Commit Graph

33 Commits

Author SHA1 Message Date
David Howells
8a070a9648 afs: Detect cell aliases 1 - Cells with root volumes
Put in the first phase of cell alias detection.  This part handles alias
detection for cells that have root.cell volumes (which is expected to be
likely).

When a cell becomes newly active, it is probed for its root.cell volume,
and if it has one, this volume is compared against other root.cell volumes
to find out if the list of fileserver UUIDs have any in common - and if
that's the case, do the address lists of those fileservers have any
addresses in common.  If they do, the new cell is adjudged to be an alias
of the old cell and the old cell is used instead.

Comparing is aided by the server list in struct afs_server_list being
sorted in UUID order and the addresses in the fileserver address lists
being sorted in address order.

The cell then retains the afs_volume object for the root.cell volume, even
if it's not mounted for future alias checking.

This necessary because:

 (1) Whilst fileservers have UUIDs that are meant to be globally unique, in
     practice they are not because cells get cloned without changing the
     UUIDs - so afs_server records need to be per cell.

 (2) Sometimes the DNS is used to make cell aliases - but if we don't know
     they're the same, we may end up with multiple superblocks and multiple
     afs_server records for the same thing, impairing our ability to
     deliver callback notifications of third party changes

 (3) The fileserver RPC API doesn't contain the cell name, so it can't tell
     us which cell it's notifying and can't see that a change made to to
     one cell should notify the same client that's also accessed as the
     other cell.

Reported-by: Jeffrey Altman <jaltman@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04 15:37:57 +01:00
David Howells
f6cbb368bc afs: Actively poll fileservers to maintain NAT or firewall openings
When an AFS client accesses a file, it receives a limited-duration callback
promise that the server will notify it if another client changes a file.
This callback duration can be a few hours in length.

If a client mounts a volume and then an application prevents it from being
unmounted, say by chdir'ing into it, but then does nothing for some time,
the rxrpc_peer record will expire and rxrpc-level keepalive will cease.

If there is NAT or a firewall between the client and the server, the route
back for the server may close after a comparatively short duration, meaning
that attempts by the server to notify the client may then bounce.

The client, however, may (so far as it knows) still have a valid unexpired
promise and will then rely on its cached data and will not see changes made
on the server by a third party until it incidentally rechecks the status or
the promise needs renewal.

To deal with this, the client needs to regularly probe the server.  This
has two effects: firstly, it keeps a route open back for the server, and
secondly, it causes the server to disgorge any notifications that got
queued up because they couldn't be sent.

Fix this by adding a mechanism to emit regular probes.

Two levels of probing are made available: Under normal circumstances the
'slow' queue will be used for a fileserver - this just probes the preferred
address once every 5 mins or so; however, if server fails to respond to any
probes, the server will shift to the 'fast' queue from which all its
interfaces will be probed every 30s.  When it finally responds, the record
will switch back to the slow queue.

Further notes:

 (1) Probing is now no longer driven from the fileserver rotation
     algorithm.

 (2) Probes are dispatched to all interfaces on a fileserver when that an
     afs_server object is set up to record it.

 (3) The afs_server object is removed from the probe queues when we start
     to probe it.  afs_is_probing_server() returns true if it's not listed
     - ie. it's undergoing probing.

 (4) The afs_server object is added back on to the probe queue when the
     final outstanding probe completes, but the probed_at time is set when
     we're about to launch a probe so that it's not dependent on the probe
     duration.

 (5) The timer and the work item added for this must be handed a count on
     net->servers_outstanding, which they hand on or release.  This makes
     sure that network namespace cleanup waits for them.

Fixes: d2ddc776a4 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Dave Botsch <botsch@cnf.cornell.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-31 15:19:51 +01:00
Thomas Gleixner
2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00
David Howells
6b3944e42e afs: Fix cell proc list
Access to the list of cells by /proc/net/afs/cells has a couple of
problems:

 (1) It should be checking against SEQ_START_TOKEN for the keying the
     header line.

 (2) It's only holding the RCU read lock, so it can't just walk over the
     list without following the proper RCU methods.

Fix these by using an hlist instead of an ordinary list and using the
appropriate accessor functions to follow it with RCU.

Since the code that adds a cell to the list must also necessarily change,
sort the list on insertion whilst we're at it.

Fixes: 989782dcdc ("afs: Overhaul cell database management")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-12 13:18:57 +02:00
David Howells
0da0b7fd73 afs: Display manually added cells in dynamic root mount
Alter the dynroot mount so that cells created by manipulation of
/proc/fs/afs/cells and /proc/fs/afs/rootcell and by specification of a root
cell as a module parameter will cause directories for those cells to be
created in the dynamic root superblock for the network namespace[*].

To this end:

 (1) Only one dynamic root superblock is now created per network namespace
     and this is shared between all attempts to mount it.  This makes it
     easier to find the superblock to modify.

 (2) When a dynamic root superblock is created, the list of cells is walked
     and directories created for each cell already defined.

 (3) When a new cell is added, if a dynamic root superblock exists, a
     directory is created for it.

 (4) When a cell is destroyed, the directory is removed.

 (5) These directories are created by calling lookup_one_len() on the root
     dir which automatically creates them if they don't exist.

[*] Inasmuch as network namespaces are currently supported here.

Signed-off-by: David Howells <dhowells@redhat.com>
2018-06-15 15:27:09 +01:00
David Howells
5b86d4ff5d afs: Implement network namespacing
Implement network namespacing within AFS, but don't yet let mounts occur
outside the init namespace.  An additional patch will be required propagate
the network namespace across automounts.

Signed-off-by: David Howells <dhowells@redhat.com>
2018-05-23 12:01:15 +01:00
David Howells
6f8880d8e6 afs: Implement @sys substitution handling
Implement the AFS feature by which @sys at the end of a pathname component
may be substituted for one of a list of values, typically naming the
operating system.  Up to 16 alternatives may be specified and these are
tried in turn until one works.  Each network namespace has[*] a separate
independent list.

Upon creation of a new network namespace, the list of values is
initialised[*] to a single OpenAFS-compatible string representing arch type
plus "_linux26".  For example, on x86_64, the sysname is "amd64_linux26".

[*] Or will, once network namespace support is finalised in kAFS.

The list may be set by:

	# for i in foo bar linux-x86_64; do echo $i; done >/proc/fs/afs/sysname

for which separate writes to the same fd are amalgamated and applied on
close.  The LF character may be used as a separator to specify multiple
items in the same write() call.

The list may be cleared by:

	# echo >/proc/fs/afs/sysname

and read by:

	# cat /proc/fs/afs/sysname
	foo
	bar
	linux-x86_64

Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-09 21:12:31 +01:00
David Howells
d2ddc776a4 afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other.  Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers.  The difference is purely in the database attached to the VL
servers.

The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.

Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).

To this end, the following structural changes are made:

 (1) Server record management is overhauled:

     (a) Server records are made independent of cell.  The namespace keeps
     	 track of them, volume records have lists of them and each vnode
     	 has a server on which its callback interest currently resides.

     (b) The cell record no longer keeps a list of servers known to be in
     	 that cell.

     (c) The server records are now kept in a flat list because there's no
     	 single address to sort on.

     (d) Server records are now keyed by their UUID within the namespace.

     (e) The addresses for a server are obtained with the VL.GetAddrsU
     	 rather than with VL.GetEntryByName, using the server's UUID as a
     	 parameter.

     (f) Cached server records are garbage collected after a period of
     	 non-use and are counted out of existence before purging is allowed
     	 to complete.  This protects the work functions against rmmod.

     (g) The servers list is now in /proc/fs/afs/servers.

 (2) Volume record management is overhauled:

     (a) An RCU-replaceable server list is introduced.  This tracks both
     	 servers and their coresponding callback interests.

     (b) The superblock is now keyed on cell record and numeric volume ID.

     (c) The volume record is now tied to the superblock which mounts it,
     	 and is activated when mounted and deactivated when unmounted.
     	 This makes it easier to handle the cache cookie without causing a
     	 double-use in fscache.

     (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
     	 to get the server UUID list.

     (e) The volume name is updated if it is seen to have changed when the
     	 volume is updated (the update is keyed on the volume ID).

 (3) The vlocation record is got rid of and VLDB records are no longer
     cached.  Sufficient information is stored in the volume record, though
     an update to a volume record is now no longer shared between related
     volumes (volumes come in bundles of three: R/W, R/O and backup).

and the following procedural changes are made:

 (1) The fileserver cursor introduced previously is now fleshed out and
     used to iterate over fileservers and their addresses.

 (2) Volume status is checked during iteration, and the server list is
     replaced if a change is detected.

 (3) Server status is checked during iteration, and the address list is
     replaced if a change is detected.

 (4) The abort code is saved into the address list cursor and -ECONNABORTED
     returned in afs_make_call() if a remote abort happened rather than
     translating the abort into an error message.  This allows actions to
     be taken depending on the abort code more easily.

     (a) If a VMOVED abort is seen then this is handled by rechecking the
     	 volume and restarting the iteration.

     (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
         handled by sleeping for a short period and retrying and/or trying
         other servers that might serve that volume.  A message is also
         displayed once until the condition has cleared.

     (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
     	 moment.

     (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
     	 see if it has been deleted; if not, the fileserver is probably
     	 indicating that the volume couldn't be attached and needs
     	 salvaging.

     (e) If statfs() sees one of these aborts, it does not sleep, but
     	 rather returns an error, so as not to block the umount program.

 (5) The fileserver iteration functions in vnode.c are now merged into
     their callers and more heavily macroised around the cursor.  vnode.c
     is removed.

 (6) Operations on a particular vnode are serialised on that vnode because
     the server will lock that vnode whilst it operates on it, so a second
     op sent will just have to wait.

 (7) Fileservers are probed with FS.GetCapabilities before being used.
     This is where service upgrade will be done.

 (8) A callback interest on a fileserver is set up before an FS operation
     is performed and passed through to afs_make_call() so that it can be
     set on the vnode if the operation returns a callback.  The callback
     interest is passed through to afs_iget() also so that it can be set
     there too.

In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.

Notes:

 (1) Pre AFS-3.4 servers are no longer supported, though this can be added
     back if necessary (AFS-3.4 was released in 1998).

 (2) VBUSY is retried forever for the moment at intervals of 1s.

 (3) /proc/fs/afs/<cell>/servers no longer exists.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:19 +00:00
David Howells
989782dcdc afs: Overhaul cell database management
Overhaul the way that the in-kernel AFS client keeps track of cells in the
following manner:

 (1) Cells are now held in an rbtree to make walking them quicker and RCU
     managed (though this is probably overkill).

 (2) Cells now have a manager work item that:

     (A) Looks after fetching and refreshing the VL server list.

     (B) Manages cell record lifetime, including initialising and
     	 destruction.

     (B) Manages cell record caching whereby threads are kept around for a
     	 certain time after last use and then destroyed.

     (C) Manages the FS-Cache index cookie for a cell.  It is not permitted
     	 for a cookie to be in use twice, so we have to be careful to not
     	 allow a new cell record to exist at the same time as an old record
     	 of the same name.

 (3) Each AFS network namespace is given a manager work item that manages
     the cells within it, maintaining a single timer to prod cells into
     updating their DNS records.

     This uses the reduce_timer() facility to make the timer expire at the
     soonest timed event that needs happening.

 (4) When a module is being unloaded, cells and cell managers are now
     counted out using dec_after_work() to make sure the module text is
     pinned until after the data structures have been cleaned up.

 (5) Each cell's VL server list is now protected by a seqlock rather than a
     semaphore.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:18 +00:00
David Howells
be080a6f43 afs: Overhaul permit caching
Overhaul permit caching in AFS by making it per-vnode and sharing permit
lists where possible.

When most of the fileserver operations are called, they return a status
structure indicating the (revised) details of the vnode or vnodes involved
in the operation.  This includes the access mark derived from the ACL
(named CallerAccess in the protocol definition file).  This is cacheable
and if the ACL changes, the server will tell us that it is breaking the
callback promise, at which point we can discard the currently cached
permits.

With this patch, the afs_permits structure has, at the end, an array of
{ key, CallerAccess } elements, sorted by key pointer.  This is then cached
in a hash table so that it can be shared between vnodes with the same
access permits.

Permit lists can only be shared if they contain the exact same set of
key->CallerAccess mappings.

Note that that table is global rather than being per-net_ns.  If the keys
in a permit list cross net_ns boundaries, there is no problem sharing the
cached permits, since the permits are just integer masks.

Since permit lists pin keys, the permit cache also makes it easier for a
future patch to find all occurrences of a key and remove them by means of
setting the afs_permits::invalidated flag and then clearing the appropriate
key pointer.  In such an event, memory barriers will need adding.

Lastly, the permit caching is skipped if the server has sent either a
vnode-specific or an entire-server callback since the start of the
operation.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:18 +00:00
David Howells
c435ee3455 afs: Overhaul the callback handling
Overhaul the AFS callback handling by the following means:

 (1) Don't give up callback promises on vnodes that we are no longer using,
     rather let them just expire on the server or let the server break
     them.  This is actually more efficient for the server as the callback
     lookup is expensive if there are lots of extant callbacks.

 (2) Only give up the callback promises we have from a server when the
     server record is destroyed.  Then we can just give up *all* the
     callback promises on it in one go.

 (3) Servers can end up being shared between cells if cells are aliased, so
     don't add all the vnodes being backed by a particular server into a
     big FID-indexed tree on that server as there may be duplicates.

     Instead have each volume instance (~= superblock) register an interest
     in a server as it starts to make use of it and use this to allow the
     processor for callbacks from the server to find the superblock and
     thence the inode corresponding to the FID being broken by means of
     ilookup_nowait().

 (4) Rather than iterating over the entire callback list when a mass-break
     comes in from the server, maintain a counter of mass-breaks in
     afs_server (cb_seq) and make afs_validate() check it against the copy
     in afs_vnode.

     It would be nice not to have to take a read_lock whilst doing this,
     but that's tricky without using RCU.

 (5) Save a ref on the fileserver we're using for a call in the afs_call
     struct so that we can access its cb_s_break during call decoding.

 (6) Write-lock around callback and status storage in a vnode and read-lock
     around getattr so that we don't see the status mid-update.

This has the following consequences:

 (1) Data invalidation isn't seen until someone calls afs_validate() on a
     vnode.  Unfortunately, we need to use a key to query the server, but
     getting one from a background thread is tricky without caching loads
     of keys all over the place.

 (2) Mass invalidation isn't seen until someone calls afs_validate().

 (3) Callback breaking is going to hit the inode_hash_lock quite a bit.
     Could this be replaced with rcu_read_lock() since inodes are destroyed
     under RCU conditions.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:18 +00:00
David Howells
59fa1c4a9f afs: Fix server reaping
Fix server reaping and make sure it's all done before we start trying to
purge cells, given that servers currently pin cells.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:16 +00:00
David Howells
e3b2ffe0f0 afs: Close the rxrpc socket only after purging the servers
Close the rxrpc socket only after we've purged the server records (and also
cell and volume records which might refer to servers) so that we can give
up the callbacks on each server.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:16 +00:00
David Howells
f044c8847b afs: Lay the groundwork for supporting network namespaces
Lay the groundwork for supporting network namespaces (netns) to the AFS
filesystem by moving various global features to a network-namespace struct
(afs_net) and providing an instance of this as a temporary global variable
that everything uses via accessor functions for the moment.

The following changes have been made:

 (1) Store the netns in the superblock info.  This will be obtained from
     the mounter's nsproxy on a manual mount and inherited from the parent
     superblock on an automount.

 (2) The cell list is made per-netns.  It can be viewed through
     /proc/net/afs/cells and also be modified by writing commands to that
     file.

 (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell.
     This is unset by default.

 (4) The 'rootcell' module parameter, which sets a cell and VL server list
     modifies the init net namespace, thereby allowing an AFS root fs to be
     theoretically used.

 (5) The volume location lists and the file lock manager are made
     per-netns.

 (6) The AF_RXRPC socket and associated I/O bits are made per-ns.

The various workqueues remain global for the moment.

Changes still to be made:

 (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced
     from the old name.

 (2) A per-netns subsys needs to be registered for AFS into which it can
     store its per-netns data.

 (3) Rather than the AF_RXRPC socket being opened on module init, it needs
     to be opened on the creation of a superblock in that netns.

 (4) The socket needs to be closed when the last superblock using it is
     destroyed and all outstanding client calls on it have been completed.
     This prevents a reference loop on the namespace.

 (5) It is possible that several namespaces will want to use AFS, in which
     case each one will need its own UDP port.  These can either be set
     through /proc/net/afs/cm_port or the kernel can pick one at random.
     The init_ns gets 7001 by default.

Other issues that need resolving:

 (1) The DNS keyring needs net-namespacing.

 (2) Where do upcalls go (eg. DNS request-key upcall)?

 (3) Need something like open_socket_in_file_ns() syscall so that AFS
     command line tools attempting to operate on an AFS file/volume have
     their RPC calls go to the right place.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:16 +00:00
Christoph Hellwig
41bb26f8db uuid,afs: move struct uuid_v1 back into afs
This essentially is a partial revert of commit ff548773
("afs: Move UUID struct to linux/uuid.h") and moves struct uuid_v1 back into
fs/afs as struct afs_uuid.  It however keeps it as big endian structure
so that we can use the normal uuid generation helpers when casting to/from
struct afs_uuid.

The V1 uuid intrepretation in struct form isn't really useful to the
rest of the kernel, and not really compatible to it either, so move it
back to AFS instead of polluting the global uuid.h.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Howells <dhowells@redhat.com>
2017-06-05 16:56:34 +02:00
Arnd Bergmann
b4db2b35fc afs: Use core kernel UUID generation
AFS uses a time based UUID to identify the host itself.  This requires
getting a timestamp which is currently done through the getnstimeofday()
interface that we want to eventually get rid of.

Instead of replacing it with a ktime-based interface, simply remove the
entire function and use generate_random_uuid() instead, which has a v4
("completely random") UUID instead of the time-based one.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-02-10 16:34:17 +00:00
David Howells
ff54877310 afs: Move UUID struct to linux/uuid.h
Move the afs_uuid struct to linux/uuid.h, rename it to uuid_v1 and change
the u16/u32 fields to __be16/__be32 instead so that the structure can be
cast to a 16-octet network-order buffer.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de
2017-02-10 16:34:17 +00:00
David Howells
8e8d7f13b6 afs: Add some tracepoints
Add three tracepoints to the AFS filesystem:

 (1) The afs_recv_data tracepoint logs data segments that are extracted
     from the data received from the peer through afs_extract_data().

 (2) The afs_notify_call tracepoint logs notification from AF_RXRPC of data
     coming in to an asynchronous call.

 (3) The afs_cb_call tracepoint logs incoming calls that have had their
     operation ID extracted and mapped into a supported cache manager
     service call.

To make (3) work, the name strings in the afs_call_type struct objects have
to be annotated with __tracepoint_string.  This is done with the CM_NAME()
macro.

Further, the AFS call state enum needs a name so that it can be used to
declare parameter types.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-01-09 09:18:13 +00:00
David Howells
e0661dfc59 afs: Need linux/random.h
We should #include linux/random.h to use get_random().

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-30 16:07:53 +01:00
David Howells
0ef1351523 AFS: Correctly assemble the client UUID
Correctly assemble the client UUID by OR'ing in the flags rather than
assigning them over the other components.

Reported-by: Himangi Saraogi <himangi774@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-07-29 10:14:36 -07:00
Tejun Heo
0ad53eeefc afs: add afs_wq and use it instead of the system workqueue
flush_scheduled_work() is going away.  afs needs to make sure all the
works it has queued have finished before being unloaded and there can
be arbitrary number of pending works.  Add afs_wq and use it as the
flush domain instead of the system workqueue.

Also, convert cancel_delayed_work() + flush_scheduled_work() to
cancel_delayed_work_sync() in afs_mntpt_kill_timer().

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: linux-afs@lists.infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 09:25:11 -08:00
David Howells
df44f9f4f9 AFS: Fix the module init error handling
Fix the module init error handling.  There are a bunch of goto labels for
aborting the init procedure at different points and just undoing what needs
undoing - they aren't all in the right places, however.

This can lead to an oops like the following:

	BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
	IP: [<ffffffff81042a31>] destroy_workqueue+0x17/0xc0
	...
	Modules linked in: kafs(+) dns_resolver rxkad af_rxrpc fscache

	Pid: 2171, comm: insmod Not tainted 2.6.35-cachefs+ #319 DG965RY/
	...
	Process insmod (pid: 2171, threadinfo ffff88003ca6a000, task ffff88003dcc3050)
	...
	Call Trace:
	 [<ffffffffa0055994>] afs_callback_update_kill+0x10/0x12 [kafs]
	 [<ffffffffa007d1c5>] afs_init+0x190/0x1ce [kafs]
	 [<ffffffffa007d035>] ? afs_init+0x0/0x1ce [kafs]
	 [<ffffffff810001ef>] do_one_initcall+0x59/0x14e
	 [<ffffffff8105f7ee>] sys_init_module+0x9c/0x1de
	 [<ffffffff81001eab>] system_call_fastpath+0x16/0x1b

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-07 14:23:37 -07:00
David Howells
9b3f26c911 FS-Cache: Make kAFS use FS-Cache
The attached patch makes the kAFS filesystem in fs/afs/ use FS-Cache, and
through it any attached caches.  The kAFS filesystem will use caching
automatically if it's available.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:41 +01:00
Paul Bolle
424b00e2c0 AFS: Do not describe debug parameters with their value
Describe debug parameters with their names (and not their values).

Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-16 07:43:48 -07:00
David Howells
e8d6c55412 AFS: implement file locking
Implement file locking for AFS.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:43 -07:00
Alexey Dobriyan
e8edc6e03a Detach sched.h from mm.h
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.

This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
   getting them indirectly

Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
   they don't need sched.h
b) sched.h stops being dependency for significant number of files:
   on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
   after patch it's only 3744 (-8.3%).

Cross-compile tested on

	all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
	alpha alpha-up
	arm
	i386 i386-up i386-defconfig i386-allnoconfig
	ia64 ia64-up
	m68k
	mips
	parisc parisc-up
	powerpc powerpc-up
	s390 s390-up
	sparc sparc-up
	sparc64 sparc64-up
	um-x86_64
	x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig

as well as my two usual configs.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-21 09:18:19 -07:00
David Howells
416351f28d AFS: AFS fixups
Make some miscellaneous changes to the AFS filesystem:

 (1) Assert RCU barriers on module exit to make sure RCU has finished with
     callbacks in this module.

 (2) Correctly handle the AFS server returning a zero-length read.

 (3) Split out data zapping calls into one function (afs_zap_data).

 (4) Rename some afs_file_*() functions to afs_*() where they apply to
     non-regular files too.

 (5) Be consistent about the presentation of volume ID:vnode ID in debugging
     output.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 12:30:50 -07:00
David Howells
ec9c948546 [AFS]: Adjust the new netdevice scanning code
Adjust the new netdevice scanning code provided by Patrick McHardy:

 (1) Restore the function banner comments that were dropped.

 (2) Rather than using an array size of 6 in some places and an array size of
     ETH_ALEN in others, pass a pointer instead and pass the array size
     through so that we can actually check it.

 (3) Do the buffer fill count check before checking the for_primary_ifa
     condition again.  This permits us to skip that check should maxbufs be
     reached before we run out of interfaces.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-05-03 03:29:41 -07:00
David Howells
b908fe6b2d [AFS]: Add support for the CB.GetCapabilities operation.
Add support for the CB.GetCapabilities operation with which the fileserver can
ask the client for the following information:

 (1) The list of network interfaces it has available as IPv4 address + netmask
     plus the MTUs.

 (2) The client's UUID.

 (3) The extended capabilities of the client, for which the only current one
     is unified error mapping (abort code interpretation).

To support this, the patch adds the following routines to AFS:

 (1) A function to iterate through all the network interfaces using RTNETLINK
     to extract IPv4 addresses and MTUs.

 (2) A function to iterate through all the network interfaces using RTNETLINK
     to pull out the MAC address of the lowest index interface to use in UUID
     construction.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26 15:58:17 -07:00
David Howells
08e0e7c82e [AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC.
Make the in-kernel AFS filesystem use AF_RXRPC instead of the old RxRPC code.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26 15:55:03 -07:00
David Howells
ec26815ad8 [AFS]: Clean up the AFS sources
Clean up the AFS sources.

Also remove references to AFS keys.  RxRPC keys are used instead.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26 15:49:28 -07:00
Tim Schmielau
cd354f1ae7 [PATCH] remove many unneeded #includes of sched.h
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there.  Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.

To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.

Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm.  I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:54 -08:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00