mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
bd05221123
578 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Huang Ying
|
974e6d66b6 |
mm, hugetlbfs: pass fault address to cow handler
This is to take better advantage of the general huge page copying optimization. Where, the target subpage will be copied last to avoid the cache lines of target subpage to be evicted when copying other subpages. This works better if the address of the target subpage is available when copying huge page. So hugetlbfs page fault handlers are changed to pass that information to hugetlb_cow(). This will benefit workloads which don't access the begin of the hugetlbfs huge page after the page fault under heavy cache contention. Link: http://lkml.kernel.org/r/20180524005851.4079-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Christopher Lameter <cl@linux.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Punit Agrawal <punit.agrawal@arm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
5b7a1d4060 |
mm, hugetlbfs: rename address to haddr in hugetlb_cow()
To take better advantage of general huge page copying optimization, the target subpage address will be passed to hugetlb_cow(), then copy_user_huge_page(). So we will use both target subpage address and huge page size aligned address in hugetlb_cow(). To distinguish between them, "haddr" is used for huge page size aligned address to be consistent with Transparent Huge Page naming convention. Now, only huge page size aligned address is used in hugetlb_cow(), so the "address" is renamed to "haddr" in hugetlb_cow() in this patch. Next patch will use target subpage address in hugetlb_cow() too. The patch is just code cleanup without any functionality changes. Link: http://lkml.kernel.org/r/20180524005851.4079-4-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Suggested-by: Mike Kravetz <mike.kravetz@oracle.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Christopher Lameter <cl@linux.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Punit Agrawal <punit.agrawal@arm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jane Chu
|
eec3636ad1 |
ipc/shm.c add ->pagesize function to shm_vm_ops
Commit |
||
Cannon Matthews
|
520495fe96 |
mm: hugetlb: yield when prepping struct pages
When booting with very large numbers of gigantic (i.e. 1G) pages, the operations in the loop of gather_bootmem_prealloc, and specifically prep_compound_gigantic_page, takes a very long time, and can cause a softlockup if enough pages are requested at boot. For example booting with 3844 1G pages requires prepping (set_compound_head, init the count) over 1 billion 4K tail pages, which takes considerable time. Add a cond_resched() to the outer loop in gather_bootmem_prealloc() to prevent this lockup. Tested: Booted with softlockup_panic=1 hugepagesz=1G hugepages=3844 and no softlockup is reported, and the hugepages are reported as successfully setup. Link: http://lkml.kernel.org/r/20180627214447.260804-1-cannonmatthews@google.com Signed-off-by: Cannon Matthews <cannonmatthews@google.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Peter Feiner <pfeiner@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kees Cook
|
6da2ec5605 |
treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org> |
||
Huang Ying
|
285b8dcaac |
mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit
|
||
Souptick Joarder
|
b3ec9f33ac |
mm: change return type to vm_fault_t
Use new return type vm_fault_t for fault handler in struct
vm_operations_struct. For now, this is just documenting that the
function returns a VM_FAULT value rather than an errno. Once all
instances are converted, vm_fault_t will become a distinct type.
See commit
|
||
Jonathan Corbet
|
24844fd339 |
Merge branch 'mm-rst' into docs-next
Mike Rapoport says: These patches convert files in Documentation/vm to ReST format, add an initial index and link it to the top level documentation. There are no contents changes in the documentation, except few spelling fixes. The relatively large diffstat stems from the indentation and paragraph wrapping changes. I've tried to keep the formatting as consistent as possible, but I could miss some places that needed markup and add some markup where it was not necessary. [jc: significant conflicts in vm/hmm.rst] |
||
Mike Rapoport
|
ad56b738c5 |
docs/vm: rename documentation files to .rst
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Dan Williams
|
05ea88608d |
mm, hugetlbfs: introduce ->pagesize() to vm_operations_struct
When device-dax is operating in huge-page mode we want it to behave like
hugetlbfs and report the MMU page mapping size that is being enforced by
the vma.
Similar to commit
|
||
Dan Williams
|
09135cc594 |
mm, powerpc: use vma_kernel_pagesize() in vma_mmu_pagesize()
Patch series "mm, smaps: MMUPageSize for device-dax", v3.
Similar to commit
|
||
Mike Kravetz
|
63489f8e82 |
hugetlbfs: check for pgoff value overflow
A vma with vm_pgoff large enough to overflow a loff_t type when
converted to a byte offset can be passed via the remap_file_pages system
call. The hugetlbfs mmap routine uses the byte offset to calculate
reservations and file size.
A sequence such as:
mmap(0x20a00000, 0x600000, 0, 0x66033, -1, 0);
remap_file_pages(0x20a00000, 0x600000, 0, 0x20000000000000, 0);
will result in the following when task exits/file closed,
kernel BUG at mm/hugetlb.c:749!
Call Trace:
hugetlbfs_evict_inode+0x2f/0x40
evict+0xcb/0x190
__dentry_kill+0xcb/0x150
__fput+0x164/0x1e0
task_work_run+0x84/0xa0
exit_to_usermode_loop+0x7d/0x80
do_syscall_64+0x18b/0x190
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
The overflowed pgoff value causes hugetlbfs to try to set up a mapping
with a negative range (end < start) that leaves invalid state which
causes the BUG.
The previous overflow fix to this code was incomplete and did not take
the remap_file_pages system call into account.
[mike.kravetz@oracle.com: v3]
Link: http://lkml.kernel.org/r/20180309002726.7248-1-mike.kravetz@oracle.com
[akpm@linux-foundation.org: include mmdebug.h]
[akpm@linux-foundation.org: fix -ve left shift count on sh]
Link: http://lkml.kernel.org/r/20180308210502.15952-1-mike.kravetz@oracle.com
Fixes:
|
||
Michal Hocko
|
4704dea36d |
hugetlb: fix surplus pages accounting
Dan Rue has noticed that libhugetlbfs test suite fails counter test: # mount_point="/mnt/hugetlb/" # echo 200 > /proc/sys/vm/nr_hugepages # mkdir -p "${mount_point}" # mount -t hugetlbfs hugetlbfs "${mount_point}" # export LD_LIBRARY_PATH=/root/libhugetlbfs/libhugetlbfs-2.20/obj64 # /root/libhugetlbfs/libhugetlbfs-2.20/tests/obj64/counters Starting testcase "/root/libhugetlbfs/libhugetlbfs-2.20/tests/obj64/counters", pid 3319 Base pool size: 0 Clean... FAIL Line 326: Bad HugePages_Total: expected 0, actual 1 The bug was bisected to |
||
Michal Hocko
|
389c8178d0 |
hugetlb, mbind: fall back to default policy if vma is NULL
Dan Carpenter has noticed that mbind migration callback (new_page) can get a NULL vma pointer and choke on it inside alloc_huge_page_vma which relies on the VMA to get the hstate. We used to BUG_ON this case but the BUG_+ON has been removed recently by "hugetlb, mempolicy: fix the mbind hugetlb migration". The proper way to handle this is to get the hstate from the migrated page and rely on huge_node (resp. get_vma_policy) do the right thing with null VMA. We are currently falling back to the default mempolicy in that case which is in line what THP path is doing here. Link: http://lkml.kernel.org/r/20180110104712.GR1732@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
ebd6372358 |
hugetlb, mempolicy: fix the mbind hugetlb migration
do_mbind migration code relies on alloc_huge_page_noerr for hugetlb pages. alloc_huge_page_noerr uses alloc_huge_page which is a highlevel allocation function which has to take care of reserves, overcommit or hugetlb cgroup accounting. None of that is really required for the page migration because the new page is only temporal and either will replace the original page or it will be dropped. This is essentially as for other migration call paths and there shouldn't be any reason to handle mbind in a special way. The current implementation is even suboptimal because the migration might fail just because the hugetlb cgroup limit is reached, or the overcommit is saturated. Fix this by making mbind like other hugetlb migration paths. Add a new migration helper alloc_huge_page_vma as a wrapper around alloc_huge_page_nodemask with additional mempolicy handling. alloc_huge_page_noerr has no more users and it can go. Link: http://lkml.kernel.org/r/20180103093213.26329-7-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
0c397daea1 |
mm, hugetlb: further simplify hugetlb allocation API
Hugetlb allocator has several layer of allocation functions depending and the purpose of the allocation. There are two allocators depending on whether the page can be allocated from the page allocator or we need a contiguous allocator. This is currently opencoded in alloc_fresh_huge_page which is the only path that might allocate giga pages which require the later allocator. Create alloc_fresh_huge_page which hides this implementation detail and use it in all callers which hardcoded the buddy allocator path (__hugetlb_alloc_buddy_huge_page). This shouldn't introduce any funtional change because both migration and surplus allocators exlude giga pages explicitly. While we are at it let's do some renaming. The current scheme is not consistent and overly painfull to read and understand. Get rid of prefix underscores from most functions. There is no real reason to make names longer. * alloc_fresh_huge_page is the new layer to abstract underlying allocator * __hugetlb_alloc_buddy_huge_page becomes shorter and neater alloc_buddy_huge_page. * Former alloc_fresh_huge_page becomes alloc_pool_huge_page because we put the new page directly to the pool * alloc_surplus_huge_page can drop the opencoded prep_new_huge_page code as it uses alloc_fresh_huge_page now * others lose their excessive prefix underscores to make names shorter [dan.carpenter@oracle.com: fix double unlock bug in alloc_surplus_huge_page()] Link: http://lkml.kernel.org/r/20180109200559.g3iz5kvbdrz7yydp@mwanda Link: http://lkml.kernel.org/r/20180103093213.26329-6-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
9980d744a0 |
mm, hugetlb: get rid of surplus page accounting tricks
alloc_surplus_huge_page increases the pool size and the number of
surplus pages opportunistically to prevent from races with the pool size
change. See commit
|
||
Michal Hocko
|
ab5ac90aec |
mm, hugetlb: do not rely on overcommit limit during migration
hugepage migration relies on __alloc_buddy_huge_page to get a new page. This has 2 main disadvantages. 1) it doesn't allow to migrate any huge page if the pool is used completely which is not an exceptional case as the pool is static and unused memory is just wasted. 2) it leads to a weird semantic when migration between two numa nodes might increase the pool size of the destination NUMA node while the page is in use. The issue is caused by per NUMA node surplus pages tracking (see free_huge_page). Address both issues by changing the way how we allocate and account pages allocated for migration. Those should temporal by definition. So we mark them that way (we will abuse page flags in the 3rd page) and update free_huge_page to free such pages to the page allocator. Page migration path then just transfers the temporal status from the new page to the old one which will be freed on the last reference. The global surplus count will never change during this path but we still have to be careful when migrating a per-node suprlus page. This is now handled in move_hugetlb_state which is called from the migration path and it copies the hugetlb specific page state and fixes up the accounting when needed Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better reflect its purpose. The new allocation routine for the migration path is __alloc_migrate_huge_page. The user visible effect of this patch is that migrated pages are really temporal and they travel between NUMA nodes as per the migration request: Before migration /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 After /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 with the previous implementation, both nodes would have nr_hugepages:1 until the page is freed. Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
d9cc948f6f |
mm, hugetlb: integrate giga hugetlb more naturally to the allocation path
Gigantic hugetlb pages were ingrown to the hugetlb code as an alien specie with a lot of special casing. The allocation path is not an exception. Unnecessarily so to be honest. It is true that the underlying allocator is different but that is an implementation detail. This patch unifies the hugetlb allocation path that a prepares fresh pool pages. alloc_fresh_gigantic_page basically copies alloc_fresh_huge_page logic so we can move everything there. This will simplify set_max_huge_pages which doesn't have to care about what kind of huge page we allocate. Link: http://lkml.kernel.org/r/20180103093213.26329-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
af0fb9df78 |
mm, hugetlb: unify core page allocation accounting and initialization
Patch series "mm, hugetlb: allocation API and migration improvements" Motivation: this is a follow up for [3] for the allocation API and [4] for the hugetlb migration. It wasn't really easy to split those into two separate patch series as they share some code. My primary motivation to touch this code is to make the gigantic pages migration working. The giga pages allocation code is just too fragile and hacked into the hugetlb code now. This series tries to move giga pages closer to the first class citizen. We are not there yet but having 5 patches is quite a lot already and it will already make the code much easier to follow. I will come with other changes on top after this sees some review. The first two patches should be trivial to review. The third patch changes the way how we migrate huge pages. Newly allocated pages are a subject of the overcommit check and they participate surplus accounting which is quite unfortunate as the changelog explains. This patch doesn't change anything wrt. giga pages. Patch #4 removes the surplus accounting hack from __alloc_surplus_huge_page. I hope I didn't miss anything there and a deeper review is really due there. Patch #5 finally unifies allocation paths and giga pages shouldn't be any special anymore. There is also some renaming going on as well. This patch (of 6): hugetlb allocator has two entry points to the page allocator - alloc_fresh_huge_page_node - __hugetlb_alloc_buddy_huge_page The two differ very subtly in two aspects. The first one doesn't care about HTLB_BUDDY_* stats and it doesn't initialize the huge page. prep_new_huge_page is not used because it not only initializes hugetlb specific stuff but because it also put_page and releases the page to the hugetlb pool which is not what is required in some contexts. This makes things more complicated than necessary. Simplify things by a) removing the page allocator entry point duplicity and only keep __hugetlb_alloc_buddy_huge_page and b) make prep_new_huge_page more reusable by removing the put_page which moves the page to the allocator pool. All current callers are updated to call put_page explicitly. Later patches will add new callers which won't need it. This patch shouldn't introduce any functional change. Link: http://lkml.kernel.org/r/20180103093213.26329-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
d6cb41cc44 |
mm, hugetlb: remove hugepages_treat_as_movable sysctl
hugepages_treat_as_movable has been introduced by
|
||
Roman Gushchin
|
fcb2b0c577 |
mm: show total hugetlb memory consumption in /proc/meminfo
Currently we display some hugepage statistics (total, free, etc) in /proc/meminfo, but only for default hugepage size (e.g. 2Mb). If hugepages of different sizes are used (like 2Mb and 1Gb on x86-64), /proc/meminfo output can be confusing, as non-default sized hugepages are not reflected at all, and there are no signs that they are existing and consuming system memory. To solve this problem, let's display the total amount of memory, consumed by hugetlb pages of all sized (both free and used). Let's call it "Hugetlb", and display size in kB to match generic /proc/meminfo style. For example, (1024 2Mb pages and 2 1Gb pages are pre-allocated): $ cat /proc/meminfo MemTotal: 8168984 kB MemFree: 3789276 kB <...> CmaFree: 0 kB HugePages_Total: 1024 HugePages_Free: 1024 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB Hugetlb: 4194304 kB DirectMap4k: 32632 kB DirectMap2M: 4161536 kB DirectMap1G: 6291456 kB Also, this patch updates corresponding docs to reflect Hugetlb entry meaning and difference between Hugetlb and HugePages_Total * Hugepagesize. Link: http://lkml.kernel.org/r/20171115231409.12131-1-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
f4f0a3d85b |
mm/hugetlb: fix NULL-pointer dereference on 5-level paging machine
I made a mistake during converting hugetlb code to 5-level paging: in
huge_pte_alloc() we have to use p4d_alloc(), not p4d_offset().
Otherwise it leads to crash -- NULL-pointer dereference in pud_alloc()
if p4d table is not yet allocated.
It only can happen in 5-level paging mode. In 4-level paging mode
p4d_offset() always returns pgd, so we are fine.
Link: http://lkml.kernel.org/r/20171122121921.64822-1-kirill.shutemov@linux.intel.com
Fixes:
|
||
Dan Williams
|
31383c6865 |
mm, hugetlbfs: introduce ->split() to vm_operations_struct
Patch series "device-dax: fix unaligned munmap handling"
When device-dax is operating in huge-page mode we want it to behave like
hugetlbfs and fail attempts to split vmas into unaligned ranges. It
would be messy to teach the munmap path about device-dax alignment
constraints in the same (hstate) way that hugetlbfs communicates this
constraint. Instead, these patches introduce a new ->split() vm
operation.
This patch (of 2):
The device-dax interface has similar constraints as hugetlbfs in that it
requires the munmap path to unmap in huge page aligned units. Rather
than add more custom vma handling code in __split_vma() introduce a new
vm operation to perform this vma specific check.
Link: http://lkml.kernel.org/r/151130418135.4029.6783191281930729710.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes:
|
||
Jérôme Glisse
|
0f10851ea4 |
mm/mmu_notifier: avoid double notification when it is useless
This patch only affects users of mmu_notifier->invalidate_range callback which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ... and it is an optimization for those users. Everyone else is unaffected by it. When clearing a pte/pmd we are given a choice to notify the event under the page table lock (notify version of *_clear_flush helpers do call the mmu_notifier_invalidate_range). But that notification is not necessary in all cases. This patch removes almost all cases where it is useless to have a call to mmu_notifier_invalidate_range before mmu_notifier_invalidate_range_end. It also adds documentation in all those cases explaining why. Below is a more in depth analysis of why this is fine to do this: For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when device use thing like ATS/PASID to get the IOMMU to walk the CPU page table to access a process virtual address space). There is only 2 cases when you need to notify those secondary TLB while holding page table lock when clearing a pte/pmd: A) page backing address is free before mmu_notifier_invalidate_range_end B) a page table entry is updated to point to a new page (COW, write fault on zero page, __replace_page(), ...) Case A is obvious you do not want to take the risk for the device to write to a page that might now be used by something completely different. Case B is more subtle. For correctness it requires the following sequence to happen: - take page table lock - clear page table entry and notify (pmd/pte_huge_clear_flush_notify()) - set page table entry to point to new page If clearing the page table entry is not followed by a notify before setting the new pte/pmd value then you can break memory model like C11 or C++11 for the device. Consider the following scenario (device use a feature similar to ATS/ PASID): Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we assume they are write protected for COW (other case of B apply too). [Time N] ----------------------------------------------------------------- CPU-thread-0 {try to write to addrA} CPU-thread-1 {try to write to addrB} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA and populate device TLB} DEV-thread-2 {read addrB and populate device TLB} [Time N+1] --------------------------------------------------------------- CPU-thread-0 {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}} CPU-thread-1 {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+2] --------------------------------------------------------------- CPU-thread-0 {COW_step1: {update page table point to new page for addrA}} CPU-thread-1 {COW_step1: {update page table point to new page for addrB}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {write to addrA which is a write to new page} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {} CPU-thread-3 {write to addrB which is a write to new page} DEV-thread-0 {} DEV-thread-2 {} [Time N+4] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+5] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA from old page} DEV-thread-2 {read addrB from new page} So here because at time N+2 the clear page table entry was not pair with a notification to invalidate the secondary TLB, the device see the new value for addrB before seing the new value for addrA. This break total memory ordering for the device. When changing a pte to write protect or to point to a new write protected page with same content (KSM) it is ok to delay invalidate_range callback to mmu_notifier_invalidate_range_end() outside the page table lock. This is true even if the thread doing page table update is preempted right after releasing page table lock before calling mmu_notifier_invalidate_range_end Thanks to Andrea for thinking of a problematic scenario for COW. [jglisse@redhat.com: v2] Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
1e39214713 |
userfaultfd: hugetlbfs: prevent UFFDIO_COPY to fill beyond the end of i_size
This oops: kernel BUG at fs/hugetlbfs/inode.c:484! RIP: remove_inode_hugepages+0x3d0/0x410 Call Trace: hugetlbfs_setattr+0xd9/0x130 notify_change+0x292/0x410 do_truncate+0x65/0xa0 do_sys_ftruncate.constprop.3+0x11a/0x180 SyS_ftruncate+0xe/0x10 tracesys+0xd9/0xde was caused by the lack of i_size check in hugetlb_mcopy_atomic_pte. mmap() can still succeed beyond the end of the i_size after vmtruncate zapped vmas in those ranges, but the faults must not succeed, and that includes UFFDIO_COPY. We could differentiate the retval to userland to represent a SIGBUS like a page fault would do (vs SIGSEGV), but it doesn't seem very useful and we'd need to pick a random retval as there's no meaningful syscall retval that would differentiate from SIGSEGV and SIGBUS, there's just -EFAULT. Link: http://lkml.kernel.org/r/20171016223914.2421-2-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
bac65d9d87 |
powerpc updates for 4.14
Nothing really major this release, despite quite a lot of activity. Just lots of things all over the place. Some things of note include: - Access via perf to a new type of PMU (IMC) on Power9, which can count both core events as well as nest unit events (Memory controller etc). - Optimisations to the radix MMU TLB flushing, mostly to avoid unnecessary Page Walk Cache (PWC) flushes when the structure of the tree is not changing. - Reworks/cleanups of do_page_fault() to modernise it and bring it closer to other architectures where possible. - Rework of our page table walking so that THP updates only need to send IPIs to CPUs where the affected mm has run, rather than all CPUs. - The size of our vmalloc area is increased to 56T on 64-bit hash MMU systems. This avoids problems with the percpu allocator on systems with very sparse NUMA layouts. - STRICT_KERNEL_RWX support on PPC32. - A new sched domain topology for Power9, to capture the fact that pairs of cores may share an L2 cache. - Power9 support for VAS, which is a new mechanism for accessing coprocessors, and initial support for using it with the NX compression accelerator. - Major work on the instruction emulation support, adding support for many new instructions, and reworking it so it can be used to implement the emulation needed to fixup alignment faults. - Support for guests under PowerVM to use the Power9 XIVE interrupt controller. And probably that many things again that are almost as interesting, but I had to keep the list short. Plus the usual fixes and cleanups as always. Thanks to: Alexey Kardashevskiy, Alistair Popple, Andreas Schwab, Aneesh Kumar K.V, Anju T Sudhakar, Arvind Yadav, Balbir Singh, Benjamin Herrenschmidt, Bhumika Goyal, Breno Leitao, Bryant G. Ly, Christophe Leroy, Cédric Le Goater, Dan Carpenter, Dou Liyang, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand, Hannes Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall, LABBE Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring, Masahiro Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo, Nathan Fontenot, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Rashmica Gupta, Rob Herring, Rui Teng, Sam Bobroff, Santosh Sivaraj, Scott Wood, Shilpasri G Bhat, Sukadev Bhattiprolu, Suraj Jitindar Singh, Tobin C. Harding, Victor Aoqui. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJZr83SAAoJEFHr6jzI4aWA6pUP/3CEaj2bSxNzWIwidqyYjuoS O1moEsP0oYH7eBEWVHalYxvo0QPIIAhbFPaFyrOrgtfDH01Szwu9LcCALGb8orC5 Hg3IY8mpNG3Q1T8wEtTa56Ik4b5ZFty35S5+X9qLNSFoDUqSvGlSsLzhPNN7f2tl XFm2hWqd8wXCwDsuVSFBCF61M3SAm+g6NMVNJ+VL2KIDCwBrOZLhKDPRoxLTAuMa jjSdjVIozWyXjUrBFi8HVcoOWLxcT1HsNF0tRs51LwY/+Mlj2jAtFtsx+a06HZa6 f2p/Kcp/MEispSTk064Ap9cC1seXWI18zwZKpCUFqu0Ec2yTAiGdjOWDyYQldIp+ ttVPSHQ01YrVKwDFTtM9CiA0EET6fVPhWgAPkPfvH5TvtKwGkNdy0b+nQLuWrYip BUmOXmjdIG3nujCzA9sv6/uNNhjhj2y+HWwuV7Qo002VFkhgZFL67u2SSUQLpYPj PxdkY8pPVq+O+in94oDV3c36dYFF6+g6A6505Vn6eKUm/TLpszRFGkS3bKKA5vtn 74FR+guV/5RwYJcdZbfm04DgAocl7AfUDxpwRxibt6KtAK2VZKQuw4ugUTgYEd7W mL2+AMmPKuajWXAMTHjCZPbUp9gFNyYyBQTFfGVX/XLiM8erKBnGfoa1/KzUJkhr fVZLYIO/gzl34PiTIfgD =UJtt -----END PGP SIGNATURE----- Merge tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: "Nothing really major this release, despite quite a lot of activity. Just lots of things all over the place. Some things of note include: - Access via perf to a new type of PMU (IMC) on Power9, which can count both core events as well as nest unit events (Memory controller etc). - Optimisations to the radix MMU TLB flushing, mostly to avoid unnecessary Page Walk Cache (PWC) flushes when the structure of the tree is not changing. - Reworks/cleanups of do_page_fault() to modernise it and bring it closer to other architectures where possible. - Rework of our page table walking so that THP updates only need to send IPIs to CPUs where the affected mm has run, rather than all CPUs. - The size of our vmalloc area is increased to 56T on 64-bit hash MMU systems. This avoids problems with the percpu allocator on systems with very sparse NUMA layouts. - STRICT_KERNEL_RWX support on PPC32. - A new sched domain topology for Power9, to capture the fact that pairs of cores may share an L2 cache. - Power9 support for VAS, which is a new mechanism for accessing coprocessors, and initial support for using it with the NX compression accelerator. - Major work on the instruction emulation support, adding support for many new instructions, and reworking it so it can be used to implement the emulation needed to fixup alignment faults. - Support for guests under PowerVM to use the Power9 XIVE interrupt controller. And probably that many things again that are almost as interesting, but I had to keep the list short. Plus the usual fixes and cleanups as always. Thanks to: Alexey Kardashevskiy, Alistair Popple, Andreas Schwab, Aneesh Kumar K.V, Anju T Sudhakar, Arvind Yadav, Balbir Singh, Benjamin Herrenschmidt, Bhumika Goyal, Breno Leitao, Bryant G. Ly, Christophe Leroy, Cédric Le Goater, Dan Carpenter, Dou Liyang, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand, Hannes Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall, LABBE Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring, Masahiro Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo, Nathan Fontenot, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Rashmica Gupta, Rob Herring, Rui Teng, Sam Bobroff, Santosh Sivaraj, Scott Wood, Shilpasri G Bhat, Sukadev Bhattiprolu, Suraj Jitindar Singh, Tobin C. Harding, Victor Aoqui" * tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (321 commits) powerpc/xive: Fix section __init warning powerpc: Fix kernel crash in emulation of vector loads and stores powerpc/xive: improve debugging macros powerpc/xive: add XIVE Exploitation Mode to CAS powerpc/xive: introduce H_INT_ESB hcall powerpc/xive: add the HW IRQ number under xive_irq_data powerpc/xive: introduce xive_esb_write() powerpc/xive: rename xive_poke_esb() in xive_esb_read() powerpc/xive: guest exploitation of the XIVE interrupt controller powerpc/xive: introduce a common routine xive_queue_page_alloc() powerpc/sstep: Avoid used uninitialized error axonram: Return directly after a failed kzalloc() in axon_ram_probe() axonram: Improve a size determination in axon_ram_probe() axonram: Delete an error message for a failed memory allocation in axon_ram_probe() powerpc/powernv/npu: Move tlb flush before launching ATSD powerpc/macintosh: constify wf_sensor_ops structures powerpc/iommu: Use permission-specific DEVICE_ATTR variants powerpc/eeh: Delete an error out of memory message at init time powerpc/mm: Use seq_putc() in two functions macintosh: Convert to using %pOF instead of full_name ... |
||
Michal Hocko
|
79b63f12ab |
mm, hugetlb: do not allocate non-migrateable gigantic pages from movable zones
alloc_gigantic_page doesn't consider movability of the gigantic hugetlb
when scanning eligible ranges for the allocation. As 1GB hugetlb pages
are not movable currently this can break the movable zone assumption
that all allocations are migrateable and as such break memory hotplug.
Reorganize the code and use the standard zonelist allocations scheme
that we use for standard hugetbl pages. htlb_alloc_mask will ensure
that only migratable hugetlb pages will ever see a movable zone.
Link: http://lkml.kernel.org/r/20170803083549.21407-1-mhocko@kernel.org
Fixes:
|
||
Arvind Yadav
|
67e5ed9699 |
mm/hugetlb.c: constify attribute_group structures
attribute_group are not supposed to change at runtime. All functions working with attribute_group provided by <linux/sysfs.h> work with const attribute_group. So mark the non-const structs as const. Link: http://lkml.kernel.org/r/1501157260-3922-1-git-send-email-arvind.yadav.cs@gmail.com Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Punit Agrawal
|
9b19df292c |
mm/hugetlb.c: make huge_pte_offset() consistent and document behaviour
When walking the page tables to resolve an address that points to !p*d_present() entry, huge_pte_offset() returns inconsistent values depending on the level of page table (PUD or PMD). It returns NULL in the case of a PUD entry while in the case of a PMD entry, it returns a pointer to the page table entry. A similar inconsitency exists when handling swap entries - returns NULL for a PUD entry while a pointer to the pte_t is retured for the PMD entry. Update huge_pte_offset() to make the behaviour consistent - return a pointer to the pte_t for hugepage or swap entries. Only return NULL in instances where we have a p*d_none() entry and the size parameter doesn't match the hugepage size at this level of the page table. Document the behaviour to clarify the expected behaviour of this function. This is to set clear semantics for architecture specific implementations of huge_pte_offset(). Discussions on the arm64 implementation of huge_pte_offset() (http://www.spinics.net/lists/linux-mm/msg133699.html) showed that there is benefit from returning a pte_t* in the case of p*d_none(). The fault handling code in hugetlb_fault() can handle p*d_none() entries and saves an extra round trip to huge_pte_alloc(). Other callers of huge_pte_offset() should be ok as well. [punit.agrawal@arm.com: v2] Link: http://lkml.kernel.org/r/20170725154114.24131-2-punit.agrawal@arm.com Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
e24a1307ba |
mm/hugetlb: Allow arch to override and call the weak function
When running in guest mode ppc64 supports a different mechanism for hugetlb allocation/reservation. The LPAR management application called HMC can be used to reserve a set of hugepages and we pass the details of reserved pages via device tree to the guest. (more details in htab_dt_scan_hugepage_blocks()) . We do the memblock_reserve of the range and later in the boot sequence, we add the reserved range to huge_boot_pages. But to enable 16G hugetlb on baremetal config (when we are not running as guest) we want to do memblock reservation during boot. Generic code already does this Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> |
||
Andrea Arcangeli
|
5af10dfd0a |
userfaultfd: hugetlbfs: remove superfluous page unlock in VM_SHARED case
huge_add_to_page_cache->add_to_page_cache implicitly unlocks the page before returning in case of errors. The error returned was -EEXIST by running UFFDIO_COPY on a non-hole offset of a VM_SHARED hugetlbfs mapping. It was an userland bug that triggered it and the kernel must cope with it returning -EEXIST from ioctl(UFFDIO_COPY) as expected. page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) kernel BUG at mm/filemap.c:964! invalid opcode: 0000 [#1] SMP CPU: 1 PID: 22582 Comm: qemu-system-x86 Not tainted 4.11.11-300.fc26.x86_64 #1 RIP: unlock_page+0x4a/0x50 Call Trace: hugetlb_mcopy_atomic_pte+0xc0/0x320 mcopy_atomic+0x96f/0xbe0 userfaultfd_ioctl+0x218/0xe90 do_vfs_ioctl+0xa5/0x600 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x1a/0xa9 Link: http://lkml.kernel.org/r/20170802165145.22628-2-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexey Perevalov <a.perevalov@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Daniel Jordan
|
2be7cfed99 |
mm/hugetlb.c: __get_user_pages ignores certain follow_hugetlb_page errors
Commit |
||
Michal Hocko
|
dcda9b0471 |
mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to the page allocator. This has been true but only for allocations requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always ignored for smaller sizes. This is a bit unfortunate because there is no way to express the same semantic for those requests and they are considered too important to fail so they might end up looping in the page allocator for ever, similarly to GFP_NOFAIL requests. Now that the whole tree has been cleaned up and accidental or misled usage of __GFP_REPEAT flag has been removed for !costly requests we can give the original flag a better name and more importantly a more useful semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user that the allocator would try really hard but there is no promise of a success. This will work independent of the order and overrides the default allocator behavior. Page allocator users have several levels of guarantee vs. cost options (take GFP_KERNEL as an example) - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_ attempt to free memory at all. The most light weight mode which even doesn't kick the background reclaim. Should be used carefully because it might deplete the memory and the next user might hit the more aggressive reclaim - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic allocation without any attempt to free memory from the current context but can wake kswapd to reclaim memory if the zone is below the low watermark. Can be used from either atomic contexts or when the request is a performance optimization and there is another fallback for a slow path. - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) - non sleeping allocation with an expensive fallback so it can access some portion of memory reserves. Usually used from interrupt/bh context with an expensive slow path fallback. - GFP_KERNEL - both background and direct reclaim are allowed and the _default_ page allocator behavior is used. That means that !costly allocation requests are basically nofail but there is no guarantee of that behavior so failures have to be checked properly by callers (e.g. OOM killer victim is allowed to fail currently). - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior and all allocation requests fail early rather than cause disruptive reclaim (one round of reclaim in this implementation). The OOM killer is not invoked. - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator behavior and all allocation requests try really hard. The request will fail if the reclaim cannot make any progress. The OOM killer won't be triggered. - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior and all allocation requests will loop endlessly until they succeed. This might be really dangerous especially for larger orders. Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL because they already had their semantic. No new users are added. __alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if there is no progress and we have already passed the OOM point. This means that all the reclaim opportunities have been exhausted except the most disruptive one (the OOM killer) and a user defined fallback behavior is more sensible than keep retrying in the page allocator. [akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c] [mhocko@suse.com: semantic fix] Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz [mhocko@kernel.org: address other thing spotted by Vlastimil] Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Belits <alex.belits@cavium.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David Daney <david.daney@cavium.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: NeilBrown <neilb@suse.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
3e59fcb0e8 |
hugetlb: add support for preferred node to alloc_huge_page_nodemask
alloc_huge_page_nodemask tries to allocate from any numa node in the allowed node mask starting from lower numa nodes. This might lead to filling up those low NUMA nodes while others are not used. We can reduce this risk by introducing a concept of the preferred node similar to what we have in the regular page allocator. We will start allocating from the preferred nid and then iterate over all allowed nodes in the zonelist order until we try them all. This is mimicing the page allocator logic except it operates on per-node mempools. dequeue_huge_page_vma already does this so distill the zonelist logic into a more generic dequeue_huge_page_nodemask and use it in alloc_huge_page_nodemask. This will allow us to use proper per numa distance fallback also for alloc_huge_page_node which can use alloc_huge_page_nodemask now and we can get rid of alloc_huge_page_node helper which doesn't have any user anymore. Link: http://lkml.kernel.org/r/20170622193034.28972-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
aaf14e40a3 |
mm, hugetlb: unclutter hugetlb allocation layers
Patch series "mm, hugetlb: allow proper node fallback dequeue". While working on a hugetlb migration issue addressed in a separate patchset[1] I have noticed that the hugetlb allocations from the preallocated pool are quite subotimal. [1] //lkml.kernel.org/r/20170608074553.22152-1-mhocko@kernel.org There is no fallback mechanism implemented and no notion of preferred node. I have tried to work around it but Vlastimil was right to push back for a more robust solution. It seems that such a solution is to reuse zonelist approach we use for the page alloctor. This series has 3 patches. The first one tries to make hugetlb allocation layers more clear. The second one implements the zonelist hugetlb pool allocation and introduces a preferred node semantic which is used by the migration callbacks. The last patch is a clean up. This patch (of 3): Hugetlb allocation path for fresh huge pages is unnecessarily complex and it mixes different interfaces between layers. __alloc_buddy_huge_page is the central place to perform a new allocation. It checks for the hugetlb overcommit and then relies on __hugetlb_alloc_buddy_huge_page to invoke the page allocator. This is all good except that __alloc_buddy_huge_page pushes vma and address down the callchain and so __hugetlb_alloc_buddy_huge_page has to deal with two different allocation modes - one for memory policy and other node specific (or to make it more obscure node non-specific) requests. This just screams for a reorganization. This patch pulls out all the vma specific handling up to __alloc_buddy_huge_page_with_mpol where it belongs. __alloc_buddy_huge_page will get nodemask argument and __hugetlb_alloc_buddy_huge_page will become a trivial wrapper over the page allocator. In short: __alloc_buddy_huge_page_with_mpol - memory policy handling __alloc_buddy_huge_page - overcommit handling and accounting __hugetlb_alloc_buddy_huge_page - page allocator layer Also note that __hugetlb_alloc_buddy_huge_page and its cpuset retry loop is not really needed because the page allocator already handles the cpusets update. Finally __hugetlb_alloc_buddy_huge_page had a special case for node specific allocations (when no policy is applied and there is a node given). This has relied on __GFP_THISNODE to not fallback to a different node. alloc_huge_page_node is the only caller which relies on this behavior so move the __GFP_THISNODE there. Not only does this remove quite some code it also should make those layers easier to follow and clear wrt responsibilities. Link: http://lkml.kernel.org/r/20170622193034.28972-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox
|
c6247f72d4 |
mm/hugetlb.c: replace memfmt with string_get_size
The hugetlb code has its own function to report human-readable sizes. Convert it to use the shared string_get_size() function. This will lead to a minor difference in user visible output (MiB/GiB instead of MB/GB), but some would argue that's desirable anyway. Link: http://lkml.kernel.org/r/20170606190350.GA20010@bombadil.infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
69ed779a14 |
mm, hugetlb: schedule when potentially allocating many hugepages
A few hugetlb allocators loop while calling the page allocator and can potentially prevent rescheduling if the page allocator slowpath is not utilized. Conditionally schedule when large numbers of hugepages can be allocated. Anshuman: "Fixes a task which was getting hung while writing like 10000 hugepages (16MB on POWER8) into /proc/sys/vm/nr_hugepages." Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1706091535300.66176@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
4db9b2efe9 |
hugetlb, memory_hotplug: prefer to use reserved pages for migration
new_node_page will try to use the origin's next NUMA node as the migration destination for hugetlb pages. If such a node doesn't have any preallocated pool it falls back to __alloc_buddy_huge_page_no_mpol to allocate a surplus page instead. This is quite subotpimal for any configuration when hugetlb pages are no distributed to all NUMA nodes evenly. Say we have a hotplugable node 4 and spare hugetlb pages are node 0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:10000 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node3/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node4/hugepages/hugepages-2048kB/nr_hugepages:10000 /sys/devices/system/node/node5/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node6/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node7/hugepages/hugepages-2048kB/nr_hugepages:0 Now we consume the whole pool on node 4 and try to offline this node. All the allocated pages should be moved to node0 which has enough preallocated pages to hold them. With the current implementation offlining very likely fails because hugetlb allocations during runtime are much less reliable. Fix this by reusing the nodemask which excludes migration source and try to find a first node which has a page in the preallocated pool first and fall back to __alloc_buddy_huge_page_no_mpol only when the whole pool is consumed. [akpm@linux-foundation.org: remove bogus arg from alloc_huge_page_nodemask() stub] Link: http://lkml.kernel.org/r/20170608074553.22152-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Liam R. Howlett
|
d715cf804a |
mm/hugetlb.c: warn the user when issues arise on boot due to hugepages
When the user specifies too many hugepages or an invalid default_hugepagesz the communication to the user is implicit in the allocation message. This patch adds a warning when the desired page count is not allocated and prints an error when the default_hugepagesz is invalid on boot. During boot hugepages will allocate until there is a fraction of the hugepage size left. That is, we allocate until either the request is satisfied or memory for the pages is exhausted. When memory for the pages is exhausted, it will most likely lead to the system failing with the OOM manager not finding enough (or anything) to kill (unless you're using really big hugepages in the order of 100s of MB or in the GBs). The user will most likely see the OOM messages much later in the boot sequence than the implicitly stated message. Worse yet, you may even get an OOM for each processor which causes many pages of OOMs on modern systems. Although these messages will be printed earlier than the OOM messages, at least giving the user errors and warnings will highlight the configuration as an issue. I'm trying to point the user in the right direction by providing a more robust statement of what is failing. During the sysctl or echo command, the user can check the results much easier than if the system hangs during boot and the scenario of having nothing to OOM for kernel memory is highly unlikely. Mike said: "Before sending out this patch, I asked Liam off list why he was doing it. Was it something he just thought would be useful? Or, was there some type of user situation/need. He said that he had been called in to assist on several occasions when a system OOMed during boot. In almost all of these situations, the user had grossly misconfigured huge pages. DB users want to pre-allocate just the right amount of huge pages, but sometimes they can be really off. In such situations, the huge page init code just allocates as many huge pages as it can and reports the number allocated. There is no indication that it quit allocating because it ran out of memory. Of course, a user could compare the number in the message to what they requested on the command line to determine if they got all the huge pages they requested. The thought was that it would be useful to at least flag this situation. That way, the user might be able to better relate the huge page allocation failure to the OOM. I'm not sure if the e-mail discussion made it obvious that this is something he has seen on several occasions. I see Michal's point that this will only flag the situation where someone configures huge pages very badly. And, a more extensive look at the situation of misconfiguring huge pages might be in order. But, this has happened on several occasions which led to the creation of this patch" [akpm@linux-foundation.org: reposition memfmt() to avoid forward declaration] Link: http://lkml.kernel.org/r/20170603005413.10380-1-Liam.Howlett@Oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: zhongjiang <zhongjiang@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
ddd40d8a2c |
mm: hugetlb: delete dequeue_hwpoisoned_huge_page()
dequeue_hwpoisoned_huge_page() is no longer used, so let's remove it. Link: http://lkml.kernel.org/r/1496305019-5493-9-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anshuman Khandual
|
c3114a84f7 |
mm: hugetlb: soft-offline: dissolve source hugepage after successful migration
Currently hugepage migrated by soft-offline (i.e. due to correctable memory errors) is contained as a hugepage, which means many non-error pages in it are unreusable, i.e. wasted. This patch solves this issue by dissolving source hugepages into buddy. As done in previous patch, PageHWPoison is set only on a head page of the error hugepage. Then in dissoliving we move the PageHWPoison flag to the raw error page so that all healthy subpages return back to buddy. [arnd@arndb.de: fix warnings: replace some macros with inline functions] Link: http://lkml.kernel.org/r/20170609102544.2947326-1-arnd@arndb.de Link: http://lkml.kernel.org/r/1496305019-5493-5-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
243abd5b78 |
mm: hugetlb: prevent reuse of hwpoisoned free hugepages
Patch series "mm: hwpoison: fixlet for hugetlb migration". This patchset updates the hwpoison/hugetlb code to address 2 reported issues. One is madvise(MADV_HWPOISON) failure reported by Intel's lkp robot (see http://lkml.kernel.org/r/20170417055948.GM31394@yexl-desktop.) First half was already fixed in mainline, and another half about hugetlb cases are solved in this series. Another issue is "narrow-down error affected region into a single 4kB page instead of a whole hugetlb page" issue, which was tried by Anshuman (http://lkml.kernel.org/r/20170420110627.12307-1-khandual@linux.vnet.ibm.com) and I updated it to apply it more widely. This patch (of 9): We no longer use MIGRATE_ISOLATE to prevent reuse of hwpoison hugepages as we did before. So current dequeue_huge_page_node() doesn't work as intended because it still uses is_migrate_isolate_page() for this check. This patch fixes it with PageHWPoison flag. Link: http://lkml.kernel.org/r/1496305019-5493-2-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
04ec6264f2 |
mm, page_alloc: pass preferred nid instead of zonelist to allocator
The main allocator function __alloc_pages_nodemask() takes a zonelist pointer as one of its parameters. All of its callers directly or indirectly obtain the zonelist via node_zonelist() using a preferred node id and gfp_mask. We can make the code a bit simpler by doing the zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node id instead (gfp_mask is already another parameter). There are some code size benefits thanks to removal of inlined node_zonelist(): bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952) This will also make things simpler if we proceed with converting cpusets to zonelists. Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Punit Agrawal
|
e5251fd430 |
mm/hugetlb: introduce set_huge_swap_pte_at() helper
set_huge_pte_at(), an architecture callback to populate hugepage ptes, does not provide the range of virtual memory that is targeted. This leads to ambiguity when dealing with swap entries on architectures that support hugepages consisting of contiguous ptes. Fix the problem by introducing an overridable helper that is called when populating the page tables with swap entries. The size of the targeted region is provided to the helper to help determine the number of entries to be updated. Provide a default implementation that maintains the current behaviour. [punit.agrawal@arm.com: v4] Link: http://lkml.kernel.org/r/20170524115409.31309-8-punit.agrawal@arm.com [punit.agrawal@arm.com: add an empty definition for set_huge_swap_pte_at()] Link: http://lkml.kernel.org/r/20170525171331.31469-1-punit.agrawal@arm.com Link: http://lkml.kernel.org/r/20170522133604.11392-6-punit.agrawal@arm.com Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Punit Agrawal
|
9386fac34c |
mm/hugetlb: allow architectures to override huge_pte_clear()
When unmapping a hugepage range, huge_pte_clear() is used to clear the page table entries that are marked as not present. huge_pte_clear() internally just ends up calling pte_clear() which does not correctly deal with hugepages consisting of contiguous page table entries. Add a size argument to address this issue and allow architectures to override huge_pte_clear() by wrapping it in a #ifndef block. Update s390 implementation with the size parameter as well. Note that the change only affects huge_pte_clear() - the other generic hugetlb functions don't need any change. Link: http://lkml.kernel.org/r/20170522162555.4313-1-punit.agrawal@arm.com Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [s390 bits] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Steve Capper <steve.capper@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Punit Agrawal
|
7868a2087e |
mm/hugetlb: add size parameter to huge_pte_offset()
A poisoned or migrated hugepage is stored as a swap entry in the page tables. On architectures that support hugepages consisting of contiguous page table entries (such as on arm64) this leads to ambiguity in determining the page table entry to return in huge_pte_offset() when a poisoned entry is encountered. Let's remove the ambiguity by adding a size parameter to convey additional information about the requested address. Also fixup the definition/usage of huge_pte_offset() throughout the tree. Link: http://lkml.kernel.org/r/20170522133604.11392-4-punit.agrawal@arm.com Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: James Hogan <james.hogan@imgtec.com> (odd fixer:METAG ARCHITECTURE) Cc: Ralf Baechle <ralf@linux-mips.org> (supporter:MIPS) Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
e1073d1e79 |
mm/hugetlb: clean up ARCH_HAS_GIGANTIC_PAGE
This moves the #ifdef in C code to a Kconfig dependency. Also we move the gigantic_page_supported() function to be arch specific. This allows architectures to conditionally enable runtime allocation of gigantic huge page. Architectures like ppc64 supports different gigantic huge page size (16G and 1G) based on the translation mode selected. This provides an opportunity for ppc64 to enable runtime allocation only w.r.t 1G hugepage. No functional change in this patch. Link: http://lkml.kernel.org/r/1494995292-4443-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
4dc71451a2 |
mm/follow_page_mask: add support for hugepage directory entry
Architectures like ppc64 supports hugepage size that is not mapped to any of of the page table levels. Instead they add an alternate page table entry format called hugepage directory (hugepd). hugepd indicates that the page table entry maps to a set of hugetlb pages. Add support for this in generic follow_page_mask code. We already support this format in the generic gup code. The default implementation prints warning and returns NULL. We will add ppc64 support in later patches Link: http://lkml.kernel.org/r/1494926612-23928-7-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anshuman Khandual
|
faaa5b62d3 |
mm/follow_page_mask: add support for hugetlb pgd entries
ppc64 supports pgd hugetlb entries. Add code to handle hugetlb pgd entries to follow_page_mask so that ppc64 can switch to it to handle hugetlbe entries. Link: http://lkml.kernel.org/r/1494926612-23928-5-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
d5ed7444da |
mm/hugetlb: export hugetlb_entry_migration helper
We will be using this later from the ppc64 code. Change the return type to bool. Link: http://lkml.kernel.org/r/1494926612-23928-4-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anshuman Khandual
|
94310cbcaa |
mm/madvise: enable (soft|hard) offline of HugeTLB pages at PGD level
Though migrating gigantic HugeTLB pages does not sound much like real world use case, they can be affected by memory errors. Hence migration at the PGD level HugeTLB pages should be supported just to enable soft and hard offline use cases. While allocating the new gigantic HugeTLB page, it should not matter whether new page comes from the same node or not. There would be very few gigantic pages on the system afterall, we should not be bothered about node locality when trying to save a big page from crashing. This change renames dequeu_huge_page_node() function as dequeue_huge _page_node_exact() preserving it's original functionality. Now the new dequeue_huge_page_node() function scans through all available online nodes to allocate a huge page for the NUMA_NO_NODE case and just falls back calling dequeu_huge_page_node_exact() for all other cases. [arnd@arndb.de: make hstate_is_gigantic() inline] Link: http://lkml.kernel.org/r/20170522124748.3911296-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170516100509.20122-1-khandual@linux.vnet.ibm.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
James Morse
|
9a291a7c94 |
mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified
KVM uses get_user_pages() to resolve its stage2 faults. KVM sets the FOLL_HWPOISON flag causing faultin_page() to return -EHWPOISON when it finds a VM_FAULT_HWPOISON. KVM handles these hwpoison pages as a special case. (check_user_page_hwpoison()) When huge pages are involved, this doesn't work so well. get_user_pages() calls follow_hugetlb_page(), which stops early if it receives VM_FAULT_HWPOISON from hugetlb_fault(), eventually returning -EFAULT to the caller. The step to map this to -EHWPOISON based on the FOLL_ flags is missing. The hwpoison special case is skipped, and -EFAULT is returned to user-space, causing Qemu or kvmtool to exit. Instead, move this VM_FAULT_ to errno mapping code into a header file and use it from faultin_page() and follow_hugetlb_page(). With this, KVM works as expected. This isn't a problem for arm64 today as we haven't enabled MEMORY_FAILURE, but I can't see any reason this doesn't happen on x86 too, so I think this should be a fix. This doesn't apply earlier than stable's v4.11.1 due to all sorts of cleanup. [james.morse@arm.com: add vm_fault_to_errno() call to faultin_page()] suggested. Link: http://lkml.kernel.org/r/20170525171035.16359-1-james.morse@arm.com [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170524160900.28786-1-james.morse@arm.com Signed-off-by: James Morse <james.morse@arm.com> Acked-by: Punit Agrawal <punit.agrawal@arm.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: <stable@vger.kernel.org> [4.11.1+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
ff8c0c53c4 |
mm/hugetlb.c: don't call region_abort if region_chg fails
Changes to hugetlbfs reservation maps is a two step process. The first step is a call to region_chg to determine what needs to be changed, and prepare that change. This should be followed by a call to call to region_add to commit the change, or region_abort to abort the change. The error path in hugetlb_reserve_pages called region_abort after a failed call to region_chg. As a result, the adds_in_progress counter in the reservation map is off by 1. This is caught by a VM_BUG_ON in resv_map_release when the reservation map is freed. syzkaller fuzzer (when using an injected kmalloc failure) found this bug, that resulted in the following: kernel BUG at mm/hugetlb.c:742! Call Trace: hugetlbfs_evict_inode+0x7b/0xa0 fs/hugetlbfs/inode.c:493 evict+0x481/0x920 fs/inode.c:553 iput_final fs/inode.c:1515 [inline] iput+0x62b/0xa20 fs/inode.c:1542 hugetlb_file_setup+0x593/0x9f0 fs/hugetlbfs/inode.c:1306 newseg+0x422/0xd30 ipc/shm.c:575 ipcget_new ipc/util.c:285 [inline] ipcget+0x21e/0x580 ipc/util.c:639 SYSC_shmget ipc/shm.c:673 [inline] SyS_shmget+0x158/0x230 ipc/shm.c:657 entry_SYSCALL_64_fastpath+0x1f/0xc2 RIP: resv_map_release+0x265/0x330 mm/hugetlb.c:742 Link: http://lkml.kernel.org/r/1490821682-23228-1-git-send-email-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
c9d398fa23 |
mm, hugetlb: use pte_present() instead of pmd_present() in follow_huge_pmd()
I found the race condition which triggers the following bug when
move_pages() and soft offline are called on a single hugetlb page
concurrently.
Soft offlining page 0x119400 at 0x700000000000
BUG: unable to handle kernel paging request at ffffea0011943820
IP: follow_huge_pmd+0x143/0x190
PGD 7ffd2067
PUD 7ffd1067
PMD 0
[61163.582052] Oops: 0000 [#1] SMP
Modules linked in: binfmt_misc ppdev virtio_balloon parport_pc pcspkr i2c_piix4 parport i2c_core acpi_cpufreq ip_tables xfs libcrc32c ata_generic pata_acpi virtio_blk 8139too crc32c_intel ata_piix serio_raw libata virtio_pci 8139cp virtio_ring virtio mii floppy dm_mirror dm_region_hash dm_log dm_mod [last unloaded: cap_check]
CPU: 0 PID: 22573 Comm: iterate_numa_mo Tainted: P OE 4.11.0-rc2-mm1+ #2
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:follow_huge_pmd+0x143/0x190
RSP: 0018:ffffc90004bdbcd0 EFLAGS: 00010202
RAX: 0000000465003e80 RBX: ffffea0004e34d30 RCX: 00003ffffffff000
RDX: 0000000011943800 RSI: 0000000000080001 RDI: 0000000465003e80
RBP: ffffc90004bdbd18 R08: 0000000000000000 R09: ffff880138d34000
R10: ffffea0004650000 R11: 0000000000c363b0 R12: ffffea0011943800
R13: ffff8801b8d34000 R14: ffffea0000000000 R15: 000077ff80000000
FS: 00007fc977710740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffea0011943820 CR3: 000000007a746000 CR4: 00000000001406f0
Call Trace:
follow_page_mask+0x270/0x550
SYSC_move_pages+0x4ea/0x8f0
SyS_move_pages+0xe/0x10
do_syscall_64+0x67/0x180
entry_SYSCALL64_slow_path+0x25/0x25
RIP: 0033:0x7fc976e03949
RSP: 002b:00007ffe72221d88 EFLAGS: 00000246 ORIG_RAX: 0000000000000117
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fc976e03949
RDX: 0000000000c22390 RSI: 0000000000001400 RDI: 0000000000005827
RBP: 00007ffe72221e00 R08: 0000000000c2c3a0 R09: 0000000000000004
R10: 0000000000c363b0 R11: 0000000000000246 R12: 0000000000400650
R13: 00007ffe72221ee0 R14: 0000000000000000 R15: 0000000000000000
Code: 81 e4 ff ff 1f 00 48 21 c2 49 c1 ec 0c 48 c1 ea 0c 4c 01 e2 49 bc 00 00 00 00 00 ea ff ff 48 c1 e2 06 49 01 d4 f6 45 bc 04 74 90 <49> 8b 7c 24 20 40 f6 c7 01 75 2b 4c 89 e7 8b 47 1c 85 c0 7e 2a
RIP: follow_huge_pmd+0x143/0x190 RSP: ffffc90004bdbcd0
CR2: ffffea0011943820
---[ end trace e4f81353a2d23232 ]---
Kernel panic - not syncing: Fatal exception
Kernel Offset: disabled
This bug is triggered when pmd_present() returns true for non-present
hugetlb, so fixing the present check in follow_huge_pmd() prevents it.
Using pmd_present() to determine present/non-present for hugetlb is not
correct, because pmd_present() checks multiple bits (not only
_PAGE_PRESENT) for historical reason and it can misjudge hugetlb state.
Fixes:
|
||
Kirill A. Shutemov
|
c2febafc67 |
mm: convert generic code to 5-level paging
Convert all non-architecture-specific code to 5-level paging. It's mostly mechanical adding handling one more page table level in places where we deal with pud_t. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ingo Molnar
|
174cd4b1e5 |
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Lucas Stach
|
ca96b62534 |
mm: alloc_contig_range: allow to specify GFP mask
Currently alloc_contig_range assumes that the compaction should be done with the default GFP_KERNEL flags. This is probably right for all current uses of this interface, but may change as CMA is used in more use-cases (including being the default DMA memory allocator on some platforms). Change the function prototype, to allow for passing through the GFP mask set by upper layers. Also respect global restrictions by applying memalloc_noio_flags to the passed in flags. Link: http://lkml.kernel.org/r/20170127172328.18574-1-l.stach@pengutronix.de Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Alexander Graf <agraf@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dave Jiang
|
11bac80004 |
mm, fs: reduce fault, page_mkwrite, and pfn_mkwrite to take only vmf
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to take a vma and vmf parameter when the vma already resides in vmf. Remove the vma parameter to simplify things. [arnd@arndb.de: fix ARM build] Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
1c9e8def43 |
userfaultfd: hugetlbfs: add UFFDIO_COPY support for shared mappings
When userfaultfd hugetlbfs support was originally added, it followed the pattern of anon mappings and did not support any vmas marked VM_SHARED. As such, support was only added for private mappings. Remove this limitation and support shared mappings. The primary functional change required is adding pages to the page cache. More subtle changes are required for huge page reservation handling in error paths. A lengthy comment in the code describes the reservation handling. [mike.kravetz@oracle.com: update] Link: http://lkml.kernel.org/r/c9c8cafe-baa7-05b4-34ea-1dfa5523a85f@oracle.com Link: http://lkml.kernel.org/r/1487195210-12839-1-git-send-email-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
87ffc118b5 |
userfaultfd: hugetlbfs: gup: support VM_FAULT_RETRY
Add support for VM_FAULT_RETRY to follow_hugetlb_page() so that get_user_pages_unlocked/locked and "nonblocking/FOLL_NOWAIT" features will work on hugetlbfs. This is required for fully functional userfaultfd non-present support on hugetlbfs. Link: http://lkml.kernel.org/r/20161216144821.5183-25-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
1a1aad8a9b |
userfaultfd: hugetlbfs: add userfaultfd hugetlb hook
When processing a hugetlb fault for no page present, check the vma to determine if faults are to be handled via userfaultfd. If so, drop the hugetlb_fault_mutex and call handle_userfault(). Link: http://lkml.kernel.org/r/20161216144821.5183-21-aarcange@redhat.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
810a56b943 |
userfaultfd: hugetlbfs: fix __mcopy_atomic_hugetlb retry/error processing
The new routine copy_huge_page_from_user() uses kmap_atomic() to map PAGE_SIZE pages. However, this prevents page faults in the subsequent call to copy_from_user(). This is OK in the case where the routine is copied with mmap_sema held. However, in another case we want to allow page faults. So, add a new argument allow_pagefault to indicate if the routine should allow page faults. [dan.carpenter@oracle.com: unmap the correct pointer] Link: http://lkml.kernel.org/r/20170113082608.GA3548@mwanda [akpm@linux-foundation.org: kunmap() takes a page*, per Hugh] Link: http://lkml.kernel.org/r/20161216144821.5183-20-aarcange@redhat.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Hugh Dickins <hughd@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
8fb5debc5f |
userfaultfd: hugetlbfs: add hugetlb_mcopy_atomic_pte for userfaultfd support
hugetlb_mcopy_atomic_pte is the low level routine that implements the userfaultfd UFFDIO_COPY command. It is based on the existing mcopy_atomic_pte routine with modifications for huge pages. Link: http://lkml.kernel.org/r/20161216144821.5183-18-aarcange@redhat.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
e5bbc8a6c9 |
mm/hugetlb.c: fix reservation race when freeing surplus pages
return_unused_surplus_pages() decrements the global reservation count, and frees any unused surplus pages that were backing the reservation. Commit |
||
Aneesh Kumar K.V
|
07e326610e |
mm: add tlb_remove_check_page_size_change to track page size change
With commit
|
||
Aneesh Kumar K.V
|
b528e4b640 |
mm/hugetlb: add tlb_remove_hugetlb_entry for handling hugetlb pages
This add tlb_remove_hugetlb_entry similar to tlb_remove_pmd_tlb_entry. Link: http://lkml.kernel.org/r/20161026084839.27299-4-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
8bea805207 |
mm/hugetlb.c: use huge_pte_lock instead of opencoding the lock
No functional change by this patch. Link: http://lkml.kernel.org/r/20161018090234.22574-1-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
3999f52e31 |
mm/hugetlb.c: use the right pte val for compare in hugetlb_cow
We cannot use the pte value used in set_pte_at for pte_same comparison,
because archs like ppc64, filter/add new pte flag in set_pte_at.
Instead fetch the pte value inside hugetlb_cow. We are comparing pte
value to make sure the pte didn't change since we dropped the page table
lock. hugetlb_cow get called with page table lock held, and we can take
a copy of the pte value before we drop the page table lock.
With hugetlbfs, we optimize the MAP_PRIVATE write fault path with no
previous mapping (huge_pte_none entries), by forcing a cow in the fault
path. This avoid take an addition fault to covert a read-only mapping
to read/write. Here we were comparing a recently instantiated pte (via
set_pte_at) to the pte values from linux page table. As explained above
on ppc64 such pte_same check returned wrong result, resulting in us
taking an additional fault on ppc64.
Fixes:
|
||
Mike Kravetz
|
96b96a96dd |
mm/hugetlb: fix huge page reservation leak in private mapping error paths
Error paths in hugetlb_cow() and hugetlb_no_page() may free a newly
allocated huge page.
If a reservation was associated with the huge page, alloc_huge_page()
consumed the reservation while allocating. When the newly allocated
page is freed in free_huge_page(), it will increment the global
reservation count. However, the reservation entry in the reserve map
will remain.
This is not an issue for shared mappings as the entry in the reserve map
indicates a reservation exists. But, an entry in a private mapping
reserve map indicates the reservation was consumed and no longer exists.
This results in an inconsistency between the reserve map and the global
reservation count. This 'leaks' a reserved huge page.
Create a new routine restore_reserve_on_error() to restore the reserve
entry in these specific error paths. This routine makes use of a new
function vma_add_reservation() which will add a reserve entry for a
specific address/page.
In general, these error paths were rarely (if ever) taken on most
architectures. However, powerpc contained arch specific code that that
resulted in an extra fault and execution of these error paths on all
private mappings.
Fixes:
|
||
zhong jiang
|
72e2936c04 |
mm: remove unnecessary condition in remove_inode_hugepages
When the huge page is added to the page cahce (huge_add_to_page_cache), the page private flag will be cleared. since this code (remove_inode_hugepages) will only be called for pages in the page cahce, PagePrivate(page) will always be false. The patch remove the code without any functional change. Link: http://lkml.kernel.org/r/1475113323-29368-1-git-send-email-zhongjiang@huawei.com Signed-off-by: zhong jiang <zhongjiang@huawei.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yisheng Xie
|
461a718432 |
mm/hugetlb: introduce ARCH_HAS_GIGANTIC_PAGE
Avoid making ifdef get pretty unwieldy if many ARCHs support gigantic page. No functional change with this patch. Link: http://lkml.kernel.org/r/1475227569-63446-2-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Rob Herring <robh+dt@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Gerald Schaefer
|
eb03aa0085 |
mm/hugetlb: improve locking in dissolve_free_huge_pages()
For every pfn aligned to minimum_order, dissolve_free_huge_pages() will call dissolve_free_huge_page() which takes the hugetlb spinlock, even if the page is not huge at all or a hugepage that is in-use. Improve this by doing the PageHuge() and page_count() checks already in dissolve_free_huge_pages() before calling dissolve_free_huge_page(). In dissolve_free_huge_page(), when holding the spinlock, those checks need to be revalidated. Link: http://lkml.kernel.org/r/20160926172811.94033-4-gerald.schaefer@de.ibm.com Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Rui Teng <rui.teng@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Gerald Schaefer
|
082d5b6b60 |
mm/hugetlb: check for reserved hugepages during memory offline
In dissolve_free_huge_pages(), free hugepages will be dissolved without
making sure that there are enough of them left to satisfy hugepage
reservations.
Fix this by adding a return value to dissolve_free_huge_pages() and
checking h->free_huge_pages vs. h->resv_huge_pages. Note that this may
lead to the situation where dissolve_free_huge_page() returns an error
and all free hugepages that were dissolved before that error are lost,
while the memory block still cannot be set offline.
Fixes:
|
||
Gerald Schaefer
|
2247bb335a |
mm/hugetlb: fix memory offline with hugepage size > memory block size
Patch series "mm/hugetlb: memory offline issues with hugepages", v4.
This addresses several issues with hugepages and memory offline. While
the first patch fixes a panic, and is therefore rather important, the
last patch is just a performance optimization.
The second patch fixes a theoretical issue with reserved hugepages,
while still leaving some ugly usability issue, see description.
This patch (of 3):
dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a
list corruption and addressing exception when trying to set a memory
block offline that is part (but not the first part) of a "gigantic"
hugetlb page with a size > memory block size.
When no other smaller hugetlb page sizes are present, the VM_BUG_ON()
will trigger directly. In the other case we will run into an addressing
exception later, because dissolve_free_huge_page() will not work on the
head page of the compound hugetlb page which will result in a NULL
hstate from page_hstate().
To fix this, first remove the VM_BUG_ON() because it is wrong, and then
use the compound head page in dissolve_free_huge_page(). This means
that an unused pre-allocated gigantic page that has any part of itself
inside the memory block that is going offline will be dissolved
completely. Losing an unused gigantic hugepage is preferable to failing
the memory offline, for example in the situation where a (possibly
faulty) memory DIMM needs to go offline.
Fixes:
|
||
zhong jiang
|
c1470b33bb |
mm/hugetlb: fix incorrect hugepages count during mem hotplug
When memory hotplug operates, free hugepages will be freed if the movable node is offline. Therefore, /proc/sys/vm/nr_hugepages will be incorrect. Fix it by reducing max_huge_pages when the node is offlined. n-horiguchi@ah.jp.nec.com said: : dissolve_free_huge_page intends to break a hugepage into buddy, and the : destination hugepage is supposed to be allocated from the pool of the : destination node, so the system-wide pool size is reduced. So adding : h->max_huge_pages-- makes sense to me. Link: http://lkml.kernel.org/r/1470624546-902-1-git-send-email-zhongjiang@huawei.com Signed-off-by: zhong jiang <zhongjiang@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
2cfd716d27 |
powerpc updates for 4.8 #2
Fixes: - Fix early access to cpu_spec relocation from Benjamin Herrenschmidt - Fix incorrect event codes in power9-event-list from Madhavan Srinivasan - Move register_process_table() out of ppc_md from Michael Ellerman Use jump_label for [cpu|mmu]_has_feature() from Aneesh Kumar K.V, Kevin Hao and Michael Ellerman: - Add mmu_early_init_devtree() from Michael Ellerman - Move disable_radix handling into mmu_early_init_devtree() from Michael Ellerman - Do hash device tree scanning earlier from Michael Ellerman - Do radix device tree scanning earlier from Michael Ellerman - Do feature patching before MMU init from Michael Ellerman - Check features don't change after patching from Michael Ellerman - Make MMU_FTR_RADIX a MMU family feature from Aneesh Kumar K.V - Convert mmu_has_feature() to returning bool from Michael Ellerman - Convert cpu_has_feature() to returning bool from Michael Ellerman - Define radix_enabled() in one place & use static inline from Michael Ellerman - Add early_[cpu|mmu]_has_feature() from Michael Ellerman - Convert early cpu/mmu feature check to use the new helpers from Aneesh Kumar K.V - jump_label: Make it possible for arches to invoke jump_label_init() earlier from Kevin Hao - Call jump_label_init() in apply_feature_fixups() from Aneesh Kumar K.V - Remove mfvtb() from Kevin Hao - Move cpu_has_feature() to a separate file from Kevin Hao - Add kconfig option to use jump labels for cpu/mmu_has_feature() from Michael Ellerman - Add option to use jump label for cpu_has_feature() from Kevin Hao - Add option to use jump label for mmu_has_feature() from Kevin Hao - Catch usage of cpu/mmu_has_feature() before jump label init from Aneesh Kumar K.V - Annotate jump label assembly from Michael Ellerman TLB flush enhancements from Aneesh Kumar K.V: - radix: Implement tlb mmu gather flush efficiently - Add helper for finding SLBE LLP encoding - Use hugetlb flush functions - Drop multiple definition of mm_is_core_local - radix: Add tlb flush of THP ptes - radix: Rename function and drop unused arg - radix/hugetlb: Add helper for finding page size - hugetlb: Add flush_hugetlb_tlb_range - remove flush_tlb_page_nohash Add new ptrace regsets from Anshuman Khandual and Simon Guo: - elf: Add powerpc specific core note sections - Add the function flush_tmregs_to_thread - Enable in transaction NT_PRFPREG ptrace requests - Enable in transaction NT_PPC_VMX ptrace requests - Enable in transaction NT_PPC_VSX ptrace requests - Adapt gpr32_get, gpr32_set functions for transaction - Enable support for NT_PPC_CGPR - Enable support for NT_PPC_CFPR - Enable support for NT_PPC_CVMX - Enable support for NT_PPC_CVSX - Enable support for TM SPR state - Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR - Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR - Enable support for EBB registers - Enable support for Performance Monitor registers -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJXpGaLAAoJEFHr6jzI4aWA9aYP/1AqmRPJ9D0XVUJWT+FVABUK LESESoVFF4Hug1j1F8Synhg5o4SzD2t45iGKbclYaFthOIyovMg7Wr1KSu4hQ0go rPuQfpXDNQ8jKdDX8hbPXKUxrNRBNfqJGFo5E7mO6wN9AJ9d1LVwQ+jKAva29Tqs LaAlMbQNbeObPNzOl73B73iew3aozr+mXjBqv82lqvgYknBD2CLf24xGG3eNIbq5 ZZk4LPC8pdkaxnajnzRFzqwiyPWzao0yfpVRKh52TKHBQF/prR/KACb6zUuja/61 krOfegUKob14OYrehjs6X8XNRLnILRI0u1H5bmj7eVEiY/usyNzE93SMHZM3Wdau sQF/Au4OLNXj0ZQdNBtzRsZRyp1d560Gsj+lQGBoPd4hfIWkFYHvxzxsUSdqv4uA MWDMwN0Vvfk0cpprsabsWNevkaotYYBU00px5hF/e5ZUc9/x/xYUVMgPEDr0QZLr cHJo9/Pjk4u/0g4lj+2y1LLl/0tNEZZg69O6bvffPAPVSS4/P4y/bKKYd4I0zL99 Ykp91mSmkl70F3edgOSFqyda2gN2l2Ekb/i081YGXheFy1rbD29Vxv82BOVog4KY ibvOqp38WDzCVk5OXuCRvBl0VudLKGJYdppU1nXg4KgrTZXHeCAC0E+NzUsgOF4k OMvQ+5drVxrno+Hw8FVJ =0Q8E -----END PGP SIGNATURE----- Merge tag 'powerpc-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull more powerpc updates from Michael Ellerman: "These were delayed for various reasons, so I let them sit in next a bit longer, rather than including them in my first pull request. Fixes: - Fix early access to cpu_spec relocation from Benjamin Herrenschmidt - Fix incorrect event codes in power9-event-list from Madhavan Srinivasan - Move register_process_table() out of ppc_md from Michael Ellerman Use jump_label use for [cpu|mmu]_has_feature(): - Add mmu_early_init_devtree() from Michael Ellerman - Move disable_radix handling into mmu_early_init_devtree() from Michael Ellerman - Do hash device tree scanning earlier from Michael Ellerman - Do radix device tree scanning earlier from Michael Ellerman - Do feature patching before MMU init from Michael Ellerman - Check features don't change after patching from Michael Ellerman - Make MMU_FTR_RADIX a MMU family feature from Aneesh Kumar K.V - Convert mmu_has_feature() to returning bool from Michael Ellerman - Convert cpu_has_feature() to returning bool from Michael Ellerman - Define radix_enabled() in one place & use static inline from Michael Ellerman - Add early_[cpu|mmu]_has_feature() from Michael Ellerman - Convert early cpu/mmu feature check to use the new helpers from Aneesh Kumar K.V - jump_label: Make it possible for arches to invoke jump_label_init() earlier from Kevin Hao - Call jump_label_init() in apply_feature_fixups() from Aneesh Kumar K.V - Remove mfvtb() from Kevin Hao - Move cpu_has_feature() to a separate file from Kevin Hao - Add kconfig option to use jump labels for cpu/mmu_has_feature() from Michael Ellerman - Add option to use jump label for cpu_has_feature() from Kevin Hao - Add option to use jump label for mmu_has_feature() from Kevin Hao - Catch usage of cpu/mmu_has_feature() before jump label init from Aneesh Kumar K.V - Annotate jump label assembly from Michael Ellerman TLB flush enhancements from Aneesh Kumar K.V: - radix: Implement tlb mmu gather flush efficiently - Add helper for finding SLBE LLP encoding - Use hugetlb flush functions - Drop multiple definition of mm_is_core_local - radix: Add tlb flush of THP ptes - radix: Rename function and drop unused arg - radix/hugetlb: Add helper for finding page size - hugetlb: Add flush_hugetlb_tlb_range - remove flush_tlb_page_nohash Add new ptrace regsets from Anshuman Khandual and Simon Guo: - elf: Add powerpc specific core note sections - Add the function flush_tmregs_to_thread - Enable in transaction NT_PRFPREG ptrace requests - Enable in transaction NT_PPC_VMX ptrace requests - Enable in transaction NT_PPC_VSX ptrace requests - Adapt gpr32_get, gpr32_set functions for transaction - Enable support for NT_PPC_CGPR - Enable support for NT_PPC_CFPR - Enable support for NT_PPC_CVMX - Enable support for NT_PPC_CVSX - Enable support for TM SPR state - Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR - Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR - Enable support for EBB registers - Enable support for Performance Monitor registers" * tag 'powerpc-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (48 commits) powerpc/mm: Move register_process_table() out of ppc_md powerpc/perf: Fix incorrect event codes in power9-event-list powerpc/32: Fix early access to cpu_spec relocation powerpc/ptrace: Enable support for Performance Monitor registers powerpc/ptrace: Enable support for EBB registers powerpc/ptrace: Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR powerpc/ptrace: Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR powerpc/ptrace: Enable support for TM SPR state powerpc/ptrace: Enable support for NT_PPC_CVSX powerpc/ptrace: Enable support for NT_PPC_CVMX powerpc/ptrace: Enable support for NT_PPC_CFPR powerpc/ptrace: Enable support for NT_PPC_CGPR powerpc/ptrace: Adapt gpr32_get, gpr32_set functions for transaction powerpc/ptrace: Enable in transaction NT_PPC_VSX ptrace requests powerpc/ptrace: Enable in transaction NT_PPC_VMX ptrace requests powerpc/ptrace: Enable in transaction NT_PRFPREG ptrace requests powerpc/process: Add the function flush_tmregs_to_thread elf: Add powerpc specific core note sections powerpc/mm: remove flush_tlb_page_nohash powerpc/mm/hugetlb: Add flush_hugetlb_tlb_range ... |
||
Michal Hocko
|
4e666314d2 |
mm, hugetlb: fix huge_pte_alloc BUG_ON
Zhong Jiang has reported a BUG_ON from huge_pte_alloc hitting when he runs his database load with memory online and offline running in parallel. The reason is that huge_pmd_share might detect a shared pmd which is currently migrated and so it has migration pte which is !pte_huge. There doesn't seem to be any easy way to prevent from the race and in fact seeing the migration swap entry is not harmful. Both callers of huge_pte_alloc are prepared to handle them. copy_hugetlb_page_range will copy the swap entry and make it COW if needed. hugetlb_fault will back off and so the page fault is retries if the page is still under migration and waits for its completion in hugetlb_fault. That means that the BUG_ON is wrong and we should update it. Let's simply check that all present ptes are pte_huge instead. Link: http://lkml.kernel.org/r/20160721074340.GA26398@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: zhongjiang <zhongjiang@huawei.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jia He
|
649920c6ab |
mm/hugetlb: avoid soft lockup in set_max_huge_pages()
In powerpc servers with large memory(32TB), we watched several soft lockups for hugepage under stress tests. The call traces are as follows: 1. get_page_from_freelist+0x2d8/0xd50 __alloc_pages_nodemask+0x180/0xc20 alloc_fresh_huge_page+0xb0/0x190 set_max_huge_pages+0x164/0x3b0 2. prep_new_huge_page+0x5c/0x100 alloc_fresh_huge_page+0xc8/0x190 set_max_huge_pages+0x164/0x3b0 This patch fixes such soft lockups. It is safe to call cond_resched() there because it is out of spin_lock/unlock section. Link: http://lkml.kernel.org/r/1469674442-14848-1-git-send-email-hejianet@gmail.com Signed-off-by: Jia He <hejianet@gmail.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
5491ae7b6f |
powerpc/mm/hugetlb: Add flush_hugetlb_tlb_range
Some archs like ppc64 need to do special things when flushing tlb for hugepage. Add a new helper to flush hugetlb tlb range. This helps us to avoid flushing the entire tlb mapping for the pid. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> |
||
Linus Torvalds
|
1c88e19b0f |
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton: "The rest of MM" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (101 commits) mm, compaction: simplify contended compaction handling mm, compaction: introduce direct compaction priority mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations mm, page_alloc: make THP-specific decisions more generic mm, page_alloc: restructure direct compaction handling in slowpath mm, page_alloc: don't retry initial attempt in slowpath mm, page_alloc: set alloc_flags only once in slowpath lib/stackdepot.c: use __GFP_NOWARN for stack allocations mm, kasan: switch SLUB to stackdepot, enable memory quarantine for SLUB mm, kasan: account for object redzone in SLUB's nearest_obj() mm: fix use-after-free if memory allocation failed in vma_adjust() zsmalloc: Delete an unnecessary check before the function call "iput" mm/memblock.c: fix index adjustment error in __next_mem_range_rev() mem-hotplug: alloc new page from a nearest neighbor node when mem-offline mm: optimize copy_page_to/from_iter_iovec mm: add cond_resched() to generic_swapfile_activate() Revert "mm, mempool: only set __GFP_NOMEMALLOC if there are free elements" mm, compaction: don't isolate PageWriteback pages in MIGRATE_SYNC_LIGHT mode mm: hwpoison: remove incorrect comments make __section_nr() more efficient ... |
||
Naoya Horiguchi
|
7c7fd82556 |
mm: hwpoison: remove incorrect comments
dequeue_hwpoisoned_huge_page() can be called without page lock hold, so let's remove incorrect comment. The reason why the page lock is not really needed is that dequeue_hwpoisoned_huge_page() checks page_huge_active() inside hugetlb_lock, which allows us to avoid trying to dequeue a hugepage that are just allocated but not linked to active list yet, even without taking page lock. Link: http://lkml.kernel.org/r/20160720092901.GA15995@www9186uo.sakura.ne.jp Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Zhan Chen <zhanc1@andrew.cmu.edu> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
6784725ab0 |
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro: "Assorted cleanups and fixes. Probably the most interesting part long-term is ->d_init() - that will have a bunch of followups in (at least) ceph and lustre, but we'll need to sort the barrier-related rules before it can get used for really non-trivial stuff. Another fun thing is the merge of ->d_iput() callers (dentry_iput() and dentry_unlink_inode()) and a bunch of ->d_compare() ones (all except the one in __d_lookup_lru())" * 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (26 commits) fs/dcache.c: avoid soft-lockup in dput() vfs: new d_init method vfs: Update lookup_dcache() comment bdev: get rid of ->bd_inodes Remove last traces of ->sync_page new helper: d_same_name() dentry_cmp(): use lockless_dereference() instead of smp_read_barrier_depends() vfs: clean up documentation vfs: document ->d_real() vfs: merge .d_select_inode() into .d_real() unify dentry_iput() and dentry_unlink_inode() binfmt_misc: ->s_root is not going anywhere drop redundant ->owner initializations ufs: get rid of redundant checks orangefs: constify inode_operations missed comment updates from ->direct_IO() prototype change file_inode(f)->i_mapping is f->f_mapping trim fsnotify hooks a bit 9p: new helper - v9fs_parent_fid() debugfs: ->d_parent is never NULL or negative ... |
||
Linus Torvalds
|
0e06f5c0de |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: - a few misc bits - ocfs2 - most(?) of MM * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (125 commits) thp: fix comments of __pmd_trans_huge_lock() cgroup: remove unnecessary 0 check from css_from_id() cgroup: fix idr leak for the first cgroup root mm: memcontrol: fix documentation for compound parameter mm: memcontrol: remove BUG_ON in uncharge_list mm: fix build warnings in <linux/compaction.h> mm, thp: convert from optimistic swapin collapsing to conservative mm, thp: fix comment inconsistency for swapin readahead functions thp: update Documentation/{vm/transhuge,filesystems/proc}.txt shmem: split huge pages beyond i_size under memory pressure thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE khugepaged: add support of collapse for tmpfs/shmem pages shmem: make shmem_inode_info::lock irq-safe khugepaged: move up_read(mmap_sem) out of khugepaged_alloc_page() thp: extract khugepaged from mm/huge_memory.c shmem, thp: respect MADV_{NO,}HUGEPAGE for file mappings shmem: add huge pages support shmem: get_unmapped_area align huge page shmem: prepare huge= mount option and sysfs knob mm, rmap: account shmem thp pages ... |
||
Aneesh Kumar K.V
|
e77b0852b5 |
mm/mmu_gather: track page size with mmu gather and force flush if page size change
This allows an arch which needs to do special handing with respect to different page size when flushing tlb to implement the same in mmu gather. Link: http://lkml.kernel.org/r/1465049193-22197-3-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
31d49da5ad |
mm/hugetlb: simplify hugetlb unmap
For hugetlb like THP (and unlike regular page), we do tlb flush after dropping ptl. Because of the above, we don't need to track force_flush like we do now. Instead we can simply call tlb_remove_page() which will do the flush if needed. No functionality change in this patch. Link: http://lkml.kernel.org/r/1465049193-22197-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
015cd867e5 |
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky: "There are a couple of new things for s390 with this merge request: - a new scheduling domain "drawer" is added to reflect the unusual topology found on z13 machines. Performance tests showed up to 8 percent gain with the additional domain. - the new crc-32 checksum crypto module uses the vector-galois-field multiply and sum SIMD instruction to speed up crc-32 and crc-32c. - proper __ro_after_init support, this requires RO_AFTER_INIT_DATA in the generic vmlinux.lds linker script definitions. - kcov instrumentation support. A prerequisite for that is the inline assembly basic block cleanup, which is the reason for the net/iucv/iucv.c change. - support for 2GB pages is added to the hugetlbfs backend. Then there are two removals: - the oprofile hardware sampling support is dead code and is removed. The oprofile user space uses the perf interface nowadays. - the ETR clock synchronization is removed, this has been superseeded be the STP clock synchronization. And it always has been "interesting" code.. And the usual bug fixes and cleanups" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (82 commits) s390/pci: Delete an unnecessary check before the function call "pci_dev_put" s390/smp: clean up a condition s390/cio/chp : Remove deprecated create_singlethread_workqueue s390/chsc: improve channel path descriptor determination s390/chsc: sanitize fmt check for chp_desc determination s390/cio: make fmt1 channel path descriptor optional s390/chsc: fix ioctl CHSC_INFO_CU command s390/cio/device_ops: fix kernel doc s390/cio: allow to reset channel measurement block s390/console: Make preferred console handling more consistent s390/mm: fix gmap tlb flush issues s390/mm: add support for 2GB hugepages s390: have unique symbol for __switch_to address s390/cpuinfo: show maximum thread id s390/ptrace: clarify bits in the per_struct s390: stack address vs thread_info s390: remove pointless load within __switch_to s390: enable kcov support s390/cpumf: use basic block for ecctr inline assembly s390/hypfs: use basic block for diag inline assembly ... |
||
Hugh Dickins
|
5a49973d71 |
mm: thp: refix false positive BUG in page_move_anon_rmap()
The VM_BUG_ON_PAGE in page_move_anon_rmap() is more trouble than it's
worth: the syzkaller fuzzer hit it again. It's still wrong for some THP
cases, because linear_page_index() was never intended to apply to
addresses before the start of a vma.
That's easily fixed with a signed long cast inside linear_page_index();
and Dmitry has tested such a patch, to verify the false positive. But
why extend linear_page_index() just for this case? when the avoidance in
page_move_anon_rmap() has already grown ugly, and there's no reason for
the check at all (nothing else there is using address or index).
Remove address arg from page_move_anon_rmap(), remove VM_BUG_ON_PAGE,
remove CONFIG_DEBUG_VM PageTransHuge adjustment.
And one more thing: should the compound_head(page) be done inside or
outside page_move_anon_rmap()? It's usually pushed down to the lowest
level nowadays (and mm/memory.c shows no other explicit use of it), so I
think it's better done in page_move_anon_rmap() than by caller.
Fixes:
|
||
Gerald Schaefer
|
d08de8e2d8 |
s390/mm: add support for 2GB hugepages
This adds support for 2GB hugetlbfs pages on s390. Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> |
||
Al Viro
|
b223f4e215 | Merge branch 'd_real' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs into work.misc | ||
Gerald Schaefer
|
c8cc708a34 |
mm/hugetlb: clear compound_mapcount when freeing gigantic pages
While working on s390 support for gigantic hugepages I ran into the following "Bad page state" warning when freeing gigantic pages: BUG: Bad page state in process bash pfn:580001 page:000003d116000040 count:0 mapcount:0 mapping:ffffffff00000000 index:0x0 flags: 0x7fffc0000000000() page dumped because: non-NULL mapping This is because page->compound_mapcount, which is part of a union with page->mapping, is initialized with -1 in prep_compound_gigantic_page(), and not cleared again during destroy_compound_gigantic_page(). Fix this by clearing the compound_mapcount in destroy_compound_gigantic_page() before clearing compound_head. Interestingly enough, the warning will not show up on x86_64, although this should not be architecture specific. Apparently there is an endianness issue, combined with the fact that the union contains both a 64 bit ->mapping pointer and a 32 bit atomic_t ->compound_mapcount as members. The resulting bogus page->mapping on x86_64 therefore contains 00000000ffffffff instead of ffffffff00000000 on s390, which will falsely trigger the PageAnon() check in free_pages_prepare() because page->mapping & PAGE_MAPPING_ANON is true on little-endian architectures like x86_64 in this case (the page is not compound anymore, ->compound_head was already cleared before). As a result, page->mapping will be cleared before doing the checks in free_pages_check(). Not sure if the bogus "PageAnon() returning true" on x86_64 for the first tail page of a gigantic page (at this stage) has other theoretical implications, but they would also be fixed with this patch. Link: http://lkml.kernel.org/r/1466612719-5642-1-git-send-email-gerald.schaefer@de.ibm.com Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
c17b1f4259 |
hugetlb: fix nr_pmds accounting with shared page tables
We account HugeTLB's shared page table to all processes who share it.
The accounting happens during huge_pmd_share().
If somebody populates pud entry under us, we should decrease pagetable's
refcount and decrease nr_pmds of the process.
By mistake, I increase nr_pmds again in this case. :-/ It will lead to
"BUG: non-zero nr_pmds on freeing mm: 2" on process' exit.
Let's fix this by increasing nr_pmds only when we're sure that the page
table will be used.
Link: http://lkml.kernel.org/r/20160617122506.GC6534@node.shutemov.name
Fixes:
|
||
Mike Kravetz
|
67961f9db8 |
mm/hugetlb: fix huge page reserve accounting for private mappings
When creating a private mapping of a hugetlbfs file, it is possible to unmap pages via ftruncate or fallocate hole punch. If subsequent faults repopulate these mappings, the reserve counts will go negative. This is because the code currently assumes all faults to private mappings will consume reserves. The problem can be recreated as follows: - mmap(MAP_PRIVATE) a file in hugetlbfs filesystem - write fault in pages in the mapping - fallocate(FALLOC_FL_PUNCH_HOLE) some pages in the mapping - write fault in pages in the hole This will result in negative huge page reserve counts and negative subpool usage counts for the hugetlbfs. Note that this can also be recreated with ftruncate, but fallocate is more straight forward. This patch modifies the routines vma_needs_reserves and vma_has_reserves to examine the reserve map associated with private mappings similar to that for shared mappings. However, the reserve map semantics for private and shared mappings are very different. This results in subtly different code that is explained in the comments. Link: http://lkml.kernel.org/r/1464720957-15698-1-git-send-email-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Al Viro
|
93c76a3d43 |
file_inode(f)->i_mapping is f->f_mapping
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Linus Torvalds
|
1f40c49570 |
libnvdimm for 4.7
1/ Device DAX for persistent memory: Device DAX is the device-centric analogue of Filesystem DAX (CONFIG_FS_DAX). It allows memory ranges to be allocated and mapped without need of an intervening file system. Device DAX is strict, precise and predictable. Specifically this interface: a) Guarantees fault granularity with respect to a given page size (pte, pmd, or pud) set at configuration time. b) Enforces deterministic behavior by being strict about what fault scenarios are supported. Persistent memory is the first target, but the mechanism is also targeted for exclusive allocations of performance/feature differentiated memory ranges. 2/ Support for the HPE DSM (device specific method) command formats. This enables management of these first generation devices until a unified DSM specification materializes. 3/ Further ACPI 6.1 compliance with support for the common dimm identifier format. 4/ Various fixes and cleanups across the subsystem. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJXQhdeAAoJEB7SkWpmfYgCYP8P/RAgHkroL5lUKKU45TQUBKcY diC9POeNSccme4tIRIQCGQUZ7+7mKM5ECv2ulF4xYOHvFBCcd/8OF6xKAXs48r3v oguYhvX1YvIkBc9FUfBQbR1IsCOJ7uWp/UYiYCIQEXS5tS9Jv545j3ASqDt9xWoV TWlceZn3yWSbASiV9qZ2eXhEkk75pg4yara++rsm2/7rs/TTXn5EIjBs+57BtAo+ 6utI4fTy0CQvBYwVzam3m7y9dt2Z2jWXL4hgmT7pkvJ7HDoctVly0P9+bknJPUAo g+NugKgTGeiqH5GYp5CTZ9KvL91sDF4q00pfinITVdFl0E3VE293cIHlAzSQBm5/ w58xxaRV958ZvpH7EaBmYQG82QDi/eFNqeHqVGn0xAM6MlaqO7avUMQp2lRPYMCJ u1z/NloR5yo+sffHxsn5Luiq9KqOf6zk33PuxEkKbN74OayCSPn/SeVCO7rQR0B6 yPMJTTcTiCLnId1kOWAPaEmuK2U3BW/+ogg7hKgeCQSysuy5n6Ok5a2vEx/gJRAm v9yF68RmIWumpHr+QB0TmB8mVbD5SY+xWTm3CqJb9MipuFIOF7AVsPyTgucBvE7s v+i5F6MDO6tcVfiDT4AiZEt6D2TM5RbtckkUEX3ZTD6j7CGuR5D8bH0HNRrghrYk KT1lAk6tjWBOGAHc5Ji7 =Y3Xv -----END PGP SIGNATURE----- Merge tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm updates from Dan Williams: "The bulk of this update was stabilized before the merge window and appeared in -next. The "device dax" implementation was revised this week in response to review feedback, and to address failures detected by the recently expanded ndctl unit test suite. Not included in this pull request are two dax topic branches (dax error handling, and dax radix-tree locking). These topics were deferred to get a few more days of -next integration testing, and to coordinate a branch baseline with Ted and the ext4 tree. Vishal and Ross will send the error handling and locking topics respectively in the next few days. This branch has received a positive build result from the kbuild robot across 226 configs. Summary: - Device DAX for persistent memory: Device DAX is the device-centric analogue of Filesystem DAX (CONFIG_FS_DAX). It allows memory ranges to be allocated and mapped without need of an intervening file system. Device DAX is strict, precise and predictable. Specifically this interface: a) Guarantees fault granularity with respect to a given page size (pte, pmd, or pud) set at configuration time. b) Enforces deterministic behavior by being strict about what fault scenarios are supported. Persistent memory is the first target, but the mechanism is also targeted for exclusive allocations of performance/feature differentiated memory ranges. - Support for the HPE DSM (device specific method) command formats. This enables management of these first generation devices until a unified DSM specification materializes. - Further ACPI 6.1 compliance with support for the common dimm identifier format. - Various fixes and cleanups across the subsystem" * tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (40 commits) libnvdimm, dax: fix deletion libnvdimm, dax: fix alignment validation libnvdimm, dax: autodetect support libnvdimm: release ida resources Revert "block: enable dax for raw block devices" /dev/dax, core: file operations and dax-mmap /dev/dax, pmem: direct access to persistent memory libnvdimm: stop requiring a driver ->remove() method libnvdimm, dax: record the specified alignment of a dax-device instance libnvdimm, dax: reserve space to store labels for device-dax libnvdimm, dax: introduce device-dax infrastructure nfit: add sysfs dimm 'family' and 'dsm_mask' attributes tools/testing/nvdimm: ND_CMD_CALL support nfit: disable vendor specific commands nfit: export subsystem ids as attributes nfit: fix format interface code byte order per ACPI6.1 nfit, libnvdimm: limited/whitelisted dimm command marshaling mechanism nfit, libnvdimm: clarify "commands" vs "_DSMs" libnvdimm: increase max envelope size for ioctl acpi/nfit: Add sysfs "id" for NVDIMM ID ... |
||
Dan Williams
|
dee4107924 |
/dev/dax, core: file operations and dax-mmap
The "Device DAX" core enables dax mappings of performance / feature differentiated memory. An open mapping or file handle keeps the backing struct device live, but new mappings are only possible while the device is enabled. Faults are handled under rcu_read_lock to synchronize with the enabled state of the device. Similar to the filesystem-dax case the backing memory may optionally have struct page entries. However, unlike fs-dax there is no support for private mappings, or mappings that are not backed by media (see use of zero-page in fs-dax). Mappings are always guaranteed to match the alignment of the dax_region. If the dax_region is configured to have a 2MB alignment, all mappings are guaranteed to be backed by a pmd entry. Contrast this determinism with the fs-dax case where pmd mappings are opportunistic. If userspace attempts to force a misaligned mapping, the driver will fail the mmap attempt. See dax_dev_check_vma() for other scenarios that are rejected, like MAP_PRIVATE mappings. Cc: Hannes Reinecke <hare@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com> |
||
Joonsoo Kim
|
f44b2dda8b |
mm/hugetlb: add same zone check in pfn_range_valid_gigantic()
This patchset deals with some problematic sites that iterate pfn ranges. There is a system thats node's pfns are overlapped as follows: -----pfn--------> N0 N1 N2 N0 N1 N2 Therefore, we need to take care of this overlapping when iterating pfn range. I audit many iterating sites that uses pfn_valid(), pfn_valid_within(), zone_start_pfn and etc. and others looks safe to me. This is a preparation step for a new CMA implementation, ZONE_CMA (https://lkml.org/lkml/2015/2/12/95), because it would be easily overlapped with other zones. But, zone overlap check is also needed for the general case so I send it separately. This patch (of 5): alloc_gigantic_page() uses alloc_contig_range() and this requires that the requested range is in a single zone. To satisfy this requirement, add this check to pfn_range_valid_gigantic(). Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrew Morton
|
54f18d3526 |
mm/hugetlb.c: use first_memory_node
Instead of open-coding it. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vaishali Thakkar
|
9fee021d15 |
mm/hugetlb: introduce hugetlb_bad_size()
When any unsupported hugepage size is specified, 'hugepagesz=' and 'hugepages=' should be ignored during command line parsing until any supported hugepage size is found. But currently incorrect number of hugepages are allocated when unsupported size is specified as it fails to ignore the 'hugepages=' command. Test case: Note that this is specific to x86 architecture. Boot the kernel with command line option 'hugepagesz=256M hugepages=X'. After boot, dmesg output shows that X number of hugepages of the size 2M is pre-allocated instead of 0. So, to handle such command line options, introduce new routine hugetlb_bad_size. The routine hugetlb_bad_size sets the global variable parsed_valid_hugepagesz. We are using parsed_valid_hugepagesz to save the state when unsupported hugepagesize is found so that we can ignore the 'hugepages=' parameters after that and then reset the variable when supported hugepage size is found. The routine hugetlb_bad_size can be called while setting 'hugepagesz=' parameter in an architecture specific code. Signed-off-by: Vaishali Thakkar <vaishali.thakkar@oracle.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Dominik Dingel <dingel@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
09a95e29cb |
mm/hugetlb: optimize minimum size (min_size) accounting
It was observed that minimum size accounting associated with the hugetlbfs min_size mount option may not perform optimally and as expected. As huge pages/reservations are released from the filesystem and given back to the global pools, they are reserved for subsequent filesystem use as long as the subpool reserved count is less than subpool minimum size. It does not take into account used pages within the filesystem. The filesystem size limits are not exceeded and this is technically not a bug. However, better behavior would be to wait for the number of used pages/reservations associated with the filesystem to drop below the minimum size before taking reservations to satisfy minimum size. An optimization is also made to the hugepage_subpool_get_pages() routine which is called when pages/reservations are allocated. This does not change behavior, but simply avoids the accounting if all reservations have already been taken (subpool reserved count == 0). Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |