduler
membarrier code so it can access the runqueue structure.

Add memory barrier in membarrier_exec_mmap() prior to clearing
the membarrier state, ensuring memory accesses executed prior to exec
are not reordered with the stores clearing the membarrier state.

As suggested by Linus, move all membarrier.c RCU read-side locks outside
of the for each cpu loops.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-25 17:42:30 +02:00
Ingo Molnar
563c4f85f9 Merge branch 'sched/rt' into sched/core, to pick up -rt changes
Pick up the first couple of patches working towards PREEMPT_RT.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-16 14:05:04 +02:00
Patrick Bellasi
0413d7f33e sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
The supported clamp indexes are defined in 'enum clamp_id', however, because
of the code logic in some of the first utilization clamping series version,
sometimes we needed to use 'unsigned int' to represent indices.

This is not more required since the final version of the uclamp_* APIs can
always use the proper enum uclamp_id type.

Fix it with a bulk rename now that we have all the bits merged.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-7-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-03 09:17:40 +02:00
Patrick Bellasi
0b60ba2dd3 sched/uclamp: Propagate parent clamps
In order to properly support hierarchical resources control, the cgroup
delegation model requires that attribute writes from a child group never
fail but still are locally consistent and constrained based on parent's
assigned resources. This requires to properly propagate and aggregate
parent attributes down to its descendants.

Implement this mechanism by adding a new "effective" clamp value for each
task group. The effective clamp value is defined as the smaller value
between the clamp value of a group and the effective clamp value of its
parent. This is the actual clamp value enforced on tasks in a task group.

Since it's possible for a cpu.uclamp.min value to be bigger than the
cpu.uclamp.max value, ensure local consistency by restricting each
"protection" (i.e. min utilization) with the corresponding "limit"
(i.e. max utilization).

Do that at effective clamps propagation to ensure all user-space write
never fails while still always tracking the most restrictive values.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-03 09:17:38 +02:00
Patrick Bellasi
2480c09313 sched/uclamp: Extend CPU's cgroup controller
The cgroup CPU bandwidth controller allows to assign a specified
(maximum) bandwidth to the tasks of a group. However this bandwidth is
defined and enforced only on a temporal base, without considering the
actual frequency a CPU is running on. Thus, the amount of computation
completed by a task within an allocated bandwidth can be very different
depending on the actual frequency the CPU is running that task.
The amount of computation can be affected also by the specific CPU a
task is running on, especially when running on asymmetric capacity
systems like Arm's big.LITTLE.

With the availability of schedutil, the scheduler is now able
to drive frequency selections based on actual task utilization.
Moreover, the utilization clamping support provides a mechanism to
bias the frequency selection operated by schedutil depending on
constraints assigned to the tasks currently RUNNABLE on a CPU.

Giving the mechanisms described above, it is now possible to extend the
cpu controller to specify the minimum (or maximum) utilization which
should be considered for tasks RUNNABLE on a cpu.
This makes it possible to better defined the actual computational
power assigned to task groups, thus improving the cgroup CPU bandwidth
controller which is currently based just on time constraints.

Extend the CPU controller with a couple of new attributes uclamp.{min,max}
which allow to enforce utilization boosting and capping for all the
tasks in a group.

Specifically:

- uclamp.min: defines the minimum utilization which should be considered
	      i.e. the RUNNABLE tasks of this group will run at least at a
	      minimum frequency which corresponds to the uclamp.min
	      utilization

- uclamp.max: defines the maximum utilization which should be considered
	      i.e. the RUNNABLE tasks of this group will run up to a
	      maximum frequency which corresponds to the uclamp.max
	      utilization

These attributes:

a) are available only for non-root nodes, both on default and legacy
   hierarchies, while system wide clamps are defined by a generic
   interface which does not depends on cgroups. This system wide
   interface enforces constraints on tasks in the root node.

b) enforce effective constraints at each level of the hierarchy which
   are a restriction of the group requests considering its parent's
   effective constraints. Root group effective constraints are defined
   by the system wide interface.
   This mechanism allows each (non-root) level of the hierarchy to:
   - request whatever clamp values it would like to get
   - effectively get only up to the maximum amount allowed by its parent

c) have higher priority than task-specific clamps, defined via
   sched_setattr(), thus allowing to control and restrict task requests.

Add two new attributes to the cpu controller to collect "requested"
clamp values. Allow that at each non-root level of the hierarchy.
Keep it simple by not caring now about "effective" values computation
and propagation along the hierarchy.

Update sysctl_sched_uclamp_handler() to use the newly introduced
uclamp_mutex so that we serialize system default updates with cgroup
relate updates.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-03 09:17:37 +02:00
Peter Zijlstra
67692435c4 sched: Rework pick_next_task() slow-path
Avoid the RETRY_TASK case in the pick_next_task() slow path.

By doing the put_prev_task() early, we get the rt/deadline pull done,
and by testing rq->nr_running we know if we need newidle_balance().

This then gives a stable state to pick a task from.

Since the fast-path is fair only; it means the other classes will
always have pick_next_task(.prev=NULL, .rf=NULL) and we can simplify.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/aa34d24b36547139248f32a30138791ac6c02bd6.1559129225.git.vpillai@digitalocean.com
2019-08-08 09:09:31 +02:00
Peter Zijlstra
5f2a45fc9e sched: Allow put_prev_task() to drop rq->lock
Currently the pick_next_task() loop is convoluted and ugly because of
how it can drop the rq->lock and needs to restart the picking.

For the RT/Deadline classes, it is put_prev_task() where we do
balancing, and we could do this before the picking loop. Make this
possible.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/e4519f6850477ab7f3d257062796e6425ee4ba7c.1559129225.git.vpillai@digitalocean.com
2019-08-08 09:09:31 +02:00
Peter Zijlstra
5ba553eff0 sched/fair: Expose newidle_balance()
For pick_next_task_fair() it is the newidle balance that requires
dropping the rq->lock; provided we do put_prev_task() early, we can
also detect the condition for doing newidle early.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/9e3eb1859b946f03d7e500453a885725b68957ba.1559129225.git.vpillai@digitalocean.com
2019-08-08 09:09:31 +02:00
Peter Zijlstra
03b7fad167 sched: Add task_struct pointer to sched_class::set_curr_task
In preparation of further separating pick_next_task() and
set_curr_task() we have to pass the actual task into it, while there,
rename the thing to better pair with put_prev_task().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/a96d1bcdd716db4a4c5da2fece647a1456c0ed78.1559129225.git.vpillai@digitalocean.com
2019-08-08 09:09:31 +02:00
Peter Zijlstra
10e7071b2f sched: Rework CPU hotplug task selection
The CPU hotplug task selection is the only place where we used
put_prev_task() on a task that is not current. While looking at that,
it occured to me that we can simplify all that by by using a custom
pick loop.

Since we don't need to put current, we can do away with the fake task
too.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
2019-08-08 09:09:30 +02:00
Dave Chiluk
de53fd7aed sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices
It has been observed, that highly-threaded, non-cpu-bound applications
running under cpu.cfs_quota_us constraints can hit a high percentage of
periods throttled while simultaneously not consuming the allocated
amount of quota. This use case is typical of user-interactive non-cpu
bound applications, such as those running in kubernetes or mesos when
run on multiple cpu cores.

This has been root caused to cpu-local run queue being allocated per cpu
bandwidth slices, and then not fully using that slice within the period.
At which point the slice and quota expires. This expiration of unused
slice results in applications not being able to utilize the quota for
which they are allocated.

The non-expiration of per-cpu slices was recently fixed by
'commit 512ac999d2 ("sched/fair: Fix bandwidth timer clock drift
condition")'. Prior to that it appears that this had been broken since
at least 'commit 51f2176d74 ("sched/fair: Fix unlocked reads of some
cfs_b->quota/period")' which was introduced in v3.16-rc1 in 2014. That
added the following conditional which resulted in slices never being
expired.

if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
	/* extend local deadline, drift is bounded above by 2 ticks */
	cfs_rq->runtime_expires += TICK_NSEC;

Because this was broken for nearly 5 years, and has recently been fixed
and is now being noticed by many users running kubernetes
(https://github.com/kubernetes/kubernetes/issues/67577) it is my opinion
that the mechanisms around expiring runtime should be removed
altogether.

This allows quota already allocated to per-cpu run-queues to live longer
than the period boundary. This allows threads on runqueues that do not
use much CPU to continue to use their remaining slice over a longer
period of time than cpu.cfs_period_us. However, this helps prevent the
above condition of hitting throttling while also not fully utilizing
your cpu quota.

This theoretically allows a machine to use slightly more than its
allotted quota in some periods. This overflow would be bounded by the
remaining quota left on each per-cpu runqueueu. This is typically no
more than min_cfs_rq_runtime=1ms per cpu. For CPU bound tasks this will
change nothing, as they should theoretically fully utilize all of their
quota in each period. For user-interactive tasks as described above this
provides a much better user/application experience as their cpu
utilization will more closely match the amount they requested when they
hit throttling. This means that cpu limits no longer strictly apply per
period for non-cpu bound applications, but that they are still accurate
over longer timeframes.

This greatly improves performance of high-thread-count, non-cpu bound
applications with low cfs_quota_us allocation on high-core-count
machines. In the case of an artificial testcase (10ms/100ms of quota on
80 CPU machine), this commit resulted in almost 30x performance
improvement, while still maintaining correct cpu quota restrictions.
That testcase is available at https://github.com/indeedeng/fibtest.

Fixes: 512ac999d2 ("sched/fair: Fix bandwidth timer clock drift condition")
Signed-off-by: Dave Chiluk <chiluk+linux@indeed.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: John Hammond <jhammond@indeed.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kyle Anderson <kwa@yelp.com>
Cc: Gabriel Munos <gmunoz@netflix.com>
Cc: Peter Oskolkov <posk@posk.io>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Brendan Gregg <bgregg@netflix.com>
Link: https://lkml.kernel.org/r/1563900266-19734-2-git-send-email-chiluk+linux@indeed.com
2019-08-08 09:09:30 +02:00
Thomas Gleixner
c1a280b68d sched/preempt: Use CONFIG_PREEMPTION where appropriate
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.

Switch the preemption code, scheduler and init task over to use
CONFIG_PREEMPTION.

That's the first step towards RT in that area. The more complex changes are
coming separately.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.117528401@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-31 19:03:34 +02:00
Mathieu Poirier
f9a25f776d cpusets: Rebuild root domain deadline accounting information
When the topology of root domains is modified by CPUset or CPUhotplug
operations information about the current deadline bandwidth held in the
root domain is lost.

This patch addresses the issue by recalculating the lost deadline
bandwidth information by circling through the deadline tasks held in
CPUsets and adding their current load to the root domain they are
associated with.

Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
[ Various additional modifications. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: rostedt@goodmis.org
Cc: tj@kernel.org
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-4-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:55:01 +02:00
Wanpeng Li
e0e8d4911e sched/isolation: Prefer housekeeping CPU in local node
In real product setup, there will be houseeking CPUs in each nodes, it
is prefer to do housekeeping from local node, fallback to global online
cpumask if failed to find houseeking CPU from local node.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1561711901-4755-2-git-send-email-wanpengli@tencent.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:51:55 +02:00
Viresh Kumar
43e9f7f231 sched/fair: Start tracking SCHED_IDLE tasks count in cfs_rq
Track how many tasks are present with SCHED_IDLE policy in each cfs_rq.
This will be used by later commits.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: chris.redpath@arm.com
Cc: quentin.perret@linaro.org
Cc: songliubraving@fb.com
Cc: steven.sistare@oracle.com
Cc: subhra.mazumdar@oracle.com
Cc: tkjos@google.com
Link: https://lkml.kernel.org/r/0d3cdc427fc68808ad5bccc40e86ed0bf9da8bb4.1561523542.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25 15:51:53 +02:00
Patrick Bellasi
af24bde8df sched/uclamp: Add uclamp support to energy_compute()
The Energy Aware Scheduler (EAS) estimates the energy impact of waking
up a task on a given CPU. This estimation is based on:

 a) an (active) power consumption defined for each CPU frequency
 b) an estimation of which frequency will be used on each CPU
 c) an estimation of the busy time (utilization) of each CPU

Utilization clamping can affect both b) and c).

A CPU is expected to run:

 - on an higher than required frequency, but for a shorter time, in case
   its estimated utilization will be smaller than the minimum utilization
   enforced by uclamp
 - on a smaller than required frequency, but for a longer time, in case
   its estimated utilization is bigger than the maximum utilization
   enforced by uclamp

While compute_energy() already accounts clamping effects on busy time,
the clamping effects on frequency selection are currently ignored.

Fix it by considering how CPU clamp values will be affected by a
task waking up and being RUNNABLE on that CPU.

Do that by refactoring schedutil_freq_util() to take an additional
task_struct* which allows EAS to evaluate the impact on clamp values of
a task being eventually queued in a CPU. Clamp values are applied to the
RT+CFS utilization only when a FREQUENCY_UTIL is required by
compute_energy().

Do note that switching from ENERGY_UTIL to FREQUENCY_UTIL in the
computation of the cpu_util signal implies that we are more likely to
estimate the highest OPP when a RT task is running in another CPU of
the same performance domain. This can have an impact on energy
estimation but:

 - it's not easy to say which approach is better, since it depends on
   the use case
 - the original approach could still be obtained by setting a smaller
   task-specific util_min whenever required

Since we are at that:

 - rename schedutil_freq_util() into schedutil_cpu_util(),
   since it's not only used for frequency selection.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-12-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:49 +02:00
Patrick Bellasi
9d20ad7dfc sched/uclamp: Add uclamp_util_with()
So far uclamp_util() allows to clamp a specified utilization considering
the clamp values requested by RUNNABLE tasks in a CPU. For the Energy
Aware Scheduler (EAS) it is interesting to test how clamp values will
change when a task is becoming RUNNABLE on a given CPU.
For example, EAS is interested in comparing the energy impact of
different scheduling decisions and the clamp values can play a role on
that.

Add uclamp_util_with() which allows to clamp a given utilization by
considering the possible impact on CPU clamp values of a specified task.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-11-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:48 +02:00
Patrick Bellasi
982d9cdc22 sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
Each time a frequency update is required via schedutil, a frequency is
selected to (possibly) satisfy the utilization reported by each
scheduling class and irqs. However, when utilization clamping is in use,
the frequency selection should consider userspace utilization clamping
hints.  This will allow, for example, to:

 - boost tasks which are directly affecting the user experience
   by running them at least at a minimum "requested" frequency

 - cap low priority tasks not directly affecting the user experience
   by running them only up to a maximum "allowed" frequency

These constraints are meant to support a per-task based tuning of the
frequency selection thus supporting a fine grained definition of
performance boosting vs energy saving strategies in kernel space.

Add support to clamp the utilization of RUNNABLE FAIR and RT tasks
within the boundaries defined by their aggregated utilization clamp
constraints.

Do that by considering the max(min_util, max_util) to give boosted tasks
the performance they need even when they happen to be co-scheduled with
other capped tasks.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-10-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:48 +02:00
Patrick Bellasi
e496187da7 sched/uclamp: Enforce last task's UCLAMP_MAX
When a task sleeps it removes its max utilization clamp from its CPU.
However, the blocked utilization on that CPU can be higher than the max
clamp value enforced while the task was running. This allows undesired
CPU frequency increases while a CPU is idle, for example, when another
CPU on the same frequency domain triggers a frequency update, since
schedutil can now see the full not clamped blocked utilization of the
idle CPU.

Fix this by using:

  uclamp_rq_dec_id(p, rq, UCLAMP_MAX)
    uclamp_rq_max_value(rq, UCLAMP_MAX, clamp_value)

to detect when a CPU has no more RUNNABLE clamped tasks and to flag this
condition.

Don't track any minimum utilization clamps since an idle CPU never
requires a minimum frequency. The decay of the blocked utilization is
good enough to reduce the CPU frequency.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:45 +02:00
Patrick Bellasi
69842cba9a sched/uclamp: Add CPU's clamp buckets refcounting
Utilization clamping allows to clamp the CPU's utilization within a
[util_min, util_max] range, depending on the set of RUNNABLE tasks on
that CPU. Each task references two "clamp buckets" defining its minimum
and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp
bucket is active if there is at least one RUNNABLE tasks enqueued on
that CPU and refcounting that bucket.

When a task is {en,de}queued {on,from} a rq, the set of active clamp
buckets on that CPU can change. If the set of active clamp buckets
changes for a CPU a new "aggregated" clamp value is computed for that
CPU. This is because each clamp bucket enforces a different utilization
clamp value.

Clamp values are always MAX aggregated for both util_min and util_max.
This ensures that no task can affect the performance of other
co-scheduled tasks which are more boosted (i.e. with higher util_min
clamp) or less capped (i.e. with higher util_max clamp).

A task has:
   task_struct::uclamp[clamp_id]::bucket_id
to track the "bucket index" of the CPU's clamp bucket it refcounts while
enqueued, for each clamp index (clamp_id).

A runqueue has:
   rq::uclamp[clamp_id]::bucket[bucket_id].tasks
to track how many RUNNABLE tasks on that CPU refcount each
clamp bucket (bucket_id) of a clamp index (clamp_id).
It also has a:
   rq::uclamp[clamp_id]::bucket[bucket_id].value
to track the clamp value of each clamp bucket (bucket_id) of a clamp
index (clamp_id).

The rq::uclamp::bucket[clamp_id][] array is scanned every time it's
needed to find a new MAX aggregated clamp value for a clamp_id. This
operation is required only when it's dequeued the last task of a clamp
bucket tracking the current MAX aggregated clamp value. In this case,
the CPU is either entering IDLE or going to schedule a less boosted or
more clamped task.
The expected number of different clamp values configured at build time
is small enough to fit the full unordered array into a single cache
line, for configurations of up to 7 buckets.

Add to struct rq the basic data structures required to refcount the
number of RUNNABLE tasks for each clamp bucket. Add also the max
aggregation required to update the rq's clamp value at each
enqueue/dequeue event.

Use a simple linear mapping of clamp values into clamp buckets.
Pre-compute and cache bucket_id to avoid integer divisions at
enqueue/dequeue time.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:44 +02:00
Vincent Guittot
8ec59c0f5f sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
The 'struct sched_domain *sd' parameter to arch_scale_cpu_capacity() is
unused since commit:

  765d0af19f ("sched/topology: Remove the ::smt_gain field from 'struct sched_domain'")

Remove it.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: gregkh@linuxfoundation.org
Cc: linux@armlinux.org.uk
Cc: quentin.perret@arm.com
Cc: rafael@kernel.org
Link: https://lkml.kernel.org/r/1560783617-5827-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:23:39 +02:00
bsegall@google.com
66567fcbae sched/fair: Don't push cfs_bandwith slack timers forward
When a cfs_rq sleeps and returns its quota, we delay for 5ms before
waking any throttled cfs_rqs to coalesce with other cfs_rqs going to
sleep, as this has to be done outside of the rq lock we hold.

The current code waits for 5ms without any sleeps, instead of waiting
for 5ms from the first sleep, which can delay the unthrottle more than
we want. Switch this around so that we can't push this forward forever.

This requires an extra flag rather than using hrtimer_active, since we
need to start a new timer if the current one is in the process of
finishing.

Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Xunlei Pang <xlpang@linux.alibaba.com>
Acked-by: Phil Auld <pauld@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/xm26a7euy6iq.fsf_-_@bsegall-linux.svl.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-17 12:16:01 +02:00
Dietmar Eggemann
55627e3cd2 sched/core: Remove rq->cpu_load[]
The per rq load array values also disappear from the cpu#X sections in
/proc/sched_debug.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190527062116.11512-5-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:49:40 +02:00
Dietmar Eggemann
5e83eafbfd sched/fair: Remove the rq->cpu_load[] update code
With LB_BIAS disabled, there is no need to update the rq->cpu_load[idx]
any more.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190527062116.11512-2-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:49:38 +02:00
Dietmar Eggemann
f2bedc4705 sched/fair: Remove rq->load
The CFS class is the only one maintaining and using the CPU wide load
(rq->load(.weight)). The last use case of the CPU wide load in CFS's
set_next_entity() can be replaced by using the load of the CFS class
(rq->cfs.load(.weight)) instead.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190424084556.604-1-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:49:37 +02:00
Joel Fernandes (Google)
7ba7319f9e sched/core: Annotate perf_domain pointer with __rcu
This fixes the following sparse errors in sched/fair.c:

  fair.c:6506:14: error: incompatible types in comparison expression
  fair.c:8642:21: error: incompatible types in comparison expression

Using __rcu will also help sparse catch any future bugs.

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ From an RCU perspective. ]
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Cc: kernel-hardening@lists.openwall.com
Cc: kernel-team@android.com
Link: https://lkml.kernel.org/r/20190321003426.160260-5-joel@joelfernandes.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 12:34:31 +02:00
Joel Fernandes (Google)
994aeb7a93 sched_domain: Annotate RCU pointers properly
The scheduler uses RCU API in various places to access sched_domain
pointers. These cause sparse errors as below.

Many new errors show up because of an annotation check I added to
rcu_assign_pointer(). Let us annotate the pointers correctly which also
will help sparse catch any potential future bugs.

This fixes the following sparse errors:

  rt.c:1681:9: error: incompatible types in comparison expression
  deadline.c:1904:9: error: incompatible types in comparison expression
  core.c:519:9: error: incompatible types in comparison expression
  core.c:1634:17: error: incompatible types in comparison expression
  fair.c:6193:14: error: incompatible types in comparison expression
  fair.c:9883:22: error: incompatible types in comparison expression
  fair.c:9897:9: error: incompatible types in comparison expression
  sched.h:1287:9: error: incompatible types in comparison expression
  topology.c:612:9: error: incompatible types in comparison expression
  topology.c:615:9: error: incompatible types in comparison expression
  sched.h:1300:9: error: incompatible types in comparison expression
  topology.c:618:9: error: incompatible types in comparison expression
  sched.h:1287:9: error: incompatible types in comparison expression
  topology.c:621:9: error: incompatible types in comparison expression
  sched.h:1300:9: error: incompatible types in comparison expression
  topology.c:624:9: error: incompatible types in comparison expression
  topology.c:671:9: error: incompatible types in comparison expression
  stats.c:45:17: error: incompatible types in comparison expression
  fair.c:5998:15: error: incompatible types in comparison expression
  fair.c:5989:15: error: incompatible types in comparison expression
  fair.c:5998:15: error: incompatible types in comparison expression
  fair.c:5989:15: error: incompatible types in comparison expression
  fair.c:6120:19: error: incompatible types in comparison expression
  fair.c:6506:14: error: incompatible types in comparison expression
  fair.c:6515:14: error: incompatible types in comparison expression
  fair.c:6623:9: error: incompatible types in comparison expression
  fair.c:5970:17: error: incompatible types in comparison expression
  fair.c:8642:21: error: incompatible types in comparison expression
  fair.c:9253:9: error: incompatible types in comparison expression
  fair.c:9331:9: error: incompatible types in comparison expression
  fair.c:9519:15: error: incompatible types in comparison expression
  fair.c:9533:14: error: incompatible types in comparison expression
  fair.c:9542:14: error: incompatible types in comparison expression
  fair.c:9567:14: error: incompatible types in comparison expression
  fair.c:9597:14: error: incompatible types in comparison expression
  fair.c:9421:16: error: incompatible types in comparison expression
  fair.c:9421:16: error: incompatible types in comparison expression

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ From an RCU perspective. ]
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Cc: kernel-hardening@lists.openwall.com
Cc: kernel-team@android.com
Link: https://lkml.kernel.org/r/20190321003426.160260-3-joel@joelfernandes.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 12:34:31 +02:00
Joel Fernandes (Google)
b10abd0a88 sched/cpufreq: Annotate cpufreq_update_util_data pointer with __rcu
Recently I added an RCU annotation check to rcu_assign_pointer(). All
pointers assigned to RCU protected data are to be annotated with __rcu
inorder to be able to use rcu_assign_pointer() similar to checks in
other RCU APIs.

This resulted in a sparse error:

  kernel//sched/cpufreq.c:41:9: sparse: error: incompatible types in comparison expression (different address spaces)

Fix this by annotating cpufreq_update_util_data pointer with __rcu. This
will also help sparse catch any future RCU misuage bugs.

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ From an RCU perspective. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Cc: kernel-hardening@lists.openwall.com
Cc: kernel-team@android.com
Link: https://lkml.kernel.org/r/20190321003426.160260-2-joel@joelfernandes.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 12:34:31 +02:00
Linus Torvalds
45802da05e Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle were:

   - refcount conversions

   - Solve the rq->leaf_cfs_rq_list can of worms for real.

   - improve power-aware scheduling

   - add sysctl knob for Energy Aware Scheduling

   - documentation updates

   - misc other changes"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
  kthread: Do not use TIMER_IRQSAFE
  kthread: Convert worker lock to raw spinlock
  sched/fair: Use non-atomic cpumask_{set,clear}_cpu()
  sched/fair: Remove unused 'sd' parameter from select_idle_smt()
  sched/wait: Use freezable_schedule() when possible
  sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block
  sched/fair: Explain LLC nohz kick condition
  sched/fair: Simplify nohz_balancer_kick()
  sched/topology: Fix percpu data types in struct sd_data & struct s_data
  sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
  sched/fair: Fix O(nr_cgroups) in the load balancing path
  sched/fair: Optimize update_blocked_averages()
  sched/fair: Fix insertion in rq->leaf_cfs_rq_list
  sched/fair: Add tmp_alone_branch assertion
  sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock()
  sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK
  sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity
  sched/fair: Update scale invariance of PELT
  sched/fair: Move the rq_of() helper function
  sched/core: Convert task_struct.stack_refcount to refcount_t
  ...
2019-03-06 08:14:05 -08:00
Dietmar Eggemann
d0fe0b9c45 sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
Since commit:

  d03266910a ("sched/fair: Fix task group initialization")

the utilization of a sched entity representing a task group is no longer
initialized to any other value than 0. So post_init_entity_util_avg() is
only used for tasks, not for sched_entities.

Make this clear by calling it with a task_struct pointer argument which
also eliminates the entity_is_task(se) if condition in the fork path and
get rid of the stale comment in remove_entity_load_avg() accordingly.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190122162501.12000-1-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:02:14 +01:00
Andrea Parri
c546951d9c sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock()
move_queued_task() synchronizes with task_rq_lock() as follows:

	move_queued_task()		task_rq_lock()

	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
	[S] ->cpu = new_cpu		[L] ->on_rq

where "[L] rq = task_rq()" is ordered before "ACQUIRE (rq->lock)" by an
address dependency and, in turn, "ACQUIRE (rq->lock)" is ordered before
"[L] ->on_rq" by the ACQUIRE itself.

Use READ_ONCE() to load ->cpu in task_rq() (c.f., task_cpu()) to honor
this address dependency.  Also, mark the accesses to ->cpu and ->on_rq
with READ_ONCE()/WRITE_ONCE() to comply with the LKMM.

Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190121155240.27173-1-andrea.parri@amarulasolutions.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Vincent Guittot
10a35e6812 sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity
util_est is mainly meant to be a lower-bound for tasks utilization.
That's why task_util_est() returns the actual util_avg when it's higher
than the estimated utilization.

With new invaraince signal and without any special check on samples
collection, if a task is limited because of thermal capping for
example, we could end up overestimating its utilization and thus
perhaps generating an unwanted frequency spike when the capping is
relaxed... and (even worst) it will take some more activations for the
estimated utilization to converge back to the actual utilization.

Since we cannot easily know if there is idle time in a CPU when a task
completes an activation with a utilization higher then the CPU capacity,
we skip the sampling when utilization is higher than CPU's capacity.

Suggested-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Vincent Guittot
2312729688 sched/fair: Update scale invariance of PELT
The current implementation of load tracking invariance scales the
contribution with current frequency and uarch performance (only for
utilization) of the CPU. One main result of this formula is that the
figures are capped by current capacity of CPU. Another one is that the
load_avg is not invariant because not scaled with uarch.

The util_avg of a periodic task that runs r time slots every p time slots
varies in the range :

    U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p)

with U is the max util_avg value = SCHED_CAPACITY_SCALE

At a lower capacity, the range becomes:

    U * C * (1-y^r')/(1-y^p) * y^i' < Utilization <  U * C * (1-y^r')/(1-y^p)

with C reflecting the compute capacity ratio between current capacity and
max capacity.

so C tries to compensate changes in (1-y^r') but it can't be accurate.

Instead of scaling the contribution value of PELT algo, we should scale the
running time. The PELT signal aims to track the amount of computation of
tasks and/or rq so it seems more correct to scale the running time to
reflect the effective amount of computation done since the last update.

In order to be fully invariant, we need to apply the same amount of
running time and idle time whatever the current capacity. Because running
at lower capacity implies that the task will run longer, we have to ensure
that the same amount of idle time will be applied when system becomes idle
and no idle time has been "stolen". But reaching the maximum utilization
value (SCHED_CAPACITY_SCALE) means that the task is seen as an
always-running task whatever the capacity of the CPU (even at max compute
capacity). In this case, we can discard this "stolen" idle times which
becomes meaningless.

In order to achieve this time scaling, a new clock_pelt is created per rq.
The increase of this clock scales with current capacity when something
is running on rq and synchronizes with clock_task when rq is idle. With
this mechanism, we ensure the same running and idle time whatever the
current capacity. This also enables to simplify the pelt algorithm by
removing all references of uarch and frequency and applying the same
contribution to utilization and loads. Furthermore, the scaling is done
only once per update of clock (update_rq_clock_task()) instead of during
each update of sched_entities and cfs/rt/dl_rq of the rq like the current
implementation. This is interesting when cgroup are involved as shown in
the results below:

On a hikey (octo Arm64 platform).
Performance cpufreq governor and only shallowest c-state to remove variance
generated by those power features so we only track the impact of pelt algo.

each test runs 16 times:

	./perf bench sched pipe
	(higher is better)
	kernel	tip/sched/core     + patch
	        ops/seconds        ops/seconds         diff
	cgroup
	root    59652(+/- 0.18%)   59876(+/- 0.24%)    +0.38%
	level1  55608(+/- 0.27%)   55923(+/- 0.24%)    +0.57%
	level2  52115(+/- 0.29%)   52564(+/- 0.22%)    +0.86%

	hackbench -l 1000
	(lower is better)
	kernel	tip/sched/core     + patch
	        duration(sec)      duration(sec)        diff
	cgroup
	root    4.453(+/- 2.37%)   4.383(+/- 2.88%)     -1.57%
	level1  4.859(+/- 8.50%)   4.830(+/- 7.07%)     -0.60%
	level2  5.063(+/- 9.83%)   4.928(+/- 9.66%)     -2.66%

Then, the responsiveness of PELT is improved when CPU is not running at max
capacity with this new algorithm. I have put below some examples of
duration to reach some typical load values according to the capacity of the
CPU with current implementation and with this patch. These values has been
computed based on the geometric series and the half period value:

  Util (%)     max capacity  half capacity(mainline)  half capacity(w/ patch)
  972 (95%)    138ms         not reachable            276ms
  486 (47.5%)  30ms          138ms                     60ms
  256 (25%)    13ms           32ms                     26ms

On my hikey (octo Arm64 platform) with schedutil governor, the time to
reach max OPP when starting from a null utilization, decreases from 223ms
with current scale invariance down to 121ms with the new algorithm.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Vincent Guittot
62478d9911 sched/fair: Move the rq_of() helper function
Move rq_of() helper function so it can be used in pelt.c

[ mingo: Improve readability while at it. ]

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Peter Zijlstra
f8a696f25b sched/core: Give DCE a fighting chance
All that fancy new Energy-Aware scheduling foo is hidden behind a
static_key, which is awesome if you have the stuff enabled in your
config.

However, when you lack all the prerequisites it doesn't make any sense
to pretend we'll ever actually run this, so provide a little more clue
to the compiler so it can more agressively delete the code.

   text    data     bss     dec     hex filename
  50297     976      96   51369    c8a9 defconfig-build/kernel/sched/fair.o
  49227     944      96   50267    c45b defconfig-build/kernel/sched/fair.o

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-27 12:29:37 +01:00
Paul E. McKenney
337e9b07db sched: Replace call_rcu_sched() with call_rcu()
Now that call_rcu()'s callback is not invoked until after all
preempt-disable regions of code have completed (in addition to explicitly
marked RCU read-side critical sections), call_rcu() can be used in place
of call_rcu_sched().  This commit therefore makes that change.

While in the area, this commit also updates an outdated header comment
for for_each_domain().

Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
2019-01-25 15:28:22 -08:00
Masahiro Yamada
e9666d10a5 jump_label: move 'asm goto' support test to Kconfig
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".

The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:

  #if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
  # define HAVE_JUMP_LABEL
  #endif

We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.

Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
2019-01-06 09:46:51 +09:00
Morten Rasmussen
2802bf3cd9 sched/fair: Add over-utilization/tipping point indicator
Energy-aware scheduling is only meant to be active while the system is
_not_ over-utilized. That is, there are spare cycles available to shift
tasks around based on their actual utilization to get a more
energy-efficient task distribution without depriving any tasks. When
above the tipping point task placement is done the traditional way based
on load_avg, spreading the tasks across as many cpus as possible based
on priority scaled load to preserve smp_nice. Below the tipping point we
want to use util_avg instead. We need to define a criteria for when we
make the switch.

The util_avg for each cpu converges towards 100% regardless of how many
additional tasks we may put on it. If we define over-utilized as:

sum_{cpus}(rq.cfs.avg.util_avg) + margin > sum_{cpus}(rq.capacity)

some individual cpus may be over-utilized running multiple tasks even
when the above condition is false. That should be okay as long as we try
to spread the tasks out to avoid per-cpu over-utilization as much as
possible and if all tasks have the _same_ priority. If the latter isn't
true, we have to consider priority to preserve smp_nice.

For example, we could have n_cpus nice=-10 util_avg=55% tasks and
n_cpus/2 nice=0 util_avg=60% tasks. Balancing based on util_avg we are
likely to end up with nice=-10 tasks sharing cpus and nice=0 tasks
getting their own as we 1.5*n_cpus tasks in total and 55%+55% is less
over-utilized than 55%+60% for those cpus that have to be shared. The
system utilization is only 85% of the system capacity, but we are
breaking smp_nice.

To be sure not to break smp_nice, we have defined over-utilization
conservatively as when any cpu in the system is fully utilized at its
highest frequency instead:

cpu_rq(any).cfs.avg.util_avg + margin > cpu_rq(any).capacity

IOW, as soon as one cpu is (nearly) 100% utilized, we switch to load_avg
to factor in priority to preserve smp_nice.

With this definition, we can skip periodic load-balance as no cpu has an
always-running task when the system is not over-utilized. All tasks will
be periodic and we can balance them at wake-up. This conservative
condition does however mean that some scenarios that could benefit from
energy-aware decisions even if one cpu is fully utilized would not get
those benefits.

For systems where some cpus might have reduced capacity on some cpus
(RT-pressure and/or big.LITTLE), we want periodic load-balance checks as
soon a just a single cpu is fully utilized as it might one of those with
reduced capacity and in that case we want to migrate it.

[ peterz: Added a comment explaining why new tasks are not accounted during
          overutilization detection. ]

Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: rjw@rjwysocki.net
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-13-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:17:01 +01:00
Quentin Perret
630246a06a sched/fair: Clean-up update_sg_lb_stats parameters
In preparation for the introduction of a new root domain flag which can
be set during load balance (the 'overutilized' flag), clean-up the set
of parameters passed to update_sg_lb_stats(). More specifically, the
'local_group' and 'local_idx' parameters can be removed since they can
easily be reconstructed from within the function.

While at it, transform the 'overload' parameter into a flag stored in
the 'sg_status' parameter hence facilitating the definition of new flags
when needed.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: rjw@rjwysocki.net
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-12-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:17:01 +01:00
Quentin Perret
1f74de8798 sched/toplogy: Introduce the 'sched_energy_present' static key
In order to make sure Energy Aware Scheduling (EAS) will not impact
systems where no Energy Model is available, introduce a static key
guarding the access to EAS code. Since EAS is enabled on a
per-root-domain basis, the static key is enabled when at least one root
domain meets all conditions for EAS.

Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: rjw@rjwysocki.net
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-10-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:17:01 +01:00
Quentin Perret
531b5c9f5c sched/topology: Make Energy Aware Scheduling depend on schedutil
Energy Aware Scheduling (EAS) is designed with the assumption that
frequencies of CPUs follow their utilization value. When using a CPUFreq
governor other than schedutil, the chances of this assumption being true
are small, if any. When schedutil is being used, EAS' predictions are at
least consistent with the frequency requests. Although those requests
have no guarantees to be honored by the hardware, they should at least
guide DVFS in the right direction and provide some hope in regards to the
EAS model being accurate.

To make sure EAS is only used in a sane configuration, create a strong
dependency on schedutil being used. Since having sugov compiled-in does
not provide that guarantee, make CPUFreq call a scheduler function on
governor changes hence letting it rebuild the scheduling domains, check
the governors of the online CPUs, and enable/disable EAS accordingly.

Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-9-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:17:00 +01:00
Quentin Perret
011b27bb5d sched/topology: Add lowest CPU asymmetry sched_domain level pointer
Add another member to the family of per-cpu sched_domain shortcut
pointers. This one, sd_asym_cpucapacity, points to the lowest level
at which the SD_ASYM_CPUCAPACITY flag is set. While at it, rename the
sd_asym shortcut to sd_asym_packing to avoid confusions.

Generally speaking, the largest opportunity to save energy via
scheduling comes from a smarter exploitation of heterogeneous platforms
(i.e. big.LITTLE). Consequently, the sd_asym_cpucapacity shortcut will
be used at first as the lowest domain where Energy-Aware Scheduling
(EAS) should be applied. For example, it is possible to apply EAS within
a socket on a multi-socket system, as long as each socket has an
asymmetric topology. Energy-aware cross-sockets wake-up balancing will
only happen when the system is over-utilized, or this_cpu and prev_cpu
are in different sockets.

Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: rjw@rjwysocki.net
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-7-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:16:59 +01:00
Quentin Perret
6aa140fa45 sched/topology: Reference the Energy Model of CPUs when available
The existing scheduling domain hierarchy is defined to map to the cache
topology of the system. However, Energy Aware Scheduling (EAS) requires
more knowledge about the platform, and specifically needs to know about
the span of Performance Domains (PD), which do not always align with
caches.

To address this issue, use the Energy Model (EM) of the system to extend
the scheduler topology code with a representation of the PDs, alongside
the scheduling domains. More specifically, a linked list of PDs is
attached to each root domain. When multiple root domains are in use,
each list contains only the PDs covering the CPUs of its root domain. If
a PD spans over CPUs of multiple different root domains, it will be
duplicated in all lists.

The lists are fully maintained by the scheduler from
partition_sched_domains() in order to cope with hotplug and cpuset
changes. As for scheduling domains, the list are protected by RCU to
ensure safe concurrent updates.

Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: rjw@rjwysocki.net
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-6-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:16:59 +01:00
Quentin Perret
938e5e4b0d sched/cpufreq: Prepare schedutil for Energy Aware Scheduling
Schedutil requests frequency by aggregating utilization signals from
the scheduler (CFS, RT, DL, IRQ) and applying a 25% margin on top of
them. Since Energy Aware Scheduling (EAS) needs to be able to predict
the frequency requests, it needs to forecast the decisions made by the
governor.

In order to prepare the introduction of EAS, introduce
schedutil_freq_util() to centralize the aforementioned signal
aggregation and make it available to both schedutil and EAS. Since
frequency selection and energy estimation still need to deal with RT and
DL signals slightly differently, schedutil_freq_util() is called with a
different 'type' parameter in those two contexts, and returns an
aggregated utilization signal accordingly. While at it, introduce the
map_util_freq() function which is designed to make schedutil's 25%
margin usable easily for both sugov and EAS.

As EAS will be able to predict schedutil's frequency requests more
accurately than any other governor by design, it'd be sensible to make
sure EAS cannot be used without schedutil. This will be done later, once
EAS has actually been introduced.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: rjw@rjwysocki.net
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-3-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:16:58 +01:00
Quentin Perret
5bd0988be1 sched/topology: Relocate arch_scale_cpu_capacity() to the internal header
By default, arch_scale_cpu_capacity() is only visible from within the
kernel/sched folder. Relocate it to include/linux/sched/topology.h to
make it visible to other clients needing to know about the capacity of
CPUs, such as the Energy Model framework.

This also shrinks the <linux/sched/topology.h> public header.

Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: rjw@rjwysocki.net
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-2-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:16:58 +01:00
Vincent Guittot
765d0af19f sched/topology: Remove the ::smt_gain field from 'struct sched_domain'
::smt_gain is used to compute the capacity of CPUs of a SMT core with the
constraint 1 < ::smt_gain < 2 in order to be able to compute number of CPUs
per core. The field has_free_capacity of struct numa_stat, which was the
last user of this computation of number of CPUs per core, has been removed
by:

  2d4056fafa ("sched/numa: Remove numa_has_capacity()")

We can now remove this constraint on core capacity and use the defautl value
SCHED_CAPACITY_SCALE for SMT CPUs. With this remove, SCHED_CAPACITY_SCALE
becomes the maximum compute capacity of CPUs on every systems. This should
help to simplify some code and remove fields like rd->max_cpu_capacity

Furthermore, arch_scale_cpu_capacity() is used with a NULL sd in several other
places in the code when it wants the capacity of a CPUs to scale
some metrics like in pelt, deadline or schedutil. In case on SMT, the value
returned is not the capacity of SMT CPUs but default SCHED_CAPACITY_SCALE.

So remove it.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1535548752-4434-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-11 15:16:57 +01:00
Ingo Molnar
dfcb245e28 sched: Fix various typos in comments
Go over the scheduler source code and fix common typos
in comments - and a typo in an actual variable name.

No change in functionality intended.

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-03 11:55:42 +01:00
Ingo Molnar
5f675231e4 Linux 4.20-rc5
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlwEZdIeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAlQH/19oax2Za3IPqF4X
 DM3lal5M6zlUVkoYstqzpbR3MqUwgEnMfvoeMDC6mI9N4/+r2LkV7cRR8HzqQCCS
 jDfD69IzRGb52VSeJmbOrkxBWsR1Nn0t4Z3rEeLPxwaOoNpRc8H973MbAQ2FKMpY
 S4Y3jIK1dNiRRxdh52NupVkQF+djAUwkBuVk/rrvRJmTDij4la03cuCDAO+Di9lt
 GHlVvygKw2SJhDR+z3ArwZNmE0ceCcE6+W7zPHzj2KeWuKrZg22kfUD454f2YEIw
 FG0hu9qecgtpYCkLSm2vr4jQzmpsDoyq3ZfwhjGrP4qtvPC3Db3vL3dbQnkzUcJu
 JtwhVCE=
 =O1q1
 -----END PGP SIGNATURE-----

Merge tag 'v4.20-rc5' into sched/core, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-03 11:42:17 +01:00
Thomas Gleixner
321a874a7e sched/smt: Expose sched_smt_present static key
Make the scheduler's 'sched_smt_present' static key globaly available, so
it can be used in the x86 speculation control code.

Provide a query function and a stub for the CONFIG_SMP=n case.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185004.430168326@linutronix.de
2018-11-28 11:57:07 +01:00
Viresh Kumar
3e18450108 sched/core: Clean up the #ifdef block in add_nr_running()
There is no point in keeping the conditional statement of the #if block
outside of the #ifdef block, while all of its body is contained within
the #ifdef block.

Move the conditional statement under the #ifdef block as well.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/78cbd78a615d6f9fdcd3327f1ead68470f92593e.1541482935.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-12 11:18:06 +01:00