Switch all callers to map_kernel_range, which symmetric to the unmap side
(as well as the _noflush versions).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-17-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of the callers needs the number of pages, and a 0 / -errno return
value is a lot more intuitive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-16-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This matches the map_kernel_range_noflush API. Also change to pass a size
instead of the end, similar to the noflush version.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-15-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These have non-static aliases called map_kernel_range_noflush and
unmap_kernel_range_noflush that just differ slightly in the calling
conventions that pass addr + size instead of an end.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-14-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ever use of addr in vb_free casts to unsigned long first, and the caller
has an unsigned long version of the address available anyway. Just pass
that and avoid all the casts.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-13-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows to unexport map_vm_area and unmap_kernel_range, which are
rather deep internal and should not be available to modules, as they for
example allow fine grained control of mapping permissions, and also
allow splitting the setup of a vmalloc area and the actual mapping and
thus expose vmalloc internals.
zsmalloc is typically built-in and continues to work (just like the
percpu-vm code using a similar patter), while modular zsmalloc also
continues to work, but must use copies.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-12-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some processes dont't want to be killed early, but in "Action Required"
case, those also may be killed by BUS_MCEERR_AO when sharing memory with
other which is accessing the fail memory. And sending SIGBUS with
BUS_MCEERR_AO for action required error is strange, so ignore the
non-current processes here.
Suggested-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Wetp Zhang <wetp.zy@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/1590817116-21281-1-git-send-email-wetp.zy@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 25b2995a35 ("mm: remove MEMORY_DEVICE_PUBLIC support"),
the assignment to 'page' for pte_devmap case has been unnecessary.
Let's remove it.
[willy@infradead.org: changelog]
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/1587349685-31712-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Fix W+X debug feature on x86"
Jan alerted me[1] that the W+X detection debug feature was broken in x86
by my change[2] to switch x86 to use the generic ptdump infrastructure.
Fundamentally the approach of trying to move the calculation of
effective permissions into note_page() was broken because note_page() is
only called for 'leaf' entries and the effective permissions are passed
down via the internal nodes of the page tree. The solution I've taken
here is to create a new (optional) callback which is called for all
nodes of the page tree and therefore can calculate the effective
permissions.
Secondly on some configurations (32 bit with PAE) "unsigned long" is not
large enough to store the table entries. The fix here is simple - let's
just use a u64.
[1] https://lore.kernel.org/lkml/d573dc7e-e742-84de-473d-f971142fa319@suse.com/
[2] 2ae27137b2 ("x86: mm: convert dump_pagetables to use walk_page_range")
This patch (of 2):
By switching the x86 page table dump code to use the generic code the
effective permissions are no longer calculated correctly because the
note_page() function is only called for *leaf* entries. To calculate
the actual effective permissions it is necessary to observe the full
hierarchy of the page tree.
Introduce a new callback for ptdump which is called for every entry and
can therefore update the prot_levels array correctly. note_page() can
then simply access the appropriate element in the array.
[steven.price@arm.com: make the assignment conditional on val != 0]
Link: http://lkml.kernel.org/r/430c8ab4-e7cd-6933-dde6-087fac6db872@arm.com
Fixes: 2ae27137b2 ("x86: mm: convert dump_pagetables to use walk_page_range")
Reported-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200521152308.33096-1-steven.price@arm.com
Link: http://lkml.kernel.org/r/20200521152308.33096-2-steven.price@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While trying to use remote memcg charging in an out-of-tree kernel
module I found it's not working, because the current thread is a
workqueue thread.
As we will probably encounter this issue in the future as the users of
memalloc_use_memcg() grow, and it's nothing wrong for this usage, it's
better we fix it now.
Signed-off-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/1d202a12-26fe-0012-ea14-f025ddcd044a@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a memory.swap.high knob, which can be used to protect the system
from SWAP exhaustion. The mechanism used for penalizing is similar to
memory.high penalty (sleep on return to user space).
That is not to say that the knob itself is equivalent to memory.high.
The objective is more to protect the system from potentially buggy tasks
consuming a lot of swap and impacting other tasks, or even bringing the
whole system to stand still with complete SWAP exhaustion. Hopefully
without the need to find per-task hard limits.
Slowing misbehaving tasks down gradually allows user space oom killers
or other protection mechanisms to react. oomd and earlyoom already do
killing based on swap exhaustion, and memory.swap.high protection will
help implement such userspace oom policies more reliably.
We can use one counter for number of pages allocated under pressure to
save struct task space and avoid two separate hierarchy walks on the hot
path. The exact overage is calculated on return to user space, anyway.
Take the new high limit into account when determining if swap is "full".
Borrowing the explanation from Johannes:
The idea behind "swap full" is that as long as the workload has plenty
of swap space available and it's not changing its memory contents, it
makes sense to generously hold on to copies of data in the swap device,
even after the swapin. A later reclaim cycle can drop the page without
any IO. Trading disk space for IO.
But the only two ways to reclaim a swap slot is when they're faulted
in and the references go away, or by scanning the virtual address space
like swapoff does - which is very expensive (one could argue it's too
expensive even for swapoff, it's often more practical to just reboot).
So at some point in the fill level, we have to start freeing up swap
slots on fault/swapin. Otherwise we could eventually run out of swap
slots while they're filled with copies of data that is also in RAM.
We don't want to OOM a workload because its available swap space is
filled with redundant cache.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200527195846.102707-5-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
High memory limit is currently recorded directly in struct mem_cgroup.
We are about to add a high limit for swap, move the field to struct
page_counter and add some helpers.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-4-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We will want to call calculate_high_delay() twice - once for memory and
once for swap, and we should apply the clamp value to sum of the
penalties. Clamping has to be applied outside of calculate_high_delay().
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-3-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memcg: Slow down swap allocation as the available space
gets depleted", v6.
Tejun describes the problem as follows:
When swap runs out, there's an abrupt change in system behavior - the
anonymous memory suddenly becomes unmanageable which readily breaks any
sort of memory isolation and can bring down the whole system. To avoid
that, oomd [1] monitors free swap space and triggers kills when it drops
below the specific threshold (e.g. 15%).
While this works, it's far from ideal:
- Depending on IO performance and total swap size, a given
headroom might not be enough or too much.
- oomd has to monitor swap depletion in addition to the usual
pressure metrics and it currently doesn't consider memory.swap.max.
Solve this by adapting parts of the approach that memory.high uses -
slow down allocation as the resource gets depleted turning the depletion
behavior from abrupt cliff one to gradual degradation observable through
memory pressure metric.
[1] https://github.com/facebookincubator/oomd
This patch (of 4):
Slice the memory overage calculation logic a little bit so we can reuse
it to apply a similar penalty to the swap. The logic which accesses the
memory-specific fields (use and high values) has to be taken out of
calculate_high_delay().
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-1-kuba@kernel.org
Link: http://lkml.kernel.org/r/20200527195846.102707-2-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One way to measure the efficiency of memory reclaim is to look at the
ratio (pgscan+pfrefill)/pgsteal. However at the moment these stats are
not updated consistently at the system level and the ratio of these are
not very meaningful. The pgsteal and pgscan are updated for only global
reclaim while pgrefill gets updated for global as well as cgroup
reclaim.
Please note that this difference is only for system level vmstats. The
cgroup stats returned by memory.stat are actually consistent. The
cgroup's pgsteal contains number of reclaimed pages for global as well
as cgroup reclaim. So, one way to get the system level stats is to get
these stats from root's memory.stat, so, expose memory.stat for the root
cgroup.
From Johannes Weiner:
There are subtle differences between /proc/vmstat and
memory.stat, and cgroup-aware code that wants to watch the full
hierarchy currently has to know about these intricacies and
translate semantics back and forth.
Generally having the fully recursive memory.stat at the root
level could help a broader range of usecases.
Why not fix the stats by including both the global and cgroup reclaim
activity instead of exposing root cgroup's memory.stat? The reason is
the benefit of having metrics exposing the activity that happens purely
due to machine capacity rather than localized activity that happens due
to the limits throughout the cgroup tree. Additionally there are
userspace tools like sysstat(sar) which reads these stats to inform
about the system level reclaim activity. So, we should not break such
use-cases.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200508170630.94406-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the variables count and limit have the same value(count == limit),
the result of min(margin, limit - count) statement should be 0 and the
variable margin is set to 0. So in this case, the min() statement is
not necessary and we can directly set the variable margin to 0.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/1587479661-27237-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a new workingset counter introduced in commit 1899ad18c6 ("mm:
workingset: tell cache transitions from workingset thrashing"). With
the help of this counter we can know the workingset is transitioning or
thrashing. To leverage the benifit of this counter to memcg, we should
introduce it into memory.stat. Then we could know the workingset of the
workload inside a memcg better.
Bellow is the verification of this new counter in memory.stat. Read a
file into the memory and then read it again to make these pages be
active. The size of this file is 1G. (memory.max is greater than file
size) The counters in memory.stat will be
inactive_file 0
active_file 1073639424
workingset_refault 0
workingset_activate 0
workingset_restore 0
workingset_nodereclaim 0
Trigger the memcg reclaim by setting a lower value to memory.high, and
then some pages will be demoted into inactive list, and then some pages
in the inactive list will be evicted into the storage.
inactive_file 498094080
active_file 310063104
workingset_refault 0
workingset_activate 0
workingset_restore 0
workingset_nodereclaim 0
Then recover the memory.high and read the file into memory again. As a
result of it, the transitioning will occur. Bellow is the result of
this transitioning,
inactive_file 498094080
active_file 575397888
workingset_refault 64746
workingset_activate 64746
workingset_restore 64746
workingset_nodereclaim 0
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200504153522.11553-1-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the heading and Size/Used/Priority field alignments in /proc/swaps.
If the Size and/or Used value is >= 10000000 (8 bytes), then the
alignment by using tab characters is broken.
This patch maintains the use of tabs for alignment. If spaces are
preferred, we can just use a Field Width specifier for the bytes and
inuse fields. That way those fields don't have to be a multiple of 8
bytes in width. E.g., with a field width of 12, both Size and Used
would always fit on the first line of an 80-column wide terminal (only
Priority would be on the second line).
There are actually 2 problems: heading alignment and field width. On an
xterm, if Used is 7 bytes in length, the tab does nothing, and the
display is like this, with no space/tab between the Used and Priority
fields. (ugh)
Filename Type Size Used Priority
/dev/sda8 partition 16779260 2023012-1
To be clear, if one does 'cat /proc/swaps >/tmp/proc.swaps', it does look
different, like so:
Filename Type Size Used Priority
/dev/sda8 partition 16779260 2086988 -1
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Link: http://lkml.kernel.org/r/c0ffb41a-81ac-ddfa-d452-a9229ecc0387@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some swap scalability test, it is found that there are heavy lock
contention on swap cache even if we have split one swap cache radix tree
per swap device to one swap cache radix tree every 64 MB trunk in commit
4b3ef9daa4 ("mm/swap: split swap cache into 64MB trunks").
The reason is as follow. After the swap device becomes fragmented so
that there's no free swap cluster, the swap device will be scanned
linearly to find the free swap slots. swap_info_struct->cluster_next is
the next scanning base that is shared by all CPUs. So nearby free swap
slots will be allocated for different CPUs. The probability for
multiple CPUs to operate on the same 64 MB trunk is high. This causes
the lock contention on the swap cache.
To solve the issue, in this patch, for SSD swap device, a percpu version
next scanning base (cluster_next_cpu) is added. Every CPU will use its
own per-cpu next scanning base. And after finishing scanning a 64MB
trunk, the per-cpu scanning base will be changed to the beginning of
another randomly selected 64MB trunk. In this way, the probability for
multiple CPUs to operate on the same 64 MB trunk is reduced greatly.
Thus the lock contention is reduced too. For HDD, because sequential
access is more important for IO performance, the original shared next
scanning base is used.
To test the patch, we have run 16-process pmbench memory benchmark on a
2-socket server machine with 48 cores. One ram disk is configured as the
swap device per socket. The pmbench working-set size is much larger than
the available memory so that swapping is triggered. The memory read/write
ratio is 80/20 and the accessing pattern is random. In the original
implementation, the lock contention on the swap cache is heavy. The perf
profiling data of the lock contention code path is as following,
_raw_spin_lock_irq.add_to_swap_cache.add_to_swap.shrink_page_list: 7.91
_raw_spin_lock_irqsave.__remove_mapping.shrink_page_list: 7.11
_raw_spin_lock.swapcache_free_entries.free_swap_slot.__swap_entry_free: 2.51
_raw_spin_lock_irqsave.swap_cgroup_record.mem_cgroup_uncharge_swap: 1.66
_raw_spin_lock_irq.shrink_inactive_list.shrink_lruvec.shrink_node: 1.29
_raw_spin_lock.free_pcppages_bulk.drain_pages_zone.drain_pages: 1.03
_raw_spin_lock_irq.shrink_active_list.shrink_lruvec.shrink_node: 0.93
After applying this patch, it becomes,
_raw_spin_lock.swapcache_free_entries.free_swap_slot.__swap_entry_free: 3.58
_raw_spin_lock_irq.shrink_inactive_list.shrink_lruvec.shrink_node: 2.3
_raw_spin_lock_irqsave.swap_cgroup_record.mem_cgroup_uncharge_swap: 2.26
_raw_spin_lock_irq.shrink_active_list.shrink_lruvec.shrink_node: 1.8
_raw_spin_lock.free_pcppages_bulk.drain_pages_zone.drain_pages: 1.19
The lock contention on the swap cache is almost eliminated.
And the pmbench score increases 18.5%. The swapin throughput increases
18.7% from 2.96 GB/s to 3.51 GB/s. While the swapout throughput increases
18.5% from 2.99 GB/s to 3.54 GB/s.
We need really fast disk to show the benefit. I have tried this on 2
Intel P3600 NVMe disks. The performance improvement is only about 1%.
The improvement should be better on the faster disks, such as Intel Optane
disk.
[ying.huang@intel.com: fix cluster_next_cpu allocation and freeing, per Daniel]
Link: http://lkml.kernel.org/r/20200525002648.336325-1-ying.huang@intel.com
[ying.huang@intel.com: v4]
Link: http://lkml.kernel.org/r/20200529010840.928819-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200520031502.175659-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To improve the code readability and take advantage of the common
implementation.
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200512081013.520201-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, the scalability of swap code will drop much when the swap device
becomes fragmented, because the swap slots allocation batching stops
working. To solve the problem, in this patch, we will try to scan a
little more swap slots with restricted effort to batch the swap slots
allocation even if the swap device is fragmented. Test shows that the
benchmark score can increase up to 37.1% with the patch. Details are as
follows.
The swap code has a per-cpu cache of swap slots. These batch swap space
allocations to improve swap subsystem scaling. In the following code
path,
add_to_swap()
get_swap_page()
refill_swap_slots_cache()
get_swap_pages()
scan_swap_map_slots()
scan_swap_map_slots() and get_swap_pages() can return multiple swap
slots for each call. These slots will be cached in the per-CPU swap
slots cache, so that several following swap slot requests will be
fulfilled there to avoid the lock contention in the lower level swap
space allocation/freeing code path.
But this only works when there are free swap clusters. If a swap device
becomes so fragmented that there's no free swap clusters,
scan_swap_map_slots() and get_swap_pages() will return only one swap
slot for each call in the above code path. Effectively, this falls back
to the situation before the swap slots cache was introduced, the heavy
lock contention on the swap related locks kills the scalability.
Why does it work in this way? Because the swap device could be large,
and the free swap slot scanning could be quite time consuming, to avoid
taking too much time to scanning free swap slots, the conservative
method was used.
In fact, this can be improved via scanning a little more free slots with
strictly restricted effort. Which is implemented in this patch. In
scan_swap_map_slots(), after the first free swap slot is gotten, we will
try to scan a little more, but only if we haven't scanned too many slots
(< LATENCY_LIMIT). That is, the added scanning latency is strictly
restricted.
To test the patch, we have run 16-process pmbench memory benchmark on a
2-socket server machine with 48 cores. Multiple ram disks are
configured as the swap devices. The pmbench working-set size is much
larger than the available memory so that swapping is triggered. The
memory read/write ratio is 80/20 and the accessing pattern is random, so
the swap space becomes highly fragmented during the test. In the
original implementation, the lock contention on swap related locks is
very heavy. The perf profiling data of the lock contention code path is
as following,
_raw_spin_lock.get_swap_pages.get_swap_page.add_to_swap: 21.03
_raw_spin_lock_irq.shrink_inactive_list.shrink_lruvec.shrink_node: 1.92
_raw_spin_lock_irq.shrink_active_list.shrink_lruvec.shrink_node: 1.72
_raw_spin_lock.free_pcppages_bulk.drain_pages_zone.drain_pages: 0.69
While after applying this patch, it becomes,
_raw_spin_lock_irq.shrink_inactive_list.shrink_lruvec.shrink_node: 4.89
_raw_spin_lock_irq.shrink_active_list.shrink_lruvec.shrink_node: 3.85
_raw_spin_lock.free_pcppages_bulk.drain_pages_zone.drain_pages: 1.1
_raw_spin_lock_irqsave.pagevec_lru_move_fn.__lru_cache_add.do_swap_page: 0.88
That is, the lock contention on the swap locks is eliminated.
And the pmbench score increases 37.1%. The swapin throughput increases
45.7% from 2.02 GB/s to 2.94 GB/s. While the swapout throughput increases
45.3% from 2.04 GB/s to 2.97 GB/s.
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200427030023.264780-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two duplicate code to handle the case when there is no available
swap entry. To avoid this, we can compare tmp and max first and let the
second guard do its job.
No functional change is expected.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200421213824.8099-3-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If tmp is bigger or equal to max, we would jump to new_cluster.
Return true directly.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200421213824.8099-2-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is not necessary to use the variable found_free to record the status.
Just check tmp and max is enough.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200421213824.8099-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
scan_swap_map_slots() is only called by scan_swap_map() and
get_swap_pages(). Both ensure nr would not exceed SWAP_BATCH.
Just remove it.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200325220309.9803-2-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use min3() to simplify the comparison and make it more self-explaining.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200325220309.9803-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we can see there is redundant goto for SSD case. In these two places,
we can just let the code walk through to the correct tag instead of
explicitly jump to it.
Let's remove them for better readability.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20200328060520.31449-4-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code shows if this is ssd, it will jump to specific tag and skip the
following code for non-ssd.
Let's use "else if" to explicitly show the mutually exclusion for
ssd/non-ssd to reduce ambiguity.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20200328060520.31449-3-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
scan_swap_map_slots() is used to iterate swap_map[] array for an
available swap entry. While after several optimizations, e.g. for ssd
case, the logic of this function is a little not easy to catch.
This patchset tries to clean up the logic a little:
* shows the ssd/non-ssd case is handled mutually exclusively
* remove some unnecessary goto for ssd case
This patch (of 3):
When si->cluster_nr is zero, function would reach done and return. The
increased offset would not be used any more. This means we can move the
offset increment into the if clause.
This brings a further code cleanup possibility.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20200328060520.31449-1-richard.weiyang@gmail.com
Link: http://lkml.kernel.org/r/20200328060520.31449-2-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In unuse_pte_range() we blindly swap-in pages without checking if the
swap entry is already present in the swap cache.
By doing this, the hit/miss ratio used by the swap readahead heuristic
is not properly updated and this leads to non-optimal performance during
swapoff.
Tracing the distribution of the readahead size returned by the swap
readahead heuristic during swapoff shows that a small readahead size is
used most of the time as if we had only misses (this happens both with
cluster and vma readahead), for example:
r::swapin_nr_pages(unsigned long offset):unsigned long:$retval
COUNT EVENT
36948 $retval = 8
44151 $retval = 4
49290 $retval = 1
527771 $retval = 2
Checking if the swap entry is present in the swap cache, instead, allows
to properly update the readahead statistics and the heuristic behaves in a
better way during swapoff, selecting a bigger readahead size:
r::swapin_nr_pages(unsigned long offset):unsigned long:$retval
COUNT EVENT
1618 $retval = 1
4960 $retval = 2
41315 $retval = 4
103521 $retval = 8
In terms of swapoff performance the result is the following:
Testing environment
===================
- Host:
CPU: 1.8GHz Intel Core i7-8565U (quad-core, 8MB cache)
HDD: PC401 NVMe SK hynix 512GB
MEM: 16GB
- Guest (kvm):
8GB of RAM
virtio block driver
16GB swap file on ext4 (/swapfile)
Test case
=========
- allocate 85% of memory
- `systemctl hibernate` to force all the pages to be swapped-out to the
swap file
- resume the system
- measure the time that swapoff takes to complete:
# /usr/bin/time swapoff /swapfile
Result (swapoff time)
======
5.6 vanilla 5.6 w/ this patch
----------- -----------------
cluster-readahead 22.09s 12.19s
vma-readahead 18.20s 15.33s
Conclusion
==========
The specific use case this patch is addressing is to improve swapoff
performance in cloud environments when a VM has been hibernated, resumed
and all the memory needs to be forced back to RAM by disabling swap.
This change allows to better exploits the advantages of the readahead
heuristic during swapoff and this improvement allows to to speed up the
resume process of such VMs.
[andrea.righi@canonical.com: update changelog]
Link: http://lkml.kernel.org/r/20200418084705.GA147642@xps-13
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Anchal Agarwal <anchalag@amazon.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Link: http://lkml.kernel.org/r/20200416180132.GB3352@xps-13
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"prev_offset" is a static variable in swapin_nr_pages() that can be
accessed concurrently with only mmap_sem held in read mode as noticed by
KCSAN,
BUG: KCSAN: data-race in swap_cluster_readahead / swap_cluster_readahead
write to 0xffffffff92763830 of 8 bytes by task 14795 on cpu 17:
swap_cluster_readahead+0x2a6/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by (dnf)/14795:
#0: ffff897bd2e98858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
do_user_addr_fault at arch/x86/mm/fault.c:1405
(inlined by) do_page_fault at arch/x86/mm/fault.c:1535
irq event stamp: 83493
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
read to 0xffffffff92763830 of 8 bytes by task 1 on cpu 22:
swap_cluster_readahead+0xfd/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by systemd/1:
#0: ffff897c38f14858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
irq event stamp: 43530289
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200402213748.2237-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use list_{prev,next}_entry() instead of list_entry() for better
code readability.
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Baoquan He <bhe@redhat.com>
Link: http://lkml.kernel.org/r/1586599916-15456-2-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce pin_user_pages_unlocked(), which is nearly identical to the
get_user_pages_unlocked() that it wraps, except that it sets FOLL_PIN
and rejects FOLL_GET.
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Walls <awalls@md.metrocast.net>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Link: http://lkml.kernel.org/r/20200518012157.1178336-2-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is an attempt to update the documentation.
- Add/ remove extra * based on type of function static/global.
- Add description for functions and their input arguments.
[akpm@linux-foundation.org: s@/*@/**@]
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1588013630-4497-1-git-send-email-jrdr.linux@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After an NFS page has been written it is considered "unstable" until a
COMMIT request succeeds. If the COMMIT fails, the page will be
re-written.
These "unstable" pages are currently accounted as "reclaimable", either
in WB_RECLAIMABLE, or in NR_UNSTABLE_NFS which is included in a
'reclaimable' count. This might have made sense when sending the COMMIT
required a separate action by the VFS/MM (e.g. releasepage() used to
send a COMMIT). However now that all writes generated by ->writepages()
will automatically be followed by a COMMIT (since commit 919e3bd9a8
("NFS: Ensure we commit after writeback is complete")) it makes more
sense to treat them as writeback pages.
So this patch removes NR_UNSTABLE_NFS and accounts unstable pages in
NR_WRITEBACK and WB_WRITEBACK.
A particular effect of this change is that when
wb_check_background_flush() calls wb_over_bg_threshold(), the latter
will report 'true' a lot less often as the 'unstable' pages are no
longer considered 'dirty' (as there is nothing that writeback can do
about them anyway).
Currently wb_check_background_flush() will trigger writeback to NFS even
when there are relatively few dirty pages (if there are lots of unstable
pages), this can result in small writes going to the server (10s of
Kilobytes rather than a Megabyte) which hurts throughput. With this
patch, there are fewer writes which are each larger on average.
Where the NR_UNSTABLE_NFS count was included in statistics
virtual-files, the entry is retained, but the value is hard-coded as
zero. static trace points and warning printks which mentioned this
counter no longer report it.
[akpm@linux-foundation.org: re-layout comment]
[akpm@linux-foundation.org: fix printk warning]
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Acked-by: Michal Hocko <mhocko@suse.com> [mm]
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Link: http://lkml.kernel.org/r/87d06j7gqa.fsf@notabene.neil.brown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PF_LESS_THROTTLE exists for loop-back nfsd (and a similar need in the
loop block driver and callers of prctl(PR_SET_IO_FLUSHER)), where a
daemon needs to write to one bdi (the final bdi) in order to free up
writes queued to another bdi (the client bdi).
The daemon sets PF_LESS_THROTTLE and gets a larger allowance of dirty
pages, so that it can still dirty pages after other processses have been
throttled. The purpose of this is to avoid deadlock that happen when
the PF_LESS_THROTTLE process must write for any dirty pages to be freed,
but it is being thottled and cannot write.
This approach was designed when all threads were blocked equally,
independently on which device they were writing to, or how fast it was.
Since that time the writeback algorithm has changed substantially with
different threads getting different allowances based on non-trivial
heuristics. This means the simple "add 25%" heuristic is no longer
reliable.
The important issue is not that the daemon needs a *larger* dirty page
allowance, but that it needs a *private* dirty page allowance, so that
dirty pages for the "client" bdi that it is helping to clear (the bdi
for an NFS filesystem or loop block device etc) do not affect the
throttling of the daemon writing to the "final" bdi.
This patch changes the heuristic so that the task is not throttled when
the bdi it is writing to has a dirty page count below below (or equal
to) the free-run threshold for that bdi. This ensures it will always be
able to have some pages in flight, and so will not deadlock.
In a steady-state, it is expected that PF_LOCAL_THROTTLE tasks might
still be throttled by global threshold, but that is acceptable as it is
only the deadlock state that is interesting for this flag.
This approach of "only throttle when target bdi is busy" is consistent
with the other use of PF_LESS_THROTTLE in current_may_throttle(), were
it causes attention to be focussed only on the target bdi.
So this patch
- renames PF_LESS_THROTTLE to PF_LOCAL_THROTTLE,
- removes the 25% bonus that that flag gives, and
- If PF_LOCAL_THROTTLE is set, don't delay at all unless the
global and the local free-run thresholds are exceeded.
Note that previously realtime threads were treated the same as
PF_LESS_THROTTLE threads. This patch does *not* change the behvaiour
for real-time threads, so it is now different from the behaviour of nfsd
and loop tasks. I don't know what is wanted for realtime.
[akpm@linux-foundation.org: coding style fixes]
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Chuck Lever <chuck.lever@oracle.com> [nfsd]
Cc: Christoph Hellwig <hch@lst.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Link: http://lkml.kernel.org/r/87ftbf7gs3.fsf@notabene.neil.brown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We no longer return 0 here and the comment doesn't tell us anything that
we don't already know (SIGBUS is a pretty good indicator that things
didn't work out).
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Link: http://lkml.kernel.org/r/20200529123243.20640-1-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can cleanup code a little by call detach_page_private here.
[akpm@linux-foundation.org: use attach_page_private(), per Dave]
http://lkml.kernel.org/r/20200521225220.GV2005@dread.disaster.area
[akpm@linux-foundation.org: clear PagePrivate]
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200519214049.15179-1-guoqing.jiang@cloud.ionos.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement the new readahead aop and convert all callers (block_dev,
exfat, ext2, fat, gfs2, hpfs, isofs, jfs, nilfs2, ocfs2, omfs, qnx6,
reiserfs & udf).
The callers are all trivial except for GFS2 & OCFS2.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Junxiao Bi <junxiao.bi@oracle.com> # ocfs2
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> # ocfs2
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-17-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ensure that memory allocations in the readahead path do not attempt to
reclaim file-backed pages, which could lead to a deadlock. It is
possible, though unlikely this is the root cause of a problem observed
by Cong Wang.
Reported-by: Cong Wang <xiyou.wangcong@gmail.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-16-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the page is already in cache, we don't set PageReadahead on it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-15-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ext4 and f2fs have duplicated the guts of the readahead code so they can
read past i_size. Instead, separate out the guts of the readahead code
so they can call it directly.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-14-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By reducing nr_to_read, we can eliminate this check from inside the loop.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-13-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This replaces ->readpages with a saner interface:
- Return void instead of an ignored error code.
- Page cache is already populated with locked pages when ->readahead
is called.
- New arguments can be passed to the implementation without changing
all the filesystems that use a common helper function like
mpage_readahead().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-12-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When populating the page cache for readahead, mappings that use
->readpages must populate the page cache themselves as the pages are
passed on a linked list which would normally be used for the page
cache's LRU. For mappings that use ->readpage or the upcoming
->readahead method, we can put the pages into the page cache as soon as
they're allocated, which solves a race between readahead and direct IO.
It also lets us remove the gfp argument from read_pages().
Use the new readahead_page() API to implement the repeated calls to
->readpage(), just like most filesystems will.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-11-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the page_offset variable with 'index + i'.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-10-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the type of page_idx to unsigned long, and rename it -- it's just
a loop counter, not a page index.
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-9-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The word 'offset' is used ambiguously to mean 'byte offset within a
page', 'byte offset from the start of the file' and 'page offset from
the start of the file'.
Use 'index' to mean 'page offset from the start of the file' throughout
the readahead code.
[ We should probably rename the 'pgoff_t' type to 'pgidx_t' too - Linus ]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-8-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In this patch, only between __do_page_cache_readahead() and
read_pages(), but it will be extended in upcoming patches. The
read_pages() function becomes aops centric, as this makes the most sense
by the end of the patchset.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-7-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the callers by moving the check for nr_pages and the BUG_ON
into read_pages().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-5-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We used to assign the return value to a variable, which we then ignored.
Remove the pretence of caring.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-4-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ondemand_readahead has two callers, neither of which use the return
value. That means that both ra_submit and __do_page_cache_readahead()
can return void, and we don't need to worry that a present page in the
readahead window causes us to return a smaller nr_pages than we ought to
have.
Similarly, no caller uses the return value from
force_page_cache_readahead().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-3-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Change readahead API", v11.
This series adds a readahead address_space operation to replace the
readpages operation. The key difference is that pages are added to the
page cache as they are allocated (and then looked up by the filesystem)
instead of passing them on a list to the readpages operation and having
the filesystem add them to the page cache. It's a net reduction in code
for each implementation, more efficient than walking a list, and solves
the direct-write vs buffered-read problem reported by yu kuai at
http://lkml.kernel.org/r/20200116063601.39201-1-yukuai3@huawei.com
The only unconverted filesystems are those which use fscache. Their
conversion is pending Dave Howells' rewrite which will make the
conversion substantially easier. This should be completed by the end of
the year.
I want to thank the reviewers/testers; Dave Chinner, John Hubbard, Eric
Biggers, Johannes Thumshirn, Dave Sterba, Zi Yan, Christoph Hellwig and
Miklos Szeredi have done a marvellous job of providing constructive
criticism.
These patches pass an xfstests run on ext4, xfs & btrfs with no
regressions that I can tell (some of the tests seem a little flaky
before and remain flaky afterwards).
This patch (of 25):
The readahead code is part of the page cache so should be found in the
pagemap.h file. force_page_cache_readahead is only used within mm, so
move it to mm/internal.h instead. Remove the parameter names where they
add no value, and rename the ones which were actively misleading.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-1-willy@infradead.org
Link: http://lkml.kernel.org/r/20200414150233.24495-2-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have seen a following problem on a RPi4 with 1G RAM:
BUG: Bad page state in process systemd-hwdb pfn:35601
page:ffff7e0000d58040 refcount:15 mapcount:131221 mapping:efd8fe765bc80080 index:0x1 compound_mapcount: -32767
Unable to handle kernel paging request at virtual address efd8fe765bc80080
Mem abort info:
ESR = 0x96000004
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
[efd8fe765bc80080] address between user and kernel address ranges
Internal error: Oops: 96000004 [#1] SMP
Modules linked in: btrfs libcrc32c xor xor_neon zlib_deflate raid6_pq mmc_block xhci_pci xhci_hcd usbcore sdhci_iproc sdhci_pltfm sdhci mmc_core clk_raspberrypi gpio_raspberrypi_exp pcie_brcmstb bcm2835_dma gpio_regulator phy_generic fixed sg scsi_mod efivarfs
Supported: No, Unreleased kernel
CPU: 3 PID: 408 Comm: systemd-hwdb Not tainted 5.3.18-8-default #1 SLE15-SP2 (unreleased)
Hardware name: raspberrypi rpi/rpi, BIOS 2020.01 02/21/2020
pstate: 40000085 (nZcv daIf -PAN -UAO)
pc : __dump_page+0x268/0x368
lr : __dump_page+0xc4/0x368
sp : ffff000012563860
x29: ffff000012563860 x28: ffff80003ddc4300
x27: 0000000000000010 x26: 000000000000003f
x25: ffff7e0000d58040 x24: 000000000000000f
x23: efd8fe765bc80080 x22: 0000000000020095
x21: efd8fe765bc80080 x20: ffff000010ede8b0
x19: ffff7e0000d58040 x18: ffffffffffffffff
x17: 0000000000000001 x16: 0000000000000007
x15: ffff000011689708 x14: 3030386362353637
x13: 6566386466653a67 x12: 6e697070616d2031
x11: 32323133313a746e x10: 756f6370616d2035
x9 : ffff00001168a840 x8 : ffff00001077a670
x7 : 000000000000013d x6 : ffff0000118a43b5
x5 : 0000000000000001 x4 : ffff80003dd9e2c8
x3 : ffff80003dd9e2c8 x2 : 911c8d7c2f483500
x1 : dead000000000100 x0 : efd8fe765bc80080
Call trace:
__dump_page+0x268/0x368
bad_page+0xd4/0x168
check_new_page_bad+0x80/0xb8
rmqueue_bulk.constprop.26+0x4d8/0x788
get_page_from_freelist+0x4d4/0x1228
__alloc_pages_nodemask+0x134/0xe48
alloc_pages_vma+0x198/0x1c0
do_anonymous_page+0x1a4/0x4d8
__handle_mm_fault+0x4e8/0x560
handle_mm_fault+0x104/0x1e0
do_page_fault+0x1e8/0x4c0
do_translation_fault+0xb0/0xc0
do_mem_abort+0x50/0xb0
el0_da+0x24/0x28
Code: f9401025 8b8018a0 9a851005 17ffffca (f94002a0)
Besides the underlying issue with page->mapping containing a bogus value
for some reason, we can see that __dump_page() crashed by trying to read
the pointer at mapping->host, turning a recoverable warning into full
Oops.
It can be expected that when page is reported as bad state for some
reason, the pointers there should not be trusted blindly.
So this patch treats all data in __dump_page() that depends on
page->mapping as lava, using probe_kernel_read_strict(). Ideally this
would include the dentry->d_parent recursively, but that would mean
changing printk handler for %pd. Chances of reaching the dentry
printing part with an initially bogus mapping pointer should be rather
low, though.
Also prefix printing mapping->a_ops with a description of what is being
printed. In case the value is bogus, %ps will print raw value instead
of the symbol name and then it's not obvious at all that it's printing
a_ops.
Reported-by: Petr Tesarik <ptesarik@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Link: http://lkml.kernel.org/r/20200331165454.12263-1-vbabka@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to copy SLUB_STATS items from root memcg cache to new
memcg cache copies. Doing so could result in stack overruns because the
store function only accepts 0 to clear the stat and returns an error for
everything else while the show method would print out the whole stat.
Then, the mismatch of the lengths returns from show and store methods
happens in memcg_propagate_slab_attrs():
else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
buf = mbuf;
max_attr_size is only 2 from slab_attr_store(), then, it uses mbuf[64]
in show_stat() later where a bounch of sprintf() would overrun the stack
variable. Fix it by always allocating a page of buffer to be used in
show_stat() if SLUB_STATS=y which should only be used for debug purpose.
# echo 1 > /sys/kernel/slab/fs_cache/shrink
BUG: KASAN: stack-out-of-bounds in number+0x421/0x6e0
Write of size 1 at addr ffffc900256cfde0 by task kworker/76:0/53251
Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019
Workqueue: memcg_kmem_cache memcg_kmem_cache_create_func
Call Trace:
number+0x421/0x6e0
vsnprintf+0x451/0x8e0
sprintf+0x9e/0xd0
show_stat+0x124/0x1d0
alloc_slowpath_show+0x13/0x20
__kmem_cache_create+0x47a/0x6b0
addr ffffc900256cfde0 is located in stack of task kworker/76:0/53251 at offset 0 in frame:
process_one_work+0x0/0xb90
this frame has 1 object:
[32, 72) 'lockdep_map'
Memory state around the buggy address:
ffffc900256cfc80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffffc900256cfd00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffffc900256cfd80: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1
^
ffffc900256cfe00: 00 00 00 00 00 f2 f2 f2 00 00 00 00 00 00 00 00
ffffc900256cfe80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: __kmem_cache_create+0x6ac/0x6b0
Workqueue: memcg_kmem_cache memcg_kmem_cache_create_func
Call Trace:
__kmem_cache_create+0x6ac/0x6b0
Fixes: 107dab5c92 ("slub: slub-specific propagation changes")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Glauber Costa <glauber@scylladb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200429222356.4322-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
list_slab_objects() is called when a slab is destroyed and there are
objects still left to list the objects in the syslog. This is a pretty
rare event.
And there it seems we take the list_lock and call kmalloc while holding
that lock.
Perform the allocation in free_partial() before the list_lock is taken.
Fixes: bbd7d57bfe ("slub: Potential stack overflow")
Signed-off-by: Christopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yu Zhao <yuzhao@google.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2002031721250.1668@www.lameter.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I came across some unnecessary uevents once again which reminded me
this. The patch seems to be lost in the leaves of the original
discussion [1], so resending.
[1] https://lore.kernel.org/r/alpine.DEB.2.21.2001281813130.745@www.lameter.com
Kmem caches are internal kernel structures so it is strange that
userspace notifiers would be needed. And I am not aware of any use of
these notifiers. These notifiers may just exist because in the initial
slub release the sysfs code was copied from another subsystem.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Koutný <mkoutny@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200423115721.19821-1-mkoutny@suse.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The slub_debug is able to fix the corrupted slab freelist/page.
However, alloc_debug_processing() only checks the validity of current
and next freepointer during allocation path. As a result, once some
objects have their freepointers corrupted, deactivate_slab() may lead to
page fault.
Below is from a test kernel module when 'slub_debug=PUF,kmalloc-128
slub_nomerge'. The test kernel corrupts the freepointer of one free
object on purpose. Unfortunately, deactivate_slab() does not detect it
when iterating the freechain.
BUG: unable to handle page fault for address: 00000000123456f8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
... ...
RIP: 0010:deactivate_slab.isra.92+0xed/0x490
... ...
Call Trace:
___slab_alloc+0x536/0x570
__slab_alloc+0x17/0x30
__kmalloc+0x1d9/0x200
ext4_htree_store_dirent+0x30/0xf0
htree_dirblock_to_tree+0xcb/0x1c0
ext4_htree_fill_tree+0x1bc/0x2d0
ext4_readdir+0x54f/0x920
iterate_dir+0x88/0x190
__x64_sys_getdents+0xa6/0x140
do_syscall_64+0x49/0x170
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Therefore, this patch adds extra consistency check in deactivate_slab().
Once an object's freepointer is corrupted, all following objects
starting at this object are isolated.
[akpm@linux-foundation.org: fix build with CONFIG_SLAB_DEBUG=n]
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joe Jin <joe.jin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200331031450.12182-1-dongli.zhang@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have seen a "usercopy: Kernel memory overwrite attempt detected to
SLUB object 'dma-kmalloc-1 k' (offset 0, size 11)!" error on s390x, as
IUCV uses kmalloc() with __GFP_DMA because of memory address
restrictions. The issue has been discussed [2] and it has been noted
that if all the kmalloc caches are marked as usercopy, there's little
reason not to mark dma-kmalloc caches too. The 'dma' part merely means
that __GFP_DMA is used to restrict memory address range.
As Jann Horn put it [3]:
"I think dma-kmalloc slabs should be handled the same way as normal
kmalloc slabs. When a dma-kmalloc allocation is freshly created, it is
just normal kernel memory - even if it might later be used for DMA -,
and it should be perfectly fine to copy_from_user() into such
allocations at that point, and to copy_to_user() out of them at the
end. If you look at the places where such allocations are created, you
can see things like kmemdup(), memcpy() and so on - all normal
operations that shouldn't conceptually be different from usercopy in
any relevant way."
Thus this patch marks the dma-kmalloc-* caches as usercopy.
[1] https://bugzilla.suse.com/show_bug.cgi?id=1156053
[2] https://lore.kernel.org/kernel-hardening/bfca96db-bbd0-d958-7732-76e36c667c68@suse.cz/
[3] https://lore.kernel.org/kernel-hardening/CAG48ez1a4waGk9kB0WLaSbs4muSoK0AYAVk8=XYaKj4_+6e6Hg@mail.gmail.com/
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Jiri Slaby <jslaby@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Julian Wiedmann <jwi@linux.ibm.com>
Cc: Ursula Braun <ubraun@linux.ibm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: David Windsor <dave@nullcore.net>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Luis de Bethencourt <luisbg@kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Matthew Garrett <mjg59@google.com>
Cc: Michal Kubecek <mkubecek@suse.cz>
Link: http://lkml.kernel.org/r/7d810f6d-8085-ea2f-7805-47ba3842dc50@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Doing a "get_user_pages()" on a copy-on-write page for reading can be
ambiguous: the page can be COW'ed at any time afterwards, and the
direction of a COW event isn't defined.
Yes, whoever writes to it will generally do the COW, but if the thread
that did the get_user_pages() unmapped the page before the write (and
that could happen due to memory pressure in addition to any outright
action), the writer could also just take over the old page instead.
End result: the get_user_pages() call might result in a page pointer
that is no longer associated with the original VM, and is associated
with - and controlled by - another VM having taken it over instead.
So when doing a get_user_pages() on a COW mapping, the only really safe
thing to do would be to break the COW when getting the page, even when
only getting it for reading.
At the same time, some users simply don't even care.
For example, the perf code wants to look up the page not because it
cares about the page, but because the code simply wants to look up the
physical address of the access for informational purposes, and doesn't
really care about races when a page might be unmapped and remapped
elsewhere.
This adds logic to force a COW event by setting FOLL_WRITE on any
copy-on-write mapping when FOLL_GET (or FOLL_PIN) is used to get a page
pointer as a result.
The current semantics end up being:
- __get_user_pages_fast(): no change. If you don't ask for a write,
you won't break COW. You'd better know what you're doing.
- get_user_pages_fast(): the fast-case "look it up in the page tables
without anything getting mmap_sem" now refuses to follow a read-only
page, since it might need COW breaking. Which happens in the slow
path - the fast path doesn't know if the memory might be COW or not.
- get_user_pages() (including the slow-path fallback for gup_fast()):
for a COW mapping, turn on FOLL_WRITE for FOLL_GET/FOLL_PIN, with
very similar semantics to FOLL_FORCE.
If it turns out that we want finer granularity (ie "only break COW when
it might actually matter" - things like the zero page are special and
don't need to be broken) we might need to push these semantics deeper
into the lookup fault path. So if people care enough, it's possible
that we might end up adding a new internal FOLL_BREAK_COW flag to go
with the internal FOLL_COW flag we already have for tracking "I had a
COW".
Alternatively, if it turns out that different callers might want to
explicitly control the forced COW break behavior, we might even want to
make such a flag visible to the users of get_user_pages() instead of
using the above default semantics.
But for now, this is mostly commentary on the issue (this commit message
being a lot bigger than the patch, and that patch in turn is almost all
comments), with that minimal "enable COW breaking early" logic using the
existing FOLL_WRITE behavior.
[ It might be worth noting that we've always had this ambiguity, and it
could arguably be seen as a user-space issue.
You only get private COW mappings that could break either way in
situations where user space is doing cooperative things (ie fork()
before an execve() etc), but it _is_ surprising and very subtle, and
fork() is supposed to give you independent address spaces.
So let's treat this as a kernel issue and make the semantics of
get_user_pages() easier to understand. Note that obviously a true
shared mapping will still get a page that can change under us, so this
does _not_ mean that get_user_pages() somehow returns any "stable"
page ]
Reported-by: Jann Horn <jannh@google.com>
Tested-by: Christoph Hellwig <hch@lst.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill Shutemov <kirill@shutemov.name>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set from Mauro toward the completion of the RST conversion. I *really*
hope we are getting close to the end of this. Meanwhile, those patches
reach pretty far afield to update document references around the tree;
there should be no actual code changes there. There will be, alas, more of
the usual trivial merge conflicts.
Beyond that we have more translations, improvements to the sphinx
scripting, a number of additions to the sysctl documentation, and lots of
fixes.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAl7VId8PHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Yq/gH/iaDgirQZV6UZ2v9sfwQNYolNpf2sKAuOZjd
bPFB7WJoMQbKwQEvYrAUL2+5zPOcLYuIfzyOfo1BV1py+EyKbACcKjI4AedxfJF7
+NchmOBhlEqmEhzx2U08HRc4/8J223WG17fJRVsV3p+opJySexSFeQucfOciX5NR
RUCxweWWyg/FgyqjkyMMTtsePqZPmcT5dWTlVXISlbWzcv5NFhuJXnSrw8Sfzcmm
SJMzqItv3O+CabnKQ8kMLV2PozXTMfjeWH47ZUK0Y8/8PP9+cvqwFzZ0UDQJ1Xaz
oyW/TqmunaXhfMsMFeFGSwtfgwRHvXdxkQdtwNHvo1dV4dzTvDw=
=fDC/
-----END PGP SIGNATURE-----
Merge tag 'docs-5.8' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"A fair amount of stuff this time around, dominated by yet another
massive set from Mauro toward the completion of the RST conversion. I
*really* hope we are getting close to the end of this. Meanwhile,
those patches reach pretty far afield to update document references
around the tree; there should be no actual code changes there. There
will be, alas, more of the usual trivial merge conflicts.
Beyond that we have more translations, improvements to the sphinx
scripting, a number of additions to the sysctl documentation, and lots
of fixes"
* tag 'docs-5.8' of git://git.lwn.net/linux: (130 commits)
Documentation: fixes to the maintainer-entry-profile template
zswap: docs/vm: Fix typo accept_threshold_percent in zswap.rst
tracing: Fix events.rst section numbering
docs: acpi: fix old http link and improve document format
docs: filesystems: add info about efivars content
Documentation: LSM: Correct the basic LSM description
mailmap: change email for Ricardo Ribalda
docs: sysctl/kernel: document unaligned controls
Documentation: admin-guide: update bug-hunting.rst
docs: sysctl/kernel: document ngroups_max
nvdimm: fixes to maintainter-entry-profile
Documentation/features: Correct RISC-V kprobes support entry
Documentation/features: Refresh the arch support status files
Revert "docs: sysctl/kernel: document ngroups_max"
docs: move locking-specific documents to locking/
docs: move digsig docs to the security book
docs: move the kref doc into the core-api book
docs: add IRQ documentation at the core-api book
docs: debugging-via-ohci1394.txt: add it to the core-api book
docs: fix references for ipmi.rst file
...
- Branch Target Identification (BTI)
* Support for ARMv8.5-BTI in both user- and kernel-space. This
allows branch targets to limit the types of branch from which
they can be called and additionally prevents branching to
arbitrary code, although kernel support requires a very recent
toolchain.
* Function annotation via SYM_FUNC_START() so that assembly
functions are wrapped with the relevant "landing pad"
instructions.
* BPF and vDSO updates to use the new instructions.
* Addition of a new HWCAP and exposure of BTI capability to
userspace via ID register emulation, along with ELF loader
support for the BTI feature in .note.gnu.property.
* Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
- Shadow Call Stack (SCS)
* Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each
task that holds only return addresses. This protects function
return control flow from buffer overruns on the main stack.
* Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
* Core support for SCS, should other architectures want to use it
too.
* SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
- CPU feature detection
* Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a
concern for KVM, which disabled support for 32-bit guests on
such a system.
* Addition of new ID registers and fields as the architecture has
been extended.
- Perf and PMU drivers
* Minor fixes and cleanups to system PMU drivers.
- Hardware errata
* Unify KVM workarounds for VHE and nVHE configurations.
* Sort vendor errata entries in Kconfig.
- Secure Monitor Call Calling Convention (SMCCC)
* Update to the latest specification from Arm (v1.2).
* Allow PSCI code to query the SMCCC version.
- Software Delegated Exception Interface (SDEI)
* Unexport a bunch of unused symbols.
* Minor fixes to handling of firmware data.
- Pointer authentication
* Add support for dumping the kernel PAC mask in vmcoreinfo so
that the stack can be unwound by tools such as kdump.
* Simplification of key initialisation during CPU bringup.
- BPF backend
* Improve immediate generation for logical and add/sub
instructions.
- vDSO
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
- ACPI
- Work around for an ambiguity in the IORT specification relating
to the "num_ids" field.
- Support _DMA method for all named components rather than only
PCIe root complexes.
- Minor other IORT-related fixes.
- Miscellaneous
* Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
* Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
* Refactoring and cleanup
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl7U9csQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLBHCACs/YU4SM7Om5f+7QnxIKao5DBr2CnGGvdC
yTfDghFDTLQVv3MufLlfno3yBe5G8sQpcZfcc+hewfcGoMzVZXu8s7LzH6VSn9T9
jmT3KjDMrg0RjSHzyumJp2McyelTk0a4FiKArSIIKsJSXUyb1uPSgm7SvKVDwEwU
JGDzL9IGilmq59GiXfDzGhTZgmC37QdwRoRxDuqtqWQe5CHoRXYexg87HwBKOQxx
HgU9L7ehri4MRZfpyjaDrr6quJo3TVnAAKXNBh3mZAskVS9ZrfKpEH0kYWYuqybv
znKyHRecl/rrGePV8RTMtrwnSdU26zMXE/omsVVauDfG9hqzqm+Q
=w3qi
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"A sizeable pile of arm64 updates for 5.8.
Summary below, but the big two features are support for Branch Target
Identification and Clang's Shadow Call stack. The latter is currently
arm64-only, but the high-level parts are all in core code so it could
easily be adopted by other architectures pending toolchain support
Branch Target Identification (BTI):
- Support for ARMv8.5-BTI in both user- and kernel-space. This allows
branch targets to limit the types of branch from which they can be
called and additionally prevents branching to arbitrary code,
although kernel support requires a very recent toolchain.
- Function annotation via SYM_FUNC_START() so that assembly functions
are wrapped with the relevant "landing pad" instructions.
- BPF and vDSO updates to use the new instructions.
- Addition of a new HWCAP and exposure of BTI capability to userspace
via ID register emulation, along with ELF loader support for the
BTI feature in .note.gnu.property.
- Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
Shadow Call Stack (SCS):
- Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each task
that holds only return addresses. This protects function return
control flow from buffer overruns on the main stack.
- Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
- Core support for SCS, should other architectures want to use it
too.
- SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
CPU feature detection:
- Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a concern
for KVM, which disabled support for 32-bit guests on such a system.
- Addition of new ID registers and fields as the architecture has
been extended.
Perf and PMU drivers:
- Minor fixes and cleanups to system PMU drivers.
Hardware errata:
- Unify KVM workarounds for VHE and nVHE configurations.
- Sort vendor errata entries in Kconfig.
Secure Monitor Call Calling Convention (SMCCC):
- Update to the latest specification from Arm (v1.2).
- Allow PSCI code to query the SMCCC version.
Software Delegated Exception Interface (SDEI):
- Unexport a bunch of unused symbols.
- Minor fixes to handling of firmware data.
Pointer authentication:
- Add support for dumping the kernel PAC mask in vmcoreinfo so that
the stack can be unwound by tools such as kdump.
- Simplification of key initialisation during CPU bringup.
BPF backend:
- Improve immediate generation for logical and add/sub instructions.
vDSO:
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
ACPI:
- Work around for an ambiguity in the IORT specification relating to
the "num_ids" field.
- Support _DMA method for all named components rather than only PCIe
root complexes.
- Minor other IORT-related fixes.
Miscellaneous:
- Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
- Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
- Refactoring and cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits)
KVM: arm64: Move __load_guest_stage2 to kvm_mmu.h
KVM: arm64: Check advertised Stage-2 page size capability
arm64/cpufeature: Add get_arm64_ftr_reg_nowarn()
ACPI/IORT: Remove the unused __get_pci_rid()
arm64/cpuinfo: Add ID_MMFR4_EL1 into the cpuinfo_arm64 context
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR1 register
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR0 register
arm64/cpufeature: Add remaining feature bits in ID_AA64ISAR0 register
arm64/cpufeature: Add remaining feature bits in ID_MMFR4 register
arm64/cpufeature: Add remaining feature bits in ID_PFR0 register
arm64/cpufeature: Introduce ID_MMFR5 CPU register
arm64/cpufeature: Introduce ID_DFR1 CPU register
arm64/cpufeature: Introduce ID_PFR2 CPU register
arm64/cpufeature: Make doublelock a signed feature in ID_AA64DFR0
arm64/cpufeature: Drop TraceFilt feature exposure from ID_DFR0 register
arm64/cpufeature: Add explicit ftr_id_isar0[] for ID_ISAR0 register
arm64: mm: Add asid_gen_match() helper
firmware: smccc: Fix missing prototype warning for arm_smccc_version_init
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
...
of local_lock_t - this primitive comes from the -rt project and identifies
CPU-local locking dependencies normally handled opaquely beind preempt_disable()
or local_irq_save/disable() critical sections.
The generated code on mainline kernels doesn't change as a result, but still there
are benefits: improved debugging and better documentation of data structure
accesses.
The new local_lock_t primitives are introduced and then utilized in a couple of
kernel subsystems. No change in functionality is intended.
There's also other smaller changes and cleanups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7VAogRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1h67BAAusYb44jJyZUE74rmaLnJr0c6j7eJ6twT
8LKRwxb21Y35DMuX6M5ewmvnHiLFYmjL728z+y8O+SP8vb4PSJBX/75X+wsawIJB
cjHdxonyynVVC4zcbdrc37FsrOiVoKLbbZcpqRzHksKkCq2PHbFVxBNvEaKHZCWW
1jnq0MRy9wEJtW9EThDWPLD+OPWhBvocUFYJH4fiqCIaDiip/E16fz3i+yMPt545
Jz4Ibnsq+G5Ehm1N2AkaZuK9V9nYv85E7Z/UNiK4mkDOApE6OMS+q3d86BhqgPg5
g/HL3HNXAtIY74tBYAac5tAQglT+283LuTpEPt9BEjNM7QxKg/ecXO7lwtn7Boku
dACMqeuMHbLyru8uhbun/VBx1gca7HIhW1cvXO5OoR7o78fHpEFivjJ0B0OuSYAI
y+/DsA41OlkWSEnboUs+zTQgFatqxQPke92xpGOJtjVVZRYHRqxcPtw9WFmoVqWA
HeczDQLcSUhqbKSfr6X9BO2u3qxys5BzmImTKMqXEQ4d8Kk0QXbJgGYGfS8+ASey
Am/jwUP3Cvzs99NxLH5gECKRSuTx3rY7nRGaIBYa+Ui575bdSF8sVAF13riB2mBp
NJq2Pw0D36WcX7ecaC2Fk2ezkphbeuAr8E7gh/Mt/oVxjrfwRGfPMrnIwKygUydw
1W5x+WZ+WsY=
=TBTY
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
"The biggest change to core locking facilities in this cycle is the
introduction of local_lock_t - this primitive comes from the -rt
project and identifies CPU-local locking dependencies normally handled
opaquely beind preempt_disable() or local_irq_save/disable() critical
sections.
The generated code on mainline kernels doesn't change as a result, but
still there are benefits: improved debugging and better documentation
of data structure accesses.
The new local_lock_t primitives are introduced and then utilized in a
couple of kernel subsystems. No change in functionality is intended.
There's also other smaller changes and cleanups"
* tag 'locking-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
zram: Use local lock to protect per-CPU data
zram: Allocate struct zcomp_strm as per-CPU memory
connector/cn_proc: Protect send_msg() with a local lock
squashfs: Make use of local lock in multi_cpu decompressor
mm/swap: Use local_lock for protection
radix-tree: Use local_lock for protection
locking: Introduce local_lock()
locking/lockdep: Replace zero-length array with flexible-array
locking/rtmutex: Remove unused rt_mutex_cmpxchg_relaxed()
xdp_umem.c had overlapping changes between the 64-bit math fix
for the calculation of npgs and the removal of the zerocopy
memory type which got rid of the chunk_size_nohdr member.
The mlx5 Kconfig conflict is a case where we just take the
net-next copy of the Kconfig entry dependency as it takes on
the ESWITCH dependency by one level of indirection which is
what the 'net' conflicting change is trying to ensure.
Signed-off-by: David S. Miller <davem@davemloft.net>
When collapse_file() calls try_to_release_page(), it has already isolated
the page: so if releasing buffers happens to fail (as it sometimes does),
remember to putback_lru_page(): otherwise that page is left unreclaimable
and unfreeable, and the file extent uncollapsible.
Fixes: 99cb0dbd47 ("mm,thp: add read-only THP support for (non-shmem) FS")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: <stable@vger.kernel.org> [5.4+]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2005231837500.1766@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak reported many leaks while under memory pressue in,
slots = alloc_slots(pool, gfp);
which is referenced by "zhdr" in init_z3fold_page(),
zhdr->slots = slots;
However, "zhdr" could be gone without freeing slots as the later will be
freed separately when the last "handle" off of "handles" array is freed.
It will be within "slots" which is always aligned.
unreferenced object 0xc000000fdadc1040 (size 104):
comm "oom04", pid 140476, jiffies 4295359280 (age 3454.970s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
z3fold_zpool_malloc+0x7b0/0xe10
alloc_slots at mm/z3fold.c:214
(inlined by) init_z3fold_page at mm/z3fold.c:412
(inlined by) z3fold_alloc at mm/z3fold.c:1161
(inlined by) z3fold_zpool_malloc at mm/z3fold.c:1735
zpool_malloc+0x34/0x50
zswap_frontswap_store+0x60c/0xda0
zswap_frontswap_store at mm/zswap.c:1093
__frontswap_store+0x128/0x330
swap_writepage+0x58/0x110
pageout+0x16c/0xa40
shrink_page_list+0x1ac8/0x25c0
shrink_inactive_list+0x270/0x730
shrink_lruvec+0x444/0xf30
shrink_node+0x2a4/0x9c0
do_try_to_free_pages+0x158/0x640
try_to_free_pages+0x1bc/0x5f0
__alloc_pages_slowpath.constprop.60+0x4dc/0x15a0
__alloc_pages_nodemask+0x520/0x650
alloc_pages_vma+0xc0/0x420
handle_mm_fault+0x1174/0x1bf0
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vitaly Wool <vitaly.wool@konsulko.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/r/20200522220052.2225-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The various struct pagevec per CPU variables are protected by disabling
either preemption or interrupts across the critical sections. Inside
these sections spinlocks have to be acquired.
These spinlocks are regular spinlock_t types which are converted to
"sleeping" spinlocks on PREEMPT_RT enabled kernels. Obviously sleeping
locks cannot be acquired in preemption or interrupt disabled sections.
local locks provide a trivial way to substitute preempt and interrupt
disable instances. On a non PREEMPT_RT enabled kernel local_lock() maps
to preempt_disable() and local_lock_irq() to local_irq_disable().
Create lru_rotate_pvecs containing the pagevec and the locallock.
Create lru_pvecs containing the remaining pagevecs and the locallock.
Add lru_add_drain_cpu_zone() which is used from compact_zone() to avoid
exporting the pvec structure.
Change the relevant call sites to acquire these locks instead of using
preempt_disable() / get_cpu() / get_cpu_var() and local_irq_disable() /
local_irq_save().
There is neither a functional change nor a change in the generated
binary code for non PREEMPT_RT enabled non-debug kernels.
When lockdep is enabled local locks have lockdep maps embedded. These
allow lockdep to validate the protections, i.e. inappropriate usage of a
preemption only protected sections would result in a lockdep warning
while the same problem would not be noticed with a plain
preempt_disable() based protection.
local locks also improve readability as they provide a named scope for
the protections while preempt/interrupt disable are opaque scopeless.
Finally local locks allow PREEMPT_RT to substitute them with real
locking primitives to ensure the correctness of operation in a fully
preemptible kernel.
[ bigeasy: Adopted to use local_lock ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200527201119.1692513-4-bigeasy@linutronix.de
Here add pte_sw_mkyoung function to make page readable on MIPS
platform during page fault handling. This patch improves page
fault latency about 10% on my MIPS machine with lmbench
lat_pagefault case.
It is noop function on other arches, there is no negative
influence on those architectures.
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
If two threads concurrently fault at the same page, the thread that
won the race updates the PTE and its local TLB. For now, the other
thread gives up, simply does nothing, and continues.
It could happen that this second thread triggers another fault, whereby
it only updates its local TLB while handling the fault. Instead of
triggering another fault, let's directly update the local TLB of the
second thread. Function update_mmu_tlb is used here to update local
TLB on the second thread, and it is defined as empty on other arches.
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Export generic_file_buffered_read() to be used to supplement incomplete
direct reads.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The MSCC bug fix in 'net' had to be slightly adjusted because the
register accesses are done slightly differently in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
free_handle() for a foreign handle may race with inter-page compaction,
what can lead to memory corruption.
To avoid that, take write lock not read lock in free_handle to be
synchronized with __release_z3fold_page().
For example KASAN can detect it:
==================================================================
BUG: KASAN: use-after-free in LZ4_decompress_safe+0x2c4/0x3b8
Read of size 1 at addr ffffffc976695ca3 by task GoogleApiHandle/4121
CPU: 0 PID: 4121 Comm: GoogleApiHandle Tainted: P S OE 4.19.81-perf+ #162
Hardware name: Sony Mobile Communications. PDX-203(KONA) (DT)
Call trace:
LZ4_decompress_safe+0x2c4/0x3b8
lz4_decompress_crypto+0x3c/0x70
crypto_decompress+0x58/0x70
zcomp_decompress+0xd4/0x120
...
Apart from that, initialize zhdr->mapped_count in init_z3fold_page() and
remove "newpage" variable because it is not used anywhere.
Signed-off-by: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Raymond Jennings <shentino@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200520082100.28876-1-vitaly.wool@konsulko.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During early boot, while KASAN is not yet initialized, it is possible to
enter reporting code-path and end up in kasan_report().
While uninitialized, the branch there prevents generating any reports,
however, under certain circumstances when branches are being traced
(TRACE_BRANCH_PROFILING), we may recurse deep enough to cause kernel
reboots without warning.
To prevent similar issues in future, we should disable branch tracing
for the core runtime.
[elver@google.com: remove duplicate DISABLE_BRANCH_PROFILING, per Qian Cai]
Link: https://lore.kernel.org/lkml/20200517011732.GE24705@shao2-debian/
Link: http://lkml.kernel.org/r/20200522075207.157349-1-elver@google.com
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r//20200517011732.GE24705@shao2-debian/
Link: http://lkml.kernel.org/r/20200519182459.87166-1-elver@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The GHES code calls memory_failure_queue() from IRQ context to schedule
work on the current CPU so that memory_failure() can sleep.
For synchronous memory errors the arch code needs to know any signals
that memory_failure() will trigger are pending before it returns to
user-space, possibly when exiting from the IRQ.
Add a helper to kick the memory failure queue, to ensure the scheduled
work has happened. This has to be called from process context, so may
have been migrated from the original cpu. Pass the cpu the work was
queued on.
Change memory_failure_work_func() to permit being called on the 'wrong'
cpu.
Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: Tyler Baicar <baicar@os.amperecomputing.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Move the bpf verifier trace check into the new switch statement in
HEAD.
Resolve the overlapping changes in hinic, where bug fixes overlap
the addition of VF support.
Signed-off-by: David S. Miller <davem@davemloft.net>
This change adds accounting for the memory allocated for shadow stacks.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
KASAN is currently missing declarations for __asan_report* and __hwasan*
functions. This can lead to compiler warnings.
Reported-by: Leon Romanovsky <leon@kernel.org>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Leon Romanovsky <leon@kernel.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/45b445a76a79208918f0cc44bfabebaea909b54d.1589297433.git.andreyknvl@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KASAN is incompatible with some kernel debugging/tracing features.
There's been multiple patches that disable those feature for some of
KASAN files one by one. Instead of prolonging that, disable these
features for all KASAN files at once.
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Leon Romanovsky <leonro@mellanox.com>
Link: http://lkml.kernel.org/r/29bd753d5ff5596425905b0b07f51153e2345cc1.1589297433.git.andreyknvl@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A user is not required to set a new address when using MREMAP_DONTUNMAP
as it can be used without MREMAP_FIXED. When doing so the remap event
will use new_addr which may not have been set and we didn't propagate it
back other then in the return value of remap_to.
Because ret is always the new address it's probably more correct to use
it rather than new_addr on the remap_event_complete call, and it
resolves this bug.
Fixes: e346b38130 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Brian Geffon <bgeffon@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Link: http://lkml.kernel.org/r/20200506172158.218366-1-bgeffon@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This part was overlooked when reworking the gup code on multiple
retries.
When we get the 2nd+ retry, we'll be with TRIED flag set. Current code
will bail out on the 2nd retry because the !TRIED check will fail so the
retry logic will be skipped. What's worse is that, it will also return
zero which errornously hints the caller that the page is faulted in
while it's not.
The !TRIED flag check seems to not be needed even before the mutliple
retries change because if we get a VM_FAULT_RETRY, it must be the 1st
retry, and we should not have TRIED set for that.
Fix it by removing the !TRIED check, at the meantime check against fatal
signals properly before the page fault so we can still properly respond
to the user killing the process during retries.
Fixes: 4426e945df ("mm/gup: allow VM_FAULT_RETRY for multiple times")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Brian Geffon <bgeffon@google.com>
Link: http://lkml.kernel.org/r/20200502003523.8204-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presumably the intent here was that hmm_range_fault() could put the data
into some HW specific format and thus avoid some work. However, nothing
actually does that, and it isn't clear how anything actually could do that
as hmm_range_fault() provides CPU addresses which must be DMA mapped.
Perhaps there is some special HW that does not need DMA mapping, but we
don't have any examples of this, and the theoretical performance win of
avoiding an extra scan over the pfns array doesn't seem worth the
complexity. Plus pfns needs to be scanned anyhow to sort out any
DEVICE_PRIVATE pages.
This version replaces the uint64_t with an usigned long containing a pfn
and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values,
on successful output it is filled with HMM_PFN_* values, describing the
state of the pages.
amdgpu is simple to convert, it doesn't use snapshot and doesn't use
per-page flags.
nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache
lines), and it sweeps over its pfns array a couple of times anyhow. It
also has a nasty call chain before it reaches the dma map and hardware
suggesting performance isn't important:
nouveau_svm_fault():
args.i.m.method = NVIF_VMM_V0_PFNMAP
nouveau_range_fault()
nvif_object_ioctl()
client->driver->ioctl()
struct nvif_driver nvif_driver_nvkm:
.ioctl = nvkm_client_ioctl
nvkm_ioctl()
nvkm_ioctl_path()
nvkm_ioctl_v0[type].func(..)
nvkm_ioctl_mthd()
nvkm_object_mthd()
struct nvkm_object_func nvkm_uvmm:
.mthd = nvkm_uvmm_mthd
nvkm_uvmm_mthd()
nvkm_uvmm_mthd_pfnmap()
nvkm_vmm_pfn_map()
nvkm_vmm_ptes_get_map()
func == gp100_vmm_pgt_pfn
struct nvkm_vmm_desc_func gp100_vmm_desc_spt:
.pfn = gp100_vmm_pgt_pfn
nvkm_vmm_iter()
REF_PTES == func == gp100_vmm_pgt_pfn()
dma_map_page()
Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This is just an alias for HMM_PFN_ERROR, nothing cares that the error was
because of a special page vs any other error case.
Link: https://lore.kernel.org/r/4-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
hmm_vma_walk->last is supposed to be updated after every write to the
pfns, so that it can be returned by hmm_range_fault(). However, this is
not done consistently. Fortunately nothing checks the return code of
hmm_range_fault() for anything other than error.
More importantly last must be set before returning -EBUSY as it is used to
prevent reading an output pfn as an input flags when the loop restarts.
For clarity and simplicity make hmm_range_fault() return 0 or -ERRNO. Only
set last when returning -EBUSY.
Link: https://lore.kernel.org/r/2-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl63WVAQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpkXWD/9qJgqQpPkigCCwwPHZ+phthw6gHeAgBxPH
Cw6P9QB4QCdacZjQA6QH3zdxaDsCCitQRioWPgxngs1326TKYNzBi7U3eTEwiK12
cnRybLnkzei4yzYVUSJk637oOoQh3CiJLvYcJBppGFi7crpbvlQv68M2hu05vhwL
R/91H62X/5UaUlc1cJV63OBk8euWzF6XNbCQQrR4ayDvz+BsV5Fs72vYa1gx7qIt
as/67oTT6y4U4pd74nT4OGkxDIXbXfn2eTbh5sMNc4ilBkqMyNbf8aOHdWqXZIBd
18RKpNl6h/fiDMJ0jsGliReONLjfRBcJla68Kn1AFONMcyxcXidjptOwLOt2fYWf
YMguCVMhfgxVBslzLWoQ9AWSiNVh36ycORWlCOrnRaOaQCb9OaLZ2fwibfZ0JsMd
0259Z5vA7MIUoobCc5akXOYHbpByA9FSYkKudgTYLpdjkn05kxQyA12GgJjW3sVw
ZRjoUuDuZDDUct6JcLWdrlONT8st05g+qf6PCoD+Jac8HtbpqHfKJJUtYecUat75
4hGKhuvTzpuVY0wNHo3sgqKfsejQODTN6UhejNI11Zs/nx6O0ze/qoDuWZHncnKl
158le+K5rNS8SUNbDBTMWp3OX4SJm/Gsf30fOWkkt6z1iaEfKc5sCxBHvSOeBEvH
M9pzy56Vtw==
=73nU
-----END PGP SIGNATURE-----
Merge tag 'block-5.7-2020-05-09' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
- a small series fixing a use-after-free of bdi name (Christoph,Yufen)
- NVMe fix for a regression with the smaller CQ update (Alexey)
- NVMe fix for a hang at namespace scanning error recovery (Sagi)
- fix race with blk-iocost iocg->abs_vdebt updates (Tejun)
* tag 'block-5.7-2020-05-09' of git://git.kernel.dk/linux-block:
nvme: fix possible hang when ns scanning fails during error recovery
nvme-pci: fix "slimmer CQ head update"
bdi: add a ->dev_name field to struct backing_dev_info
bdi: use bdi_dev_name() to get device name
bdi: move bdi_dev_name out of line
vboxsf: don't use the source name in the bdi name
iocost: protect iocg->abs_vdebt with iocg->waitq.lock
The name is only printed for a not registered bdi in writeback. Use the
device name there as is more useful anyway for the unlike case that the
warning triggers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Merge the _node vs normal version and drop the superflous gfp_t argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Split out a new bdi_set_owner helper to set the owner, and move the policy
for creating the bdi name back into genhd.c, where it belongs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bdi_register_va is only used by super.c, which can't be modular.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull in block-5.7 fixes for 5.8. Mostly to resolve a conflict with
the blk-iocost changes, but we also need the base of the bdi
use-after-free as well as we build on top of it.
* block-5.7:
nvme: fix possible hang when ns scanning fails during error recovery
nvme-pci: fix "slimmer CQ head update"
bdi: add a ->dev_name field to struct backing_dev_info
bdi: use bdi_dev_name() to get device name
bdi: move bdi_dev_name out of line
vboxsf: don't use the source name in the bdi name
iocost: protect iocg->abs_vdebt with iocg->waitq.lock
block: remove the bd_openers checks in blk_drop_partitions
nvme: prevent double free in nvme_alloc_ns() error handling
null_blk: Cleanup zoned device initialization
null_blk: Fix zoned command handling
block: remove unused header
blk-iocost: Fix error on iocost_ioc_vrate_adj
bdev: Reduce time holding bd_mutex in sync in blkdev_close()
buffer: remove useless comment and WB_REASON_FREE_MORE_MEM, reason.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Cache a copy of the name for the life time of the backing_dev_info
structure so that we can reference it even after unregistering.
Fixes: 68f23b8906 ("memcg: fix a crash in wb_workfn when a device disappears")
Reported-by: Yufen Yu <yuyufen@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit 1c30844d2d ("mm: reclaim small amounts of memory when an
external fragmentation event occurs") adds a boost_watermark() function
which increases the min watermark in a zone by at least
pageblock_nr_pages or the number of pages in a page block.
On Arm64, with 64K pages and 512M huge pages, this is 8192 pages or
512M. It does this regardless of the number of managed pages managed in
the zone or the likelihood of success.
This can put the zone immediately under water in terms of allocating
pages from the zone, and can cause a small machine to fail immediately
due to OoM. Unlike set_recommended_min_free_kbytes(), which
substantially increases min_free_kbytes and is tied to THP,
boost_watermark() can be called even if THP is not active.
The problem is most likely to appear on architectures such as Arm64
where pageblock_nr_pages is very large.
It is desirable to run the kdump capture kernel in as small a space as
possible to avoid wasting memory. In some architectures, such as Arm64,
there are restrictions on where the capture kernel can run, and
therefore, the space available. A capture kernel running in 768M can
fail due to OoM immediately after boost_watermark() sets the min in zone
DMA32, where most of the memory is, to 512M. It fails even though there
is over 500M of free memory. With boost_watermark() suppressed, the
capture kernel can run successfully in 448M.
This patch limits boost_watermark() to boosting a zone's min watermark
only when there are enough pages that the boost will produce positive
results. In this case that is estimated to be four times as many pages
as pageblock_nr_pages.
Mel said:
: There is no harm in marking it stable. Clearly it does not happen very
: often but it's not impossible. 32-bit x86 is a lot less common now
: which would previously have been vulnerable to triggering this easily.
: ppc64 has a larger base page size but typically only has one zone.
: arm64 is likely the most vulnerable, particularly when CMA is
: configured with a small movable zone.
Fixes: 1c30844d2d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Signed-off-by: Henry Willard <henry.willard@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1588294148-6586-1-git-send-email-henry.willard@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a9e7c39fa9 ("mm/vmscan.c: remove 7th argument of
isolate_lru_pages()"), the explanation of 'mode' argument has been
unnecessary. Let's remove it.
Signed-off-by: Qiwu Chen <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200501090346.2894-1-chenqiwu@xiaomi.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 5.7-rc1, on btrfs we have a percpu counter initialization for
which we always pass a GFP_KERNEL gfp_t argument (this happens since
commit 2992df7326 ("btrfs: Implement DREW lock")).
That is safe in some contextes but not on others where allowing fs
reclaim could lead to a deadlock because we are either holding some
btrfs lock needed for a transaction commit or holding a btrfs
transaction handle open. Because of that we surround the call to the
function that initializes the percpu counter with a NOFS context using
memalloc_nofs_save() (this is done at btrfs_init_fs_root()).
However it turns out that this is not enough to prevent a possible
deadlock because percpu_alloc() determines if it is in an atomic context
by looking exclusively at the gfp flags passed to it (GFP_KERNEL in this
case) and it is not aware that a NOFS context is set.
Because percpu_alloc() thinks it is in a non atomic context it locks the
pcpu_alloc_mutex. This can result in a btrfs deadlock when
pcpu_balance_workfn() is running, has acquired that mutex and is waiting
for reclaim, while the btrfs task that called percpu_counter_init() (and
therefore percpu_alloc()) is holding either the btrfs commit_root
semaphore or a transaction handle (done fs/btrfs/backref.c:
iterate_extent_inodes()), which prevents reclaim from finishing as an
attempt to commit the current btrfs transaction will deadlock.
Lockdep reports this issue with the following trace:
======================================================
WARNING: possible circular locking dependency detected
5.6.0-rc7-btrfs-next-77 #1 Not tainted
------------------------------------------------------
kswapd0/91 is trying to acquire lock:
ffff8938a3b3fdc8 (&delayed_node->mutex){+.+.}, at: __btrfs_release_delayed_node.part.0+0x3f/0x320 [btrfs]
but task is already holding lock:
ffffffffb4f0dbc0 (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x5/0x30
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (fs_reclaim){+.+.}:
fs_reclaim_acquire.part.0+0x25/0x30
__kmalloc+0x5f/0x3a0
pcpu_create_chunk+0x19/0x230
pcpu_balance_workfn+0x56a/0x680
process_one_work+0x235/0x5f0
worker_thread+0x50/0x3b0
kthread+0x120/0x140
ret_from_fork+0x3a/0x50
-> #3 (pcpu_alloc_mutex){+.+.}:
__mutex_lock+0xa9/0xaf0
pcpu_alloc+0x480/0x7c0
__percpu_counter_init+0x50/0xd0
btrfs_drew_lock_init+0x22/0x70 [btrfs]
btrfs_get_fs_root+0x29c/0x5c0 [btrfs]
resolve_indirect_refs+0x120/0xa30 [btrfs]
find_parent_nodes+0x50b/0xf30 [btrfs]
btrfs_find_all_leafs+0x60/0xb0 [btrfs]
iterate_extent_inodes+0x139/0x2f0 [btrfs]
iterate_inodes_from_logical+0xa1/0xe0 [btrfs]
btrfs_ioctl_logical_to_ino+0xb4/0x190 [btrfs]
btrfs_ioctl+0x165a/0x3130 [btrfs]
ksys_ioctl+0x87/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x5c/0x260
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #2 (&fs_info->commit_root_sem){++++}:
down_write+0x38/0x70
btrfs_cache_block_group+0x2ec/0x500 [btrfs]
find_free_extent+0xc6a/0x1600 [btrfs]
btrfs_reserve_extent+0x9b/0x180 [btrfs]
btrfs_alloc_tree_block+0xc1/0x350 [btrfs]
alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs]
__btrfs_cow_block+0x122/0x5a0 [btrfs]
btrfs_cow_block+0x106/0x240 [btrfs]
commit_cowonly_roots+0x55/0x310 [btrfs]
btrfs_commit_transaction+0x509/0xb20 [btrfs]
sync_filesystem+0x74/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x93/0xc0
exit_to_usermode_loop+0xf9/0x100
do_syscall_64+0x20d/0x260
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #1 (&space_info->groups_sem){++++}:
down_read+0x3c/0x140
find_free_extent+0xef6/0x1600 [btrfs]
btrfs_reserve_extent+0x9b/0x180 [btrfs]
btrfs_alloc_tree_block+0xc1/0x350 [btrfs]
alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs]
__btrfs_cow_block+0x122/0x5a0 [btrfs]
btrfs_cow_block+0x106/0x240 [btrfs]
btrfs_search_slot+0x50c/0xd60 [btrfs]
btrfs_lookup_inode+0x3a/0xc0 [btrfs]
__btrfs_update_delayed_inode+0x90/0x280 [btrfs]
__btrfs_commit_inode_delayed_items+0x81f/0x870 [btrfs]
__btrfs_run_delayed_items+0x8e/0x180 [btrfs]
btrfs_commit_transaction+0x31b/0xb20 [btrfs]
iterate_supers+0x87/0xf0
ksys_sync+0x60/0xb0
__ia32_sys_sync+0xa/0x10
do_syscall_64+0x5c/0x260
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #0 (&delayed_node->mutex){+.+.}:
__lock_acquire+0xef0/0x1c80
lock_acquire+0xa2/0x1d0
__mutex_lock+0xa9/0xaf0
__btrfs_release_delayed_node.part.0+0x3f/0x320 [btrfs]
btrfs_evict_inode+0x40d/0x560 [btrfs]
evict+0xd9/0x1c0
dispose_list+0x48/0x70
prune_icache_sb+0x54/0x80
super_cache_scan+0x124/0x1a0
do_shrink_slab+0x176/0x440
shrink_slab+0x23a/0x2c0
shrink_node+0x188/0x6e0
balance_pgdat+0x31d/0x7f0
kswapd+0x238/0x550
kthread+0x120/0x140
ret_from_fork+0x3a/0x50
other info that might help us debug this:
Chain exists of:
&delayed_node->mutex --> pcpu_alloc_mutex --> fs_reclaim
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(fs_reclaim);
lock(pcpu_alloc_mutex);
lock(fs_reclaim);
lock(&delayed_node->mutex);
*** DEADLOCK ***
3 locks held by kswapd0/91:
#0: (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x5/0x30
#1: (shrinker_rwsem){++++}, at: shrink_slab+0x12f/0x2c0
#2: (&type->s_umount_key#43){++++}, at: trylock_super+0x16/0x50
stack backtrace:
CPU: 1 PID: 91 Comm: kswapd0 Not tainted 5.6.0-rc7-btrfs-next-77 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8f/0xd0
check_noncircular+0x170/0x190
__lock_acquire+0xef0/0x1c80
lock_acquire+0xa2/0x1d0
__mutex_lock+0xa9/0xaf0
__btrfs_release_delayed_node.part.0+0x3f/0x320 [btrfs]
btrfs_evict_inode+0x40d/0x560 [btrfs]
evict+0xd9/0x1c0
dispose_list+0x48/0x70
prune_icache_sb+0x54/0x80
super_cache_scan+0x124/0x1a0
do_shrink_slab+0x176/0x440
shrink_slab+0x23a/0x2c0
shrink_node+0x188/0x6e0
balance_pgdat+0x31d/0x7f0
kswapd+0x238/0x550
kthread+0x120/0x140
ret_from_fork+0x3a/0x50
This could be fixed by making btrfs pass GFP_NOFS instead of GFP_KERNEL
to percpu_counter_init() in contextes where it is not reclaim safe,
however that type of approach is discouraged since
memalloc_[nofs|noio]_save() were introduced. Therefore this change
makes pcpu_alloc() look up into an existing nofs/noio context before
deciding whether it is in an atomic context or not.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Dennis Zhou <dennis@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/20200430164356.15543-1-fdmanana@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a couple of places in the slub memory allocator, the code uses
"s->offset" as a check to see if the free pointer is put right after the
object. That check is no longer true with commit 3202fa62fb ("slub:
relocate freelist pointer to middle of object").
As a result, echoing "1" into the validate sysfs file, e.g. of dentry,
may cause a bunch of "Freepointer corrupt" error reports like the
following to appear with the system in panic afterwards.
=============================================================================
BUG dentry(666:pmcd.service) (Tainted: G B): Freepointer corrupt
-----------------------------------------------------------------------------
To fix it, use the check "s->offset == s->inuse" in the new helper
function freeptr_outside_object() instead. Also add another helper
function get_info_end() to return the end of info block (inuse + free
pointer if not overlapping with object).
Fixes: 3202fa62fb ("slub: relocate freelist pointer to middle of object")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Vitaly Nikolenko <vnik@duasynt.com>
Cc: Silvio Cesare <silvio.cesare@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Markus Elfring <Markus.Elfring@web.de>
Cc: Changbin Du <changbin.du@gmail.com>
Link: http://lkml.kernel.org/r/20200429135328.26976-1-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Without CONFIG_PREEMPT, it can happen that we get soft lockups detected,
e.g., while booting up.
watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [swapper/0:1]
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.6.0-next-20200331+ #4
Hardware name: Red Hat KVM, BIOS 1.11.1-4.module+el8.1.0+4066+0f1aadab 04/01/2014
RIP: __pageblock_pfn_to_page+0x134/0x1c0
Call Trace:
set_zone_contiguous+0x56/0x70
page_alloc_init_late+0x166/0x176
kernel_init_freeable+0xfa/0x255
kernel_init+0xa/0x106
ret_from_fork+0x35/0x40
The issue becomes visible when having a lot of memory (e.g., 4TB)
assigned to a single NUMA node - a system that can easily be created
using QEMU. Inside VMs on a hypervisor with quite some memory
overcommit, this is fairly easy to trigger.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200416073417.5003-1-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I run my memcg testcase which creates lots of memcgs, I found
there're unexpected out of memory logs while there're still enough
available free memory. The error log is
mkdir: cannot create directory 'foo.65533': Cannot allocate memory
The reason is when we try to create more than MEM_CGROUP_ID_MAX memcgs,
an -ENOMEM errno will be set by mem_cgroup_css_alloc(), but the right
errno should be -ENOSPC "No space left on device", which is an
appropriate errno for userspace's failed mkdir.
As the errno really misled me, we should make it right. After this
patch, the error log will be
mkdir: cannot create directory 'foo.65533': No space left on device
[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200407063621.GA18914@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1586192163-20099-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bdi_dev_name is not a fast path function, move it out of line. This
prepares for using it from modular callers without having to export
an implementation detail like bdi_unknown_name.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull in Christoph Hellwig's series that changes the sysctl's ->proc_handler
methods to take kernel pointers instead. It gets rid of the set_fs address
space overrides used by BPF. As per discussion, pull in the feature branch
into bpf-next as it relates to BPF sysctl progs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200427071508.GV23230@ZenIV.linux.org.uk/T/
Instead of having all the sysctl handlers deal with user pointers, which
is rather hairy in terms of the BPF interaction, copy the input to and
from userspace in common code. This also means that the strings are
always NUL-terminated by the common code, making the API a little bit
safer.
As most handler just pass through the data to one of the common handlers
a lot of the changes are mechnical.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
watermark_boost_factor_sysctl_handler is just a pointless wrapper for
proc_dointvec_minmax, so remove it and use proc_dointvec_minmax
directly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
IORING_OP_MADVISE can end up basically doing mprotect() on the VM of
another process, which means that it can race with our crazy core dump
handling which accesses the VM state without holding the mmap_sem
(because it incorrectly thinks that it is the final user).
This is clearly a core dumping problem, but we've never fixed it the
right way, and instead have the notion of "check that the mm is still
ok" using mmget_still_valid() after getting the mmap_sem for writing in
any situation where we're not the original VM thread.
See commit 04f5866e41 ("coredump: fix race condition between
mmget_not_zero()/get_task_mm() and core dumping") for more background on
this whole mmget_still_valid() thing. You might want to have a barf bag
handy when you do.
We're discussing just fixing this properly in the only remaining core
dumping routines. But even if we do that, let's make do_madvise() do
the right thing, and then when we fix core dumping, we can remove all
these mmget_still_valid() checks.
Reported-and-tested-by: Jann Horn <jannh@google.com>
Fixes: c1ca757bd6 ("io_uring: add IORING_OP_MADVISE")
Acked-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Syzbot reported the below lockdep splat:
WARNING: possible irq lock inversion dependency detected
5.6.0-rc7-syzkaller #0 Not tainted
--------------------------------------------------------
syz-executor.0/10317 just changed the state of lock:
ffff888021d16568 (&(&info->lock)->rlock){+.+.}, at: spin_lock include/linux/spinlock.h:338 [inline]
ffff888021d16568 (&(&info->lock)->rlock){+.+.}, at: shmem_mfill_atomic_pte+0x1012/0x21c0 mm/shmem.c:2407
but this lock was taken by another, SOFTIRQ-safe lock in the past:
(&(&xa->xa_lock)->rlock#5){..-.}
and interrupts could create inverse lock ordering between them.
other info that might help us debug this:
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&(&info->lock)->rlock);
local_irq_disable();
lock(&(&xa->xa_lock)->rlock#5);
lock(&(&info->lock)->rlock);
<Interrupt>
lock(&(&xa->xa_lock)->rlock#5);
*** DEADLOCK ***
The full report is quite lengthy, please see:
https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2004152007370.13597@eggly.anvils/T/#m813b412c5f78e25ca8c6c7734886ed4de43f241d
It is because CPU 0 held info->lock with IRQ enabled in userfaultfd_copy
path, then CPU 1 is splitting a THP which held xa_lock and info->lock in
IRQ disabled context at the same time. If softirq comes in to acquire
xa_lock, the deadlock would be triggered.
The fix is to acquire/release info->lock with *_irq version instead of
plain spin_{lock,unlock} to make it softirq safe.
Fixes: 4c27fe4c4c ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support")
Reported-by: syzbot+e27980339d305f2dbfd9@syzkaller.appspotmail.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: syzbot+e27980339d305f2dbfd9@syzkaller.appspotmail.com
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Link: http://lkml.kernel.org/r/1587061357-122619-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recent commit 71725ed10c ("mm: huge tmpfs: try to split_huge_page()
when punching hole") has allowed syzkaller to probe deeper, uncovering a
long-standing lockdep issue between the irq-unsafe shmlock_user_lock,
the irq-safe xa_lock on mapping->i_pages, and shmem inode's info->lock
which nests inside xa_lock (or tree_lock) since 4.8's shmem_uncharge().
user_shm_lock(), servicing SysV shmctl(SHM_LOCK), wants
shmlock_user_lock while its caller shmem_lock() holds info->lock with
interrupts disabled; but hugetlbfs_file_setup() calls user_shm_lock()
with interrupts enabled, and might be interrupted by a writeback endio
wanting xa_lock on i_pages.
This may not risk an actual deadlock, since shmem inodes do not take
part in writeback accounting, but there are several easy ways to avoid
it.
Requiring interrupts disabled for shmlock_user_lock would be easy, but
it's a high-level global lock for which that seems inappropriate.
Instead, recall that the use of info->lock to guard info->flags in
shmem_lock() dates from pre-3.1 days, when races with SHMEM_PAGEIN and
SHMEM_TRUNCATE could occur: nowadays it serves no purpose, the only flag
added or removed is VM_LOCKED itself, and calls to shmem_lock() an inode
are already serialized by the caller.
Take info->lock out of the chain and the possibility of deadlock or
lockdep warning goes away.
Fixes: 4595ef88d1 ("shmem: make shmem_inode_info::lock irq-safe")
Reported-by: syzbot+c8a8197c8852f566b9d9@syzkaller.appspotmail.com
Reported-by: syzbot+40b71e145e73f78f81ad@syzkaller.appspotmail.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2004161707410.16322@eggly.anvils
Link: https://lore.kernel.org/lkml/000000000000e5838c05a3152f53@google.com/
Link: https://lore.kernel.org/lkml/0000000000003712b305a331d3b1@google.com/
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
remap_vmalloc_range() has had various issues with the bounds checks it
promises to perform ("This function checks that addr is a valid
vmalloc'ed area, and that it is big enough to cover the vma") over time,
e.g.:
- not detecting pgoff<<PAGE_SHIFT overflow
- not detecting (pgoff<<PAGE_SHIFT)+usize overflow
- not checking whether addr and addr+(pgoff<<PAGE_SHIFT) are the same
vmalloc allocation
- comparing a potentially wildly out-of-bounds pointer with the end of
the vmalloc region
In particular, since commit fc9702273e ("bpf: Add mmap() support for
BPF_MAP_TYPE_ARRAY"), unprivileged users can cause kernel null pointer
dereferences by calling mmap() on a BPF map with a size that is bigger
than the distance from the start of the BPF map to the end of the
address space.
This could theoretically be used as a kernel ASLR bypass, by using
whether mmap() with a given offset oopses or returns an error code to
perform a binary search over the possible address range.
To allow remap_vmalloc_range_partial() to verify that addr and
addr+(pgoff<<PAGE_SHIFT) are in the same vmalloc region, pass the offset
to remap_vmalloc_range_partial() instead of adding it to the pointer in
remap_vmalloc_range().
In remap_vmalloc_range_partial(), fix the check against
get_vm_area_size() by using size comparisons instead of pointer
comparisons, and add checks for pgoff.
Fixes: 833423143c ("[PATCH] mm: introduce remap_vmalloc_range()")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Andrii Nakryiko <andriin@fb.com>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@chromium.org>
Link: http://lkml.kernel.org/r/20200415222312.236431-1-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some optimizers don't notice that shmem_punch_compound() is always true
(PageTransCompound() being false) without CONFIG_TRANSPARENT_HUGEPAGE==y.
Use IS_ENABLED to help them to avoid the BUILD_BUG inside HPAGE_PMD_NR.
Fixes: 71725ed10c ("mm: huge tmpfs: try to split_huge_page() when punching hole")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2004142339170.10035@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
EINTR is the usual error code which other killable interfaces return.
This is the case for the other fatal_signal_pending break out from the
same function. Make the code consistent.
ERESTARTSYS is also quite confusing because the signal is fatal and so
no restart will happen before returning to the userspace.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: http://lkml.kernel.org/r/20200409071133.31734-1-mhocko@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Our machine encountered a panic(addressing exception) after run for a
long time and the calltrace is:
RIP: hugetlb_fault+0x307/0xbe0
RSP: 0018:ffff9567fc27f808 EFLAGS: 00010286
RAX: e800c03ff1258d48 RBX: ffffd3bb003b69c0 RCX: e800c03ff1258d48
RDX: 17ff3fc00eda72b7 RSI: 00003ffffffff000 RDI: e800c03ff1258d48
RBP: ffff9567fc27f8c8 R08: e800c03ff1258d48 R09: 0000000000000080
R10: ffffaba0704c22a8 R11: 0000000000000001 R12: ffff95c87b4b60d8
R13: 00005fff00000000 R14: 0000000000000000 R15: ffff9567face8074
FS: 00007fe2d9ffb700(0000) GS:ffff956900e40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffd3bb003b69c0 CR3: 000000be67374000 CR4: 00000000003627e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
follow_hugetlb_page+0x175/0x540
__get_user_pages+0x2a0/0x7e0
__get_user_pages_unlocked+0x15d/0x210
__gfn_to_pfn_memslot+0x3c5/0x460 [kvm]
try_async_pf+0x6e/0x2a0 [kvm]
tdp_page_fault+0x151/0x2d0 [kvm]
...
kvm_arch_vcpu_ioctl_run+0x330/0x490 [kvm]
kvm_vcpu_ioctl+0x309/0x6d0 [kvm]
do_vfs_ioctl+0x3f0/0x540
SyS_ioctl+0xa1/0xc0
system_call_fastpath+0x22/0x27
For 1G hugepages, huge_pte_offset() wants to return NULL or pudp, but it
may return a wrong 'pmdp' if there is a race. Please look at the
following code snippet:
...
pud = pud_offset(p4d, addr);
if (sz != PUD_SIZE && pud_none(*pud))
return NULL;
/* hugepage or swap? */
if (pud_huge(*pud) || !pud_present(*pud))
return (pte_t *)pud;
pmd = pmd_offset(pud, addr);
if (sz != PMD_SIZE && pmd_none(*pmd))
return NULL;
/* hugepage or swap? */
if (pmd_huge(*pmd) || !pmd_present(*pmd))
return (pte_t *)pmd;
...
The following sequence would trigger this bug:
- CPU0: sz = PUD_SIZE and *pud = 0 , continue
- CPU0: "pud_huge(*pud)" is false
- CPU1: calling hugetlb_no_page and set *pud to xxxx8e7(PRESENT)
- CPU0: "!pud_present(*pud)" is false, continue
- CPU0: pmd = pmd_offset(pud, addr) and maybe return a wrong pmdp
However, we want CPU0 to return NULL or pudp in this case.
We must make sure there is exactly one dereference of pud and pmd.
Signed-off-by: Longpeng <longpeng2@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200413010342.771-1-longpeng2@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Marco Elver reported system crashes when booting with "slub_debug=Z".
The freepointer location (s->offset) was not taking into account that
the "inuse" size that includes the redzone area should not be used by
the freelist pointer. Change the calculation to save the area of the
object that an inline freepointer may be written into.
Fixes: 3202fa62fb ("slub: relocate freelist pointer to middle of object")
Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Marco Elver <elver@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/202004151054.BD695840@keescook
Link: https://lore.kernel.org/linux-mm/20200415164726.GA234932@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several references got broken due to txt to ReST conversion.
Several of them can be automatically fixed with:
scripts/documentation-file-ref-check --fix
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> # hwtracing/coresight/Kconfig
Reviewed-by: Paul E. McKenney <paulmck@kernel.org> # memory-barrier.txt
Acked-by: Alex Shi <alex.shi@linux.alibaba.com> # translations/zh_CN
Acked-by: Federico Vaga <federico.vaga@vaga.pv.it> # translations/it_IT
Acked-by: Marc Zyngier <maz@kernel.org> # kvm/arm64
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Link: https://lore.kernel.org/r/6f919ddb83a33b5f2a63b6b5f0575737bb2b36aa.1586881715.git.mchehab+huawei@kernel.org
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
When remapping a mapping where a portion of a VMA is remapped
into another portion of the VMA it can cause the VMA to become
split. During the copy_vma operation the VMA can actually
be remerged if it's an anonymous VMA whose pages have not yet
been faulted. This isn't normally a problem because at the end
of the remap the original portion is unmapped causing it to
become split again.
However, MREMAP_DONTUNMAP leaves that original portion in place which
means that the VMA which was split and then remerged is not actually
split at the end of the mremap. This patch fixes a bug where
we don't detect that the VMAs got remerged and we end up
putting back VM_ACCOUNT on the next mapping which is completely
unreleated. When that next mapping is unmapped it results in
incorrectly unaccounting for the memory which was never accounted,
and eventually we will underflow on the memory comittment.
There is also another issue which is similar, we're currently
accouting for the number of pages in the new_vma but that's wrong.
We need to account for the length of the remap operation as that's
all that is being added. If there was a mapping already at that
location its comittment would have been adjusted as part of
the munmap at the start of the mremap.
A really simple repro can be seen in:
https://gist.github.com/bgaff/e101ce99da7d9a8c60acc641d07f312c
Fixes: e346b38130 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Brian Geffon <bgeffon@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl6TbaUeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGhgkH/iWpiKvosA20HJjC
rBqYeJPxQsgZTuBieWJ+MeVxbpcF7RlM4c+glyvg3QJhHwIEG58dl6LBrQbAyBAR
aFHNojr1iAYOruVCGnU3pA008YZiwUIDv/ZQ4DF8fmIU2vI2mJ6qHBv3XDl4G2uR
Nwz8Eu9AgIwZM5coomVOSmoWyFy7Vxmb7W+3t5VmKsvOWx4ib9kyQtOIkvQDEl7j
XCbWfI0xDQr6LFOm4jnCi5R/LhJ2LIqqIvHHrunbpszM8IwK797jCXz4im+dmd5Y
+km46N7a8pDqri36xXz1gdBAU3eG7Pt1NyvfjwRVTdX4GquQ2MT0GoojxbLxUP3y
3pEsQuE=
=whbL
-----END PGP SIGNATURE-----
Merge tag 'v5.7-rc1' into locking/kcsan, to resolve conflicts and refresh
Resolve these conflicts:
arch/x86/Kconfig
arch/x86/kernel/Makefile
Do a minor "evil merge" to move the KCSAN entry up a bit by a few lines
in the Kconfig to reduce the probability of future conflicts.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge yet more updates from Andrew Morton:
- Almost all of the rest of MM (memcg, slab-generic, slab, pagealloc,
gup, hugetlb, pagemap, memremap)
- Various other things (hfs, ocfs2, kmod, misc, seqfile)
* akpm: (34 commits)
ipc/util.c: sysvipc_find_ipc() should increase position index
kernel/gcov/fs.c: gcov_seq_next() should increase position index
fs/seq_file.c: seq_read(): add info message about buggy .next functions
drivers/dma/tegra20-apb-dma.c: fix platform_get_irq.cocci warnings
change email address for Pali Rohár
selftests: kmod: test disabling module autoloading
selftests: kmod: fix handling test numbers above 9
docs: admin-guide: document the kernel.modprobe sysctl
fs/filesystems.c: downgrade user-reachable WARN_ONCE() to pr_warn_once()
kmod: make request_module() return an error when autoloading is disabled
mm/memremap: set caching mode for PCI P2PDMA memory to WC
mm/memory_hotplug: add pgprot_t to mhp_params
powerpc/mm: thread pgprot_t through create_section_mapping()
x86/mm: introduce __set_memory_prot()
x86/mm: thread pgprot_t through init_memory_mapping()
mm/memory_hotplug: rename mhp_restrictions to mhp_params
mm/memory_hotplug: drop the flags field from struct mhp_restrictions
mm/special: create generic fallbacks for pte_special() and pte_mkspecial()
mm/vma: introduce VM_ACCESS_FLAGS
mm/vma: define a default value for VM_DATA_DEFAULT_FLAGS
...
PCI BAR IO memory should never be mapped as WB, however prior to this
the PAT bits were set WB and it was typically overridden by MTRR
registers set by the firmware.
Set PCI P2PDMA memory to be UC as this is what it currently, typically,
ends up being mapped as on x86 after the MTRR registers override the
cache setting.
Future use-cases may need to generalize this by adding flags to select
the caching type, as some P2PDMA cases may not want UC. However, those
use-cases are not upstream yet and this can be changed when they arrive.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Eric Badger <ebadger@gigaio.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200306170846.9333-8-logang@deltatee.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
devm_memremap_pages() is currently used by the PCI P2PDMA code to create
struct page mappings for IO memory. At present, these mappings are
created with PAGE_KERNEL which implies setting the PAT bits to be WB.
However, on x86, an mtrr register will typically override this and force
the cache type to be UC-. In the case firmware doesn't set this
register it is effectively WB and will typically result in a machine
check exception when it's accessed.
Other arches are not currently likely to function correctly seeing they
don't have any MTRR registers to fall back on.
To solve this, provide a way to specify the pgprot value explicitly to
arch_add_memory().
Of the arches that support MEMORY_HOTPLUG: x86_64, and arm64 need a
simple change to pass the pgprot_t down to their respective functions
which set up the page tables. For x86_32, set the page tables
explicitly using _set_memory_prot() (seeing they are already mapped).
For ia64, s390 and sh, reject anything but PAGE_KERNEL settings -- this
should be fine, for now, seeing these architectures don't support
ZONE_DEVICE.
A check in __add_pages() is also added to ensure the pgprot parameter
was set for all arches.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Badger <ebadger@gigaio.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200306170846.9333-7-logang@deltatee.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mhp_restrictions struct really doesn't specify anything resembling a
restriction anymore so rename it to be mhp_params as it is a list of
extended parameters.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Badger <ebadger@gigaio.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200306170846.9333-3-logang@deltatee.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are many places where all basic VMA access flags (read, write,
exec) are initialized or checked against as a group. One such example
is during page fault. Existing vma_is_accessible() wrapper already
creates the notion of VMA accessibility as a group access permissions.
Hence lets just create VM_ACCESS_FLAGS (VM_READ|VM_WRITE|VM_EXEC) which
will not only reduce code duplication but also extend the VMA
accessibility concept in general.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Rob Springer <rspringer@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Link: http://lkml.kernel.org/r/1583391014-8170-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the ability to insert multiple pages at once to a user VM with lower
PTE spinlock operations.
The intention of this patch-set is to reduce atomic ops for tcp zerocopy
receives, which normally hits the same spinlock multiple times
consecutively.
[akpm@linux-foundation.org: pte_alloc() no longer takes the `addr' argument]
[arjunroy@google.com: add missing page_count() check to vm_insert_pages()]
Link: http://lkml.kernel.org/r/20200214005929.104481-1-arjunroy.kdev@gmail.com
[arjunroy@google.com: vm_insert_pages() checks if pte_index defined]
Link: http://lkml.kernel.org/r/20200228054714.204424-2-arjunroy.kdev@gmail.com
Signed-off-by: Arjun Roy <arjunroy@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Miller <davem@davemloft.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200128025958.43490-2-arjunroy.kdev@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add helper methods for vm_insert_page()/insert_page() to prepare for
vm_insert_pages(), which batch-inserts pages to reduce spinlock
operations when inserting multiple consecutive pages into the user page
table.
The intention of this patch-set is to reduce atomic ops for tcp zerocopy
receives, which normally hits the same spinlock multiple times
consecutively.
Signed-off-by: Arjun Roy <arjunroy@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Miller <davem@davemloft.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200128025958.43490-1-arjunroy.kdev@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On passing requirement to vm_unmapped_area, arch_get_unmapped_area and
arch_get_unmapped_area_topdown did not set align_offset. Internally on
both unmapped_area and unmapped_area_topdown, if info->align_mask is 0,
then info->align_offset was meaningless.
But commit df529cabb7 ("mm: mmap: add trace point of
vm_unmapped_area") always prints info->align_offset even though it is
uninitialized.
Fix this uninitialized value issue by setting it to 0 explicitly.
Before:
vm_unmapped_area: addr=0x755b155000 err=0 total_vm=0x15aaf0 flags=0x1 len=0x109000 lo=0x8000 hi=0x75eed48000 mask=0x0 ofs=0x4022
After:
vm_unmapped_area: addr=0x74a4ca1000 err=0 total_vm=0x168ab1 flags=0x1 len=0x9000 lo=0x8000 hi=0x753d94b000 mask=0x0 ofs=0x0
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20200409094035.19457-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 944d9fec8d ("hugetlb: add support for gigantic page allocation
at runtime") has added the run-time allocation of gigantic pages.
However it actually works only at early stages of the system loading,
when the majority of memory is free. After some time the memory gets
fragmented by non-movable pages, so the chances to find a contiguous 1GB
block are getting close to zero. Even dropping caches manually doesn't
help a lot.
At large scale rebooting servers in order to allocate gigantic hugepages
is quite expensive and complex. At the same time keeping some constant
percentage of memory in reserved hugepages even if the workload isn't
using it is a big waste: not all workloads can benefit from using 1 GB
pages.
The following solution can solve the problem:
1) On boot time a dedicated cma area* is reserved. The size is passed
as a kernel argument.
2) Run-time allocations of gigantic hugepages are performed using the
cma allocator and the dedicated cma area
In this case gigantic hugepages can be allocated successfully with a
high probability, however the memory isn't completely wasted if nobody
is using 1GB hugepages: it can be used for pagecache, anon memory, THPs,
etc.
* On a multi-node machine a per-node cma area is allocated on each node.
Following gigantic hugetlb allocation are using the first available
numa node if the mask isn't specified by a user.
Usage:
1) configure the kernel to allocate a cma area for hugetlb allocations:
pass hugetlb_cma=10G as a kernel argument
2) allocate hugetlb pages as usual, e.g.
echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
If the option isn't enabled or the allocation of the cma area failed,
the current behavior of the system is preserved.
x86 and arm-64 are covered by this patch, other architectures can be
trivially added later.
The patch contains clean-ups and fixes proposed and implemented by Aslan
Bakirov and Randy Dunlap. It also contains ideas and suggestions
proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks!
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Andreas Schaufler <andreas.schaufler@gmx.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've noticed that there is no interface exposed by CMA which would let
me to declare contigous memory on particular NUMA node.
This patchset adds the ability to try to allocate contiguous memory on a
specific node. It will fallback to other nodes if the specified one
doesn't work.
Implement a new method for declaring contigous memory on particular node
and keep cma_declare_contiguous() as a wrapper.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Aslan Bakirov <aslan@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Andreas Schaufler <andreas.schaufler@gmx.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following sparse warning:
mm/page_alloc.c:106:1: warning: symbol 'pcpu_drain_mutex' was not declared. Should it be static?
mm/page_alloc.c:107:1: warning: symbol '__pcpu_scope_pcpu_drain' was not declared. Should it be static?
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Jason Yan <yanaijie@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200407023925.46438-1-yanaijie@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add description of function parameter 'mt' to fix kernel-doc warning:
mm/page_alloc.c:3246: warning: Function parameter or member 'mt' not described in '__putback_isolated_page'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/02998bd4-0b82-2f15-2570-f86130304d1e@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a typo in comment, fix it.
s/eariler/earlier/
Signed-off-by: Qiujun Huang <hqjagain@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/20200405160544.1246-1-hqjagain@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a cgroup violates its memory.high constraints, we may end up unduly
penalising it. For example, for the following hierarchy:
A: max high, 20 usage
A/B: 9 high, 10 usage
A/C: max high, 10 usage
We would end up doing the following calculation below when calculating
high delay for A/B:
A/B: 10 - 9 = 1...
A: 20 - PAGE_COUNTER_MAX = 21, so set max_overage to 21.
This gets worse with higher disparities in usage in the parent.
I have no idea how this disappeared from the final version of the patch,
but it is certainly Not Good(tm). This wasn't obvious in testing because,
for a simple cgroup hierarchy with only one child, the result is usually
roughly the same. It's only in more complex hierarchies that things go
really awry (although still, the effects are limited to a maximum of 2
seconds in schedule_timeout_killable at a maximum).
[chris@chrisdown.name: changelog]
Fixes: e26733e0d0 ("mm, memcg: throttle allocators based on ancestral memory.high")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org> [5.4.x]
Link: http://lkml.kernel.org/r/20200331152424.GA1019937@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl6QhDIQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpsE/EADOQ0xDMOa8EmzRvjuCkiaB9yK2zXiBSAj5
ZBi7ReownfXhCR7nVc8Bv1s2f00PD6CFNURXZmdgyDDrXEd2ojueDoAZNBk59t0e
i2CAF2wLAQ5EfuVaxSHVEOrVEmtu+ue+Ix83JNlnGPd7pf9s7uKc/W4iKGpgpxIo
1CpXmWwm5RwjX4z/Qsiaka2lB7QojjImp1n3C+XI5+pp/bJXiftep1lxH5Y3nSWU
iR4jO81uxDMxhTEZ9z2cb1HarhctKvnihcb39gQYQ/kYYu7hSZnBPZo5zp5Dyb/t
4tGuDsfXCQCbF0smkusUrcyeT19vh9tOsGkiMzJ/ihm7TMyN4fT23h6DUb/7pAON
jnlcB7r5Ezs8jLz9i+mAoq06djd5u54kiuKFog8170sTrtYsncZbyc01wLNAla/V
/6KX1sMbPlbXZ+a3l3i7i/gcCBJ7ci6pV3x2elvM9dKHxyqJmwEGMlFVwt4s26ev
wS+7+dktLAC73889Zyn8LutA4bWy5FmisSPA4PydSUSOZA+7JjlbILcz15jjwlP2
HzYk+TXsd3yJUQRYX5P0FcDaBUTISr/xeUUB+KT1rLv4Lhtso+S/9cvSc8x5mOa9
989gmqNfFAWoj1nKEIKeRwLjk0b6YA9qMv4jOwwiuobsT55aBxpbP80huNoRVj5L
xFIWgBSwzg==
=3woC
-----END PGP SIGNATURE-----
Merge tag 'block-5.7-2020-04-10' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
"Here's a set of fixes that should go into this merge window. This
contains:
- NVMe pull request from Christoph with various fixes
- Better discard support for loop (Evan)
- Only call ->commit_rqs() if we have queued IO (Keith)
- blkcg offlining fixes (Tejun)
- fix (and fix the fix) for busy partitions"
* tag 'block-5.7-2020-04-10' of git://git.kernel.dk/linux-block:
block: fix busy device checking in blk_drop_partitions again
block: fix busy device checking in blk_drop_partitions
nvmet-rdma: fix double free of rdma queue
blk-mq: don't commit_rqs() if none were queued
nvme-fc: Revert "add module to ops template to allow module references"
nvme: fix deadlock caused by ANA update wrong locking
nvmet-rdma: fix bonding failover possible NULL deref
loop: Better discard support for block devices
loop: Report EOPNOTSUPP properly
nvmet: fix NULL dereference when removing a referral
nvme: inherit stable pages constraint in the mpath stack device
blkcg: don't offline parent blkcg first
blkcg: rename blkcg->cgwb_refcnt to ->online_pin and always use it
nvme-tcp: fix possible crash in recv error flow
nvme-tcp: don't poll a non-live queue
nvme-tcp: fix possible crash in write_zeroes processing
nvmet-fc: fix typo in comment
nvme-rdma: Replace comma with a semicolon
nvme-fcloop: fix deallocation of working context
nvme: fix compat address handling in several ioctls
- Add support for region alignment configuration and enforcement to
fix compatibility across architectures and PowerPC page size
configurations.
- Introduce 'zero_page_range' as a dax operation. This facilitates
filesystem-dax operation without a block-device.
- Introduce phys_to_target_node() to facilitate drivers that want to
know resulting numa node if a given reserved address range was
onlined.
- Advertise a persistence-domain for of_pmem and papr_scm. The
persistence domain indicates where cpu-store cycles need to reach in
the platform-memory subsystem before the platform will consider them
power-fail protected.
- Promote numa_map_to_online_node() to a cross-kernel generic facility.
- Save x86 numa information to allow for node-id lookups for reserved
memory ranges, deploy that capability for the e820-pmem driver.
- Pick up some miscellaneous minor fixes, that missed v5.6-final,
including a some smatch reports in the ioctl path and some unit test
compilation fixups.
- Fixup some flexible-array declarations.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEf41QbsdZzFdA8EfZHtKRamZ9iAIFAl6LtIAACgkQHtKRamZ9
iAIwRA/8CLVVuQpgHQ1tqK4h8CZPrISFXh7wy7uhocEU2xrDh6iGVnLztmoLRr2k
5f8T9lRzreSAwIVL5DbGqP1pFncqIt9VMnKsFlaPMBGCBNR+hURY0iBCNjIT+jiq
BOzLd52MR2rqJxeXGTMUbWrBrbmuj4mZPdmGVuFFe7GFRpoaVpCgOo+296eWa/ot
gIOFUTonZY7STYjNvDok0TXCmiCFuJb+P+y5ldfCPShHvZhTiaF53jircja8vAjO
G5dt8ixBKUK0rXRc4SEQsQhAZNcAFHb6Gy5lg4C2QzhTF374xTc9usJZNWbIE9iM
5mipBYvjVuoY+XaCNZDkaRcJIy/jqB15O6l3QIWbZLGaK9m95YPp9LmkPFwd3JpO
e3rO24ML471DxqB9iWIiJCNcBBocLOlnd6qAQTpppWDpGNbudwXvfsmKHmKIScSE
x+IDCdscLmmm+WG2dLmLraWOVPu42xZFccoQCi4M3TTqfeB9pZ9XckFQ37zX62zG
5t+7Ek+t1W4QVt/JQYVKH03XT15sqUpVknvx0Hl4Y5TtbDOkFLkO8RN0/HyExDef
7iegS35kqTsM4EfZQ+9juKbI2JBAjHANcbj0V4dogqaRj6vr3akumBzUtuYqAofv
qU3s9skmLsEemOJC+ns2PT8vl5dyIoeDfH0r2XvGWxYqolMqJpA=
=sY4N
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and dax updates from Dan Williams:
"There were multiple touches outside of drivers/nvdimm/ this round to
add cross arch compatibility to the devm_memremap_pages() interface,
enhance numa information for persistent memory ranges, and add a
zero_page_range() dax operation.
This cycle I switched from the patchwork api to Konstantin's b4 script
for collecting tags (from x86, PowerPC, filesystem, and device-mapper
folks), and everything looks to have gone ok there. This has all
appeared in -next with no reported issues.
Summary:
- Add support for region alignment configuration and enforcement to
fix compatibility across architectures and PowerPC page size
configurations.
- Introduce 'zero_page_range' as a dax operation. This facilitates
filesystem-dax operation without a block-device.
- Introduce phys_to_target_node() to facilitate drivers that want to
know resulting numa node if a given reserved address range was
onlined.
- Advertise a persistence-domain for of_pmem and papr_scm. The
persistence domain indicates where cpu-store cycles need to reach
in the platform-memory subsystem before the platform will consider
them power-fail protected.
- Promote numa_map_to_online_node() to a cross-kernel generic
facility.
- Save x86 numa information to allow for node-id lookups for reserved
memory ranges, deploy that capability for the e820-pmem driver.
- Pick up some miscellaneous minor fixes, that missed v5.6-final,
including a some smatch reports in the ioctl path and some unit
test compilation fixups.
- Fixup some flexible-array declarations"
* tag 'libnvdimm-for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (29 commits)
dax: Move mandatory ->zero_page_range() check in alloc_dax()
dax,iomap: Add helper dax_iomap_zero() to zero a range
dax: Use new dax zero page method for zeroing a page
dm,dax: Add dax zero_page_range operation
s390,dcssblk,dax: Add dax zero_page_range operation to dcssblk driver
dax, pmem: Add a dax operation zero_page_range
pmem: Add functions for reading/writing page to/from pmem
libnvdimm: Update persistence domain value for of_pmem and papr_scm device
tools/test/nvdimm: Fix out of tree build
libnvdimm/region: Fix build error
libnvdimm/region: Replace zero-length array with flexible-array member
libnvdimm/label: Replace zero-length array with flexible-array member
ACPI: NFIT: Replace zero-length array with flexible-array member
libnvdimm/region: Introduce an 'align' attribute
libnvdimm/region: Introduce NDD_LABELING
libnvdimm/namespace: Enforce memremap_compat_align()
libnvdimm/pfn: Prevent raw mode fallback if pfn-infoblock valid
libnvdimm: Out of bounds read in __nd_ioctl()
acpi/nfit: improve bounds checking for 'func'
mm/memremap_pages: Introduce memremap_compat_align()
...
__get_user_pages_locked() will return 0 instead of -EINTR after commit
4426e945df ("mm/gup: allow VM_FAULT_RETRY for multiple times") which
added extra code to allow gup detect fatal signal faster.
Restore the original -EINTR behavior.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: 4426e945df ("mm/gup: allow VM_FAULT_RETRY for multiple times")
Reported-by: syzbot+3be1a33f04dc782e9fd5@syzkaller.appspotmail.com
Signed-off-by: Hillf Danton <hdanton@sina.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's definitely incorrect to mark the lock as taken even if
down_read_killable() failed.
This wass overlooked when we switched from down_read() to
down_read_killable() because down_read() won't fail while
down_read_killable() could.
Fixes: 71335f37c5 ("mm/gup: allow to react to fatal signals")
Reported-by: syzbot+a8c70b7f3579fc0587dc@syzkaller.appspotmail.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lookup_node() uses gup to pin the page and get node information. It
checks against ret>=0 assuming the page will be filled in. However it's
also possible that gup will return zero, for example, when the thread is
quickly killed with a fatal signal. Teach lookup_node() to gracefully
return an error -EFAULT if it happens.
Meanwhile, initialize "page" to NULL to avoid potential risk of
exploiting the pointer.
Fixes: 4426e945df ("mm/gup: allow VM_FAULT_RETRY for multiple times")
Reported-by: syzbot+693dc11fcb53120b5559@syzkaller.appspotmail.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
filter_irq_stacks() can be used by other tools (e.g. KMSAN), so it needs
to be moved to a common location. lib/stackdepot.c seems a good place, as
filter_irq_stacks() is usually applied to the output of
stack_trace_save().
This patch has been previously mailed as part of KMSAN RFC patch series.
[glider@google.co: nds32: linker script: add SOFTIRQENTRY_TEXT\
Link: http://lkml.kernel.org/r/20200311121002.241430-1-glider@google.com
[glider@google.com: add IRQENTRY_TEXT and SOFTIRQENTRY_TEXT to linker script]
Link: http://lkml.kernel.org/r/20200311121124.243352-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Link: http://lkml.kernel.org/r/20200220141916.55455-3-glider@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that "struct proc_ops" exist we can start putting there stuff which
could not fly with VFS "struct file_operations"...
Most of fs/proc/inode.c file is dedicated to make open/read/.../close
reliable in the event of disappearing /proc entries which usually happens
if module is getting removed. Files like /proc/cpuinfo which never
disappear simply do not need such protection.
Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such
"permanent" files.
Enable "permanent" flag for
/proc/cpuinfo
/proc/kmsg
/proc/modules
/proc/slabinfo
/proc/stat
/proc/sysvipc/*
/proc/swaps
More will come once I figure out foolproof way to prevent out module
authors from marking their stuff "permanent" for performance reasons
when it is not.
This should help with scalability: benchmark is "read /proc/cpuinfo R times
by N threads scattered over the system".
N R t, s (before) t, s (after)
-----------------------------------------------------
64 4096 1.582458 1.530502 -3.2%
256 4096 6.371926 6.125168 -3.9%
1024 4096 25.64888 24.47528 -4.6%
Benchmark source:
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN);
int N;
const char *filename;
int R;
int xxx = 0;
int glue(int n)
{
cpu_set_t m;
CPU_ZERO(&m);
CPU_SET(n, &m);
return sched_setaffinity(0, sizeof(cpu_set_t), &m);
}
void f(int n)
{
glue(n % NR_CPUS);
while (*(volatile int *)&xxx == 0) {
}
for (int i = 0; i < R; i++) {
int fd = open(filename, O_RDONLY);
char buf[4096];
ssize_t rv = read(fd, buf, sizeof(buf));
asm volatile ("" :: "g" (rv));
close(fd);
}
}
int main(int argc, char *argv[])
{
if (argc < 4) {
std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R
";
return 1;
}
N = atoi(argv[1]);
filename = argv[2];
R = atoi(argv[3]);
for (int i = 0; i < NR_CPUS; i++) {
if (glue(i) == 0)
break;
}
std::vector<std::thread> T;
T.reserve(N);
for (int i = 0; i < N; i++) {
T.emplace_back(f, i);
}
auto t0 = std::chrono::system_clock::now();
{
*(volatile int *)&xxx = 1;
for (auto& t: T) {
t.join();
}
}
auto t1 = std::chrono::system_clock::now();
std::chrono::duration<double> dt = t1 - t0;
std::cout << dt.count() << '
';
return 0;
}
P.S.:
Explicit randomization marker is added because adding non-function pointer
will silently disable structure layout randomization.
[akpm@linux-foundation.org: coding style fixes]
Reported-by: kbuild test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Joe Perches <joe@perches.com>
Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously there was a check if 'size' is aligned to 'align' and if not
then it was aligned. This check was expensive as both branch and division
are expensive instructions in most architectures. 'ALIGN' function on
already aligned value will not change it, and as it is cheaper than branch
+ division it can be executed all the time and branch can be removed.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200320173317.26408-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MAX_ZONELISTS is a compile time constant, so it should be compared using
BUILD_BUG_ON not BUG_ON.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Link: http://lkml.kernel.org/r/20200228224617.11343-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The parameter of remap_pfn_range() @pfn passed from the caller is actually
a page-frame number converted by corresponding physical address of kernel
memory, the original comment is ambiguous that may mislead the users.
Meanwhile, there is an ambiguous typo "VMM" in the comment of
vm_area_struct. So fixing them will make the code more readable.
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1583026921-15279-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports a warning at unpin_tag()()
warning: context imbalance in unpin_tag() - unexpected unlock
The root cause is the missing annotation at unpin_tag()
Add the missing __releases(bitlock) annotation
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/20200214204741.94112-14-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports a warning at pin_tag()()
warning: context imbalance in pin_tag() - wrong count at exit
The root cause is the missing annotation at pin_tag()
Add the missing __acquires(bitlock) annotation
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/20200214204741.94112-13-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports a warning at migrate_read_unlock()()
warning: context imbalance in migrate_read_unlock() - unexpected unlock
The root cause is the missing annotation at migrate_read_unlock()
Add the missing __releases(&zspage->lock) annotation
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/20200214204741.94112-12-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports a warning at migrate_read_lock()()
warning: context imbalance in migrate_read_lock() - wrong count at exit
The root cause is the missing annotation at migrate_read_lock()
Add the missing __acquires(&zspage->lock) annotation
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/20200214204741.94112-11-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports a warning at put_map()()
warning: context imbalance in put_map() - unexpected unlock
The root cause is the missing annotation at put_map()
Add the missing __releases(&object_map_lock) annotation
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200214204741.94112-10-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports a warning at get_map()()
warning: context imbalance in get_map() - wrong count at exit
The root cause is the missing annotation at get_map()
Add the missing __acquires(&object_map_lock) annotation
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200214204741.94112-9-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports a warning at queue_pages_pmd()
context imbalance in queue_pages_pmd() - unexpected unlock
The root cause is the missing annotation at queue_pages_pmd()
Add the missing __releases(ptl)
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200214204741.94112-8-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports a warning at gather_surplus_pages()
warning: context imbalance in hugetlb_cow() - unexpected unlock
The root cause is the missing annotation at gather_surplus_pages()
Add the missing __must_hold(&hugetlb_lock)
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Link: http://lkml.kernel.org/r/20200214204741.94112-7-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports a warning at compact_lock_irqsave()
warning: context imbalance in compact_lock_irqsave() - wrong count at exit
The root cause is the missing annotation at compact_lock_irqsave()
Add the missing __acquires(lock) annotation.
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200214204741.94112-6-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compressed cache for swap pages (zswap) currently needs from 1 to 3
extra kernel command line parameters in order to make it work: it has to
be enabled by adding a "zswap.enabled=1" command line parameter and if one
wants a different compressor or pool allocator than the default lzo / zbud
combination then these choices also need to be specified on the kernel
command line in additional parameters.
Using a different compressor and allocator for zswap is actually pretty
common as guides often recommend using the lz4 / z3fold pair instead of
the default one. In such case it is also necessary to remember to enable
the appropriate compression algorithm and pool allocator in the kernel
config manually.
Let's avoid the need for adding these kernel command line parameters and
automatically pull in the dependencies for the selected compressor
algorithm and pool allocator by adding an appropriate default switches to
Kconfig.
The default values for these options match what the code was using
previously as its defaults.
Signed-off-by: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vitaly Wool <vitaly.wool@konsulko.com>
Link: http://lkml.kernel.org/r/20200202000112.456103-1-mail@maciej.szmigiero.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I recently build the RISC-V port with LLVM trunk, which has introduced a
new warning when casting from a pointer to an enum of a smaller size.
This patch simply casts to a long in the middle to stop the warning. I'd
be surprised this is the only one in the kernel, but it's the only one I
saw.
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200227211741.83165-1-palmer@dabbelt.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yang Shi writes:
Currently, when truncating a shmem file, if the range is partly in a THP
(start or end is in the middle of THP), the pages actually will just get
cleared rather than being freed, unless the range covers the whole THP.
Even though all the subpages are truncated (randomly or sequentially), the
THP may still be kept in page cache.
This might be fine for some usecases which prefer preserving THP, but
balloon inflation is handled in base page size. So when using shmem THP
as memory backend, QEMU inflation actually doesn't work as expected since
it doesn't free memory. But the inflation usecase really needs to get the
memory freed. (Anonymous THP will also not get freed right away, but will
be freed eventually when all subpages are unmapped: whereas shmem THP
still stays in page cache.)
Split THP right away when doing partial hole punch, and if split fails
just clear the page so that read of the punched area will return zeroes.
Hugh Dickins adds:
Our earlier "team of pages" huge tmpfs implementation worked in the way
that Yang Shi proposes; and we have been using this patch to continue to
split the huge page when hole-punched or truncated, since converting over
to the compound page implementation. Although huge tmpfs gives out huge
pages when available, if the user specifically asks to truncate or punch a
hole (perhaps to free memory, perhaps to reduce the memcg charge), then
the filesystem should do so as best it can, splitting the huge page.
That is not always possible: any additional reference to the huge page
prevents split_huge_page() from succeeding, so the result can be flaky.
But in practice it works successfully enough that we've not seen any
problem from that.
Add shmem_punch_compound() to encapsulate the decision of when a split is
needed, and doing the split if so. Using this simplifies the flow in
shmem_undo_range(); and the first (trylock) pass does not need to do any
page clearing on failure, because the second pass will either succeed or
do that clearing. Following the example of zero_user_segment() when
clearing a partial page, add flush_dcache_page() and set_page_dirty() when
clearing a hole - though I'm not certain that either is needed.
But: split_huge_page() would be sure to fail if shmem_undo_range()'s
pagevec holds further references to the huge page. The easiest way to fix
that is for find_get_entries() to return early, as soon as it has put one
compound head or tail into the pagevec. At first this felt like a hack;
but on examination, this convention better suits all its callers - or will
do, if the slight one-page-per-pagevec slowdown in shmem_unlock_mapping()
and shmem_seek_hole_data() is transformed into a 512-page-per-pagevec
speedup by checking for compound pages there.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2002261959020.10801@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously 0 was assigned to variable 'error' but the variable was never
read before reassignemnt later. So the assignment can be removed.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200301152832.24595-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Variables declared in a switch statement before any case statements cannot
be automatically initialized with compiler instrumentation (as they are
not part of any execution flow). With GCC's proposed automatic stack
variable initialization feature, this triggers a warning (and they don't
get initialized). Clang's automatic stack variable initialization (via
CONFIG_INIT_STACK_ALL=y) doesn't throw a warning, but it also doesn't
initialize such variables[1]. Note that these warnings (or silent
skipping) happen before the dead-store elimination optimization phase, so
even when the automatic initializations are later elided in favor of
direct initializations, the warnings remain.
To avoid these problems, move such variables into the "case" where they're
used or lift them up into the main function body.
mm/shmem.c: In function `shmem_getpage_gfp':
mm/shmem.c:1816:10: warning: statement will never be executed [-Wswitch-unreachable]
1816 | loff_t i_size;
| ^~~~~~
[1] https://bugs.llvm.org/show_bug.cgi?id=44916
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alexander Potapenko <glider@google.com>
Link: http://lkml.kernel.org/r/20200220062312.69165-1-keescook@chromium.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use __pfn_to_section() API instead of open-coding for better code
readability.
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: http://lkml.kernel.org/r/1584345134-16671-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For now, distributions implement advanced udev rules to essentially
- Don't online any hotplugged memory (s390x)
- Online all memory to ZONE_NORMAL (e.g., most virt environments like
hyperv)
- Online all memory to ZONE_MOVABLE in case the zone imbalance is taken
care of (e.g., bare metal, special virt environments)
In summary: All memory is usually onlined the same way, however, the
kernel always has to ask user space to come up with the same answer.
E.g., Hyper-V always waits for a memory block to get onlined before
continuing, otherwise it might end up adding memory faster than
onlining it, which can result in strange OOM situations. This waiting
slows down adding of a bigger amount of memory.
Let's allow to specify a default online_type, not just "online" and
"offline". This allows distributions to configure the default online_type
when booting up and be done with it.
We can now specify "offline", "online", "online_movable" and
"online_kernel" via
- "memhp_default_state=" on the kernel cmdline
- /sys/devices/system/memory/auto_online_blocks
just like we are able to specify for a single memory block via
/sys/devices/system/memory/memoryX/state
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-9-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
... and rename it to memhp_default_online_type. This is a preparation
for more detailed default online behavior.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-8-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All in-tree users except the mm-core are gone. Let's drop the export.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-7-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No functional change.
[bhe@redhat.com: move functions into CONFIG_MEMORY_HOTPLUG ifdeffery scope]
Link: http://lkml.kernel.org/r/20200316045804.GC3486@MiWiFi-R3L-srv
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200312124414.439-6-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
And tell check_pfn_span() gating the porper alignment and size of hot
added memory region.
And also move the code comments from inside section_deactivate() to being
above it. The code comments are reasonable for the whole function, and
the moving makes code cleaner.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Link: http://lkml.kernel.org/r/20200312124414.439-5-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, to support subsection aligned memory region adding for pmem,
subsection map is added to track which subsection is present.
However, config ZONE_DEVICE depends on SPARSEMEM_VMEMMAP. It means
subsection map only makes sense when SPARSEMEM_VMEMMAP enabled. For the
classic sparse, it's meaningless. Even worse, it may confuse people when
checking code related to the classic sparse.
About the classic sparse which doesn't support subsection hotplug, Dan
said it's more because the effort and maintenance burden outweighs the
benefit. Besides, the current 64 bit ARCHes all enable
SPARSEMEM_VMEMMAP_ENABLE by default.
Combining the above reasons, no need to provide subsection map and the
relevant handling for the classic sparse. Let's remove them.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Link: http://lkml.kernel.org/r/20200312124414.439-4-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Factor out the code which clear subsection map of one memory region from
section_deactivate() into clear_subsection_map().
And also add helper function is_subsection_map_empty() to check if the
current subsection map is empty or not.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Link: http://lkml.kernel.org/r/20200312124414.439-3-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/hotplug: Only use subsection map for VMEMMAP", v4.
Memory sub-section hotplug was added to fix the issue that nvdimm could be
mapped at non-section aligned starting address. A subsection map is added
into struct mem_section_usage to implement it.
However, config ZONE_DEVICE depends on SPARSEMEM_VMEMMAP. It means
subsection map only makes sense when SPARSEMEM_VMEMMAP enabled. For the
classic sparse, subsection map is meaningless and confusing.
About the classic sparse which doesn't support subsection hotplug, Dan
said it's more because the effort and maintenance burden outweighs the
benefit. Besides, the current 64 bit ARCHes all enable
SPARSEMEM_VMEMMAP_ENABLE by default.
This patch (of 5):
Factor out the code that fills the subsection map from section_activate()
into fill_subsection_map(), this makes section_activate() cleaner and
easier to follow.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200312124414.439-2-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's drop the basically unused section stuff and simplify. The logic now
matches the logic in __remove_pages().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200228095819.10750-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 52fb87c81f ("mm/memory_hotplug: cleanup __remove_pages()"), we
cleaned up __remove_pages(), and introduced a shorter variant to calculate
the number of pages to the next section boundary.
Turns out we can make this calculation easier to read. We always want to
have the number of pages (> 0) to the next section boundary, starting from
the current pfn.
We'll clean up __remove_pages() in a follow-up patch and directly make use
of this computation.
Suggested-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200228095819.10750-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 357b4da50a ("x86: respect memory size limiting via mem=
parameter") a global varialbe max_mem_size is added to store the value
parsed from 'mem= ', then checked when memory region is added. This truly
stops those DIMMs from being added into system memory during boot-time.
However, it also limits the later memory hotplug functionality. Any DIMM
can't be hotplugged any more if its region is beyond the max_mem_size. We
will get errors like:
[ 216.387164] acpi PNP0C80:02: add_memory failed
[ 216.389301] acpi PNP0C80:02: acpi_memory_enable_device() error
[ 216.392187] acpi PNP0C80:02: Enumeration failure
This will cause issue in a known use case where 'mem=' is added to the
hypervisor. The memory that lies after 'mem=' boundary will be assigned
to KVM guests. After commit 357b4da50a merged, memory can't be extended
dynamically if system memory on hypervisor is not sufficient.
So fix it by also checking if it's during boot-time restricting to add
memory. Otherwise, skip the restriction.
And also add this use case to document of 'mem=' kernel parameter.
Fixes: 357b4da50a ("x86: respect memory size limiting via mem= parameter")
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200204050643.20925-1-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit c5e79ef561 ("mm/memory_hotplug.c: don't allow to
online/offline memory blocks with holes") we disallow to offline any
memory with holes. As all boot memory is online and hotplugged memory
cannot contain holes, we never online memory with holes.
This present check can be dropped.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Link: http://lkml.kernel.org/r/20200127110424.5757-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add API to enable/disable writeprotect a vma range. Unlike mprotect, this
doesn't split/merge vmas.
[peterx@redhat.com:
- use the helper to find VMA;
- return -ENOENT if not found to match mcopy case;
- use the new MM_CP_UFFD_WP* flags for change_protection
- check against mmap_changing for failures
- replace find_dst_vma with vma_find_uffd]
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220163112.11409-13-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don't collapse the huge PMD if there is any userfault write protected
small PTEs. The problem is that the write protection is in small page
granularity and there's no way to keep all these write protection
information if the small pages are going to be merged into a huge PMD.
The same thing needs to be considered for swap entries and migration
entries. So do the check as well disregarding khugepaged_max_ptes_swap.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-12-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For either swap and page migration, we all use the bit 2 of the entry to
identify whether this entry is uffd write-protected. It plays a similar
role as the existing soft dirty bit in swap entries but only for keeping
the uffd-wp tracking for a specific PTE/PMD.
Something special here is that when we want to recover the uffd-wp bit
from a swap/migration entry to the PTE bit we'll also need to take care of
the _PAGE_RW bit and make sure it's cleared, otherwise even with the
_PAGE_UFFD_WP bit we can't trap it at all.
In change_pte_range() we do nothing for uffd if the PTE is a swap entry.
That can lead to data mismatch if the page that we are going to write
protect is swapped out when sending the UFFDIO_WRITEPROTECT. This patch
also applies/removes the uffd-wp bit even for the swap entries.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-11-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
UFFD_EVENT_FORK support for uffd-wp should be already there, except that
we should clean the uffd-wp bit if uffd fork event is not enabled. Detect
that to avoid _PAGE_UFFD_WP being set even if the VMA is not being tracked
by VM_UFFD_WP. Do this for both small PTEs and huge PMDs.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-9-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Firstly, introduce two new flags MM_CP_UFFD_WP[_RESOLVE] for
change_protection() when used with uffd-wp and make sure the two new flags
are exclusively used. Then,
- For MM_CP_UFFD_WP: apply the _PAGE_UFFD_WP bit and remove _PAGE_RW
when a range of memory is write protected by uffd
- For MM_CP_UFFD_WP_RESOLVE: remove the _PAGE_UFFD_WP bit and recover
_PAGE_RW when write protection is resolved from userspace
And use this new interface in mwriteprotect_range() to replace the old
MM_CP_DIRTY_ACCT.
Do this change for both PTEs and huge PMDs. Then we can start to identify
which PTE/PMD is write protected by general (e.g., COW or soft dirty
tracking), and which is for userfaultfd-wp.
Since we should keep the _PAGE_UFFD_WP when doing pte_modify(), add it
into _PAGE_CHG_MASK as well. Meanwhile, since we have this new bit, we
can be even more strict when detecting uffd-wp page faults in either
do_wp_page() or wp_huge_pmd().
After we're with _PAGE_UFFD_WP, a special case is when a page is both
protected by the general COW logic and also userfault-wp. Here the
userfault-wp will have higher priority and will be handled first. Only
after the uffd-wp bit is cleared on the PTE/PMD will we continue to handle
the general COW. These are the steps on what will happen with such a
page:
1. CPU accesses write protected shared page (so both protected by
general COW and uffd-wp), blocked by uffd-wp first because in
do_wp_page we'll handle uffd-wp first, so it has higher priority
than general COW.
2. Uffd service thread receives the request, do UFFDIO_WRITEPROTECT
to remove the uffd-wp bit upon the PTE/PMD. However here we
still keep the write bit cleared. Notify the blocked CPU.
3. The blocked CPU resumes the page fault process with a fault
retry, during retry it'll notice it was not with the uffd-wp bit
this time but it is still write protected by general COW, then
it'll go though the COW path in the fault handler, copy the page,
apply write bit where necessary, and retry again.
4. The CPU will be able to access this page with write bit set.
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-8-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
change_protection() was used by either the NUMA or mprotect() code,
there's one parameter for each of the callers (dirty_accountable and
prot_numa). Further, these parameters are passed along the calls:
- change_protection_range()
- change_p4d_range()
- change_pud_range()
- change_pmd_range()
- ...
Now we introduce a flag for change_protect() and all these helpers to
replace these parameters. Then we can avoid passing multiple parameters
multiple times along the way.
More importantly, it'll greatly simplify the work if we want to introduce
any new parameters to change_protection(). In the follow up patches, a
new parameter for userfaultfd write protection will be introduced.
No functional change at all.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-7-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several cases write protection fault happens. It could be a
write to zero page, swaped page or userfault write protected page. When
the fault happens, there is no way to know if userfault write protect the
page before. Here we just blindly issue a userfault notification for vma
with VM_UFFD_WP regardless if app write protects it yet. Application
should be ready to handle such wp fault.
In the swapin case, always swapin as readonly. This will cause false
positive userfaults. We need to decide later if to eliminate them with a
flag like soft-dirty in the swap entry (see _PAGE_SWP_SOFT_DIRTY).
hugetlbfs wouldn't need to worry about swapouts but and tmpfs would be
handled by a swap entry bit like anonymous memory.
The main problem with no easy solution to eliminate the false positives,
will be if/when userfaultfd is extended to real filesystem pagecache.
When the pagecache is freed by reclaim we can't leave the radix tree
pinned if the inode and in turn the radix tree is reclaimed as well.
The estimation is that full accuracy and lack of false positives could be
easily provided only to anonymous memory (as long as there's no fork or as
long as MADV_DONTFORK is used on the userfaultfd anonymous range) tmpfs
and hugetlbfs, it's most certainly worth to achieve it but in a later
incremental patch.
[peterx@redhat.com: don't conditionally drop FAULT_FLAG_WRITE in do_swap_page]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-3-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to keep ourselves from reporting pages that are just going to be
reused again in the case of heavy churn we can put a limit on how many
total pages we will process per pass. Doing this will allow the worker
thread to go into idle much more quickly so that we avoid competing with
other threads that might be allocating or freeing pages.
The logic added here will limit the worker thread to no more than one
sixteenth of the total free pages in a given area per list. Once that
limit is reached it will update the state so that at the end of the pass
we will reschedule the worker to try again in 2 seconds when the memory
churn has hopefully settled down.
Again this optimization doesn't show much of a benefit in the standard
case as the memory churn is minmal. However with page allocator shuffling
enabled the gain is quite noticeable. Below are the results with a THP
enabled version of the will-it-scale page_fault1 test showing the
improvement in iterations for 16 processes or threads.
Without:
tasks processes processes_idle threads threads_idle
16 8283274.75 0.17 5594261.00 38.15
With:
tasks processes processes_idle threads threads_idle
16 8767010.50 0.21 5791312.75 36.98
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Wang <wei.w.wang@intel.com>
Cc: Yang Zhang <yang.zhang.wz@gmail.com>
Cc: wei qi <weiqi4@huawei.com>
Link: http://lkml.kernel.org/r/20200211224719.29318.72113.stgit@localhost.localdomain
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rather than walking over the same pages again and again to get to the
pages that have yet to be reported we can save ourselves a significant
amount of time by simply rotating the list so that when we have a full
list of reported pages the head of the list is pointing to the next
non-reported page. Doing this should save us some significant time when
processing each free list.
This doesn't gain us much in the standard case as all of the non-reported
pages should be near the top of the list already. However in the case of
page shuffling this results in a noticeable improvement. Below are the
will-it-scale page_fault1 w/ THP numbers for 16 tasks with and without
this patch.
Without:
tasks processes processes_idle threads threads_idle
16 8093776.25 0.17 5393242.00 38.20
With:
tasks processes processes_idle threads threads_idle
16 8283274.75 0.17 5594261.00 38.15
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Wang <wei.w.wang@intel.com>
Cc: Yang Zhang <yang.zhang.wz@gmail.com>
Cc: wei qi <weiqi4@huawei.com>
Link: http://lkml.kernel.org/r/20200211224708.29318.16862.stgit@localhost.localdomain
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to pave the way for free page reporting in virtualized
environments we will need a way to get pages out of the free lists and
identify those pages after they have been returned. To accomplish this,
this patch adds the concept of a Reported Buddy, which is essentially
meant to just be the Uptodate flag used in conjunction with the Buddy page
type.
To prevent the reported pages from leaking outside of the buddy lists I
added a check to clear the PageReported bit in the del_page_from_free_list
function. As a result any reported page that is split, merged, or
allocated will have the flag cleared prior to the PageBuddy value being
cleared.
The process for reporting pages is fairly simple. Once we free a page
that meets the minimum order for page reporting we will schedule a worker
thread to start 2s or more in the future. That worker thread will begin
working from the lowest supported page reporting order up to MAX_ORDER - 1
pulling unreported pages from the free list and storing them in the
scatterlist.
When processing each individual free list it is necessary for the worker
thread to release the zone lock when it needs to stop and report the full
scatterlist of pages. To reduce the work of the next iteration the worker
thread will rotate the free list so that the first unreported page in the
free list becomes the first entry in the list.
It will then call a reporting function providing information on how many
entries are in the scatterlist. Once the function completes it will
return the pages to the free area from which they were allocated and start
over pulling more pages from the free areas until there are no longer
enough pages to report on to keep the worker busy, or we have processed as
many pages as were contained in the free area when we started processing
the list.
The worker thread will work in a round-robin fashion making its way though
each zone requesting reporting, and through each reportable free list
within that zone. Once all free areas within the zone have been processed
it will check to see if there have been any requests for reporting while
it was processing. If so it will reschedule the worker thread to start up
again in roughly 2s and exit.
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Wang <wei.w.wang@intel.com>
Cc: Yang Zhang <yang.zhang.wz@gmail.com>
Cc: wei qi <weiqi4@huawei.com>
Link: http://lkml.kernel.org/r/20200211224635.29318.19750.stgit@localhost.localdomain
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are cases where we would benefit from avoiding having to go through
the allocation and free cycle to return an isolated page.
Examples for this might include page poisoning in which we isolate a page
and then put it back in the free list without ever having actually
allocated it.
This will enable us to also avoid notifiers for the future free page
reporting which will need to avoid retriggering page reporting when
returning pages that have been reported on.
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Wang <wei.w.wang@intel.com>
Cc: Yang Zhang <yang.zhang.wz@gmail.com>
Cc: wei qi <weiqi4@huawei.com>
Link: http://lkml.kernel.org/r/20200211224624.29318.89287.stgit@localhost.localdomain
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to enable the use of the zone from the list manipulator functions
I will need access to the zone pointer. As it turns out most of the
accessors were always just being directly passed &zone->free_area[order]
anyway so it would make sense to just fold that into the function itself
and pass the zone and order as arguments instead of the free area.
In order to be able to reference the zone we need to move the declaration
of the functions down so that we have the zone defined before we define
the list manipulation functions. Since the functions are only used in the
file mm/page_alloc.c we can just move them there to reduce noise in the
header.
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pankaj Gupta <pagupta@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Wang <wei.w.wang@intel.com>
Cc: Yang Zhang <yang.zhang.wz@gmail.com>
Cc: wei qi <weiqi4@huawei.com>
Link: http://lkml.kernel.org/r/20200211224613.29318.43080.stgit@localhost.localdomain
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm / virtio: Provide support for free page reporting", v17.
This series provides an asynchronous means of reporting free guest pages
to a hypervisor so that the memory associated with those pages can be
dropped and reused by other processes and/or guests on the host. Using
this it is possible to avoid unnecessary I/O to disk and greatly improve
performance in the case of memory overcommit on the host.
When enabled we will be performing a scan of free memory every 2 seconds
while pages of sufficiently high order are being freed. In each pass at
least one sixteenth of each free list will be reported. By doing this we
avoid racing against other threads that may be causing a high amount of
memory churn.
The lowest page order currently scanned when reporting pages is
pageblock_order so that this feature will not interfere with the use of
Transparent Huge Pages in the case of virtualization.
Currently this is only in use by virtio-balloon however there is the hope
that at some point in the future other hypervisors might be able to make
use of it. In the virtio-balloon/QEMU implementation the hypervisor is
currently using MADV_DONTNEED to indicate to the host kernel that the page
is currently free. It will be zeroed and faulted back into the guest the
next time the page is accessed.
To track if a page is reported or not the Uptodate flag was repurposed and
used as a Reported flag for Buddy pages. We walk though the free list
isolating pages and adding them to the scatterlist until we either
encounter the end of the list or have processed at least one sixteenth of
the pages that were listed in nr_free prior to us starting. If we fill
the scatterlist before we reach the end of the list we rotate the list so
that the first unreported page we encounter is moved to the head of the
list as that is where we will resume after we have freed the reported
pages back into the tail of the list.
Below are the results from various benchmarks. I primarily focused on two
tests. The first is the will-it-scale/page_fault2 test, and the other is
a modified version of will-it-scale/page_fault1 that was enabled to use
THP. I did this as it allows for better visibility into different parts
of the memory subsystem. The guest is running with 32G for RAM on one
node of a E5-2630 v3. The host has had some features such as CPU turbo
disabled in the BIOS.
Test page_fault1 (THP) page_fault2
Name tasks Process Iter STDEV Process Iter STDEV
Baseline 1 1012402.50 0.14% 361855.25 0.81%
16 8827457.25 0.09% 3282347.00 0.34%
Patches Applied 1 1007897.00 0.23% 361887.00 0.26%
16 8784741.75 0.39% 3240669.25 0.48%
Patches Enabled 1 1010227.50 0.39% 359749.25 0.56%
16 8756219.00 0.24% 3226608.75 0.97%
Patches Enabled 1 1050982.00 4.26% 357966.25 0.14%
page shuffle 16 8672601.25 0.49% 3223177.75 0.40%
Patches enabled 1 1003238.00 0.22% 360211.00 0.22%
shuffle w/ RFC 16 8767010.50 0.32% 3199874.00 0.71%
The results above are for a baseline with a linux-next-20191219 kernel,
that kernel with this patch set applied but page reporting disabled in
virtio-balloon, the patches applied and page reporting fully enabled, the
patches enabled with page shuffling enabled, and the patches applied with
page shuffling enabled and an RFC patch that makes used of MADV_FREE in
QEMU. These results include the deviation seen between the average value
reported here versus the high and/or low value. I observed that during
the test memory usage for the first three tests never dropped whereas with
the patches fully enabled the VM would drop to using only a few GB of the
host's memory when switching from memhog to page fault tests.
Any of the overhead visible with this patch set enabled seems due to page
faults caused by accessing the reported pages and the host zeroing the
page before giving it back to the guest. This overhead is much more
visible when using THP than with standard 4K pages. In addition page
shuffling seemed to increase the amount of faults generated due to an
increase in memory churn. The overehad is reduced when using MADV_FREE as
we can avoid the extra zeroing of the pages when they are reintroduced to
the host, as can be seen when the RFC is applied with shuffling enabled.
The overall guest size is kept fairly small to only a few GB while the
test is running. If the host memory were oversubscribed this patch set
should result in a performance improvement as swapping memory in the host
can be avoided.
A brief history on the background of free page reporting can be found at:
https://lore.kernel.org/lkml/29f43d5796feed0dec8e8bb98b187d9dac03b900.camel@linux.intel.com/
This patch (of 9):
Move the head/tail adding logic out of the shuffle code and into the
__free_one_page function since ultimately that is where it is really
needed anyway. By doing this we should be able to reduce the overhead and
can consolidate all of the list addition bits in one spot.
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Yang Zhang <yang.zhang.wz@gmail.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Wei Wang <wei.w.wang@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: wei qi <weiqi4@huawei.com>
Link: http://lkml.kernel.org/r/20200211224602.29318.84523.stgit@localhost.localdomain
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some comments for MADV_FREE is revised and added to help people understand
the MADV_FREE code, especially the page flag, PG_swapbacked. This makes
page_is_file_cache() isn't consistent with its comments. So the function
is renamed to page_is_file_lru() to make them consistent again. All these
are put in one patch as one logical change.
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200317100342.2730705-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This updates get_user_pages()'s argument in ksm_test_exit()'s comment
Signed-off-by: Li Chen <chenli@uniontech.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/30ac2417-f1c7-f337-0beb-df561295298c@uniontech.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit e496cf3d78 ("thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE")
notes that it should be reverted when the PowerPC problem was fixed. The
commit fixing the PowerPC problem (953c66c2b2) did not revert the
commit; instead setting CONFIG_TRANSPARENT_HUGE_PAGECACHE to the same as
CONFIG_TRANSPARENT_HUGEPAGE. Checking with Kirill and Aneesh, this was an
oversight, so remove the Kconfig symbol and undo the work of commit
e496cf3d78.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/20200318140253.6141-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The thp_fault_fallback and thp_file_fallback vmstats are incremented if
either the hugepage allocation fails through the page allocator or the
hugepage charge fails through mem cgroup.
This patch leaves this field untouched but adds two new fields,
thp_{fault,file}_fallback_charge, which is incremented only when the mem
cgroup charge fails.
This distinguishes between attempted hugepage allocations that fail due to
fragmentation (or low memory conditions) and those that fail due to mem
cgroup limits. That can be used to determine the impact of fragmentation
on the system by excluding faults that failed due to memcg usage.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Jeremy Cline <jcline@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2003061422070.7412@chino.kir.corp.google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The existing thp_fault_fallback indicates when thp attempts to allocate a
hugepage but fails, or if the hugepage cannot be charged to the mem cgroup
hierarchy.
Extend this to shmem as well. Adds a new thp_file_fallback to complement
thp_file_alloc that gets incremented when a hugepage is attempted to be
allocated but fails, or if it cannot be charged to the mem cgroup
hierarchy.
Additionally, remove the check for CONFIG_TRANSPARENT_HUGE_PAGECACHE from
shmem_alloc_hugepage() since it is only called with this configuration
option.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Jeremy Cline <jcline@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2003061421240.7412@chino.kir.corp.google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the migration code doesn't migrate PG_readahead flag.
Theoretically this would incur slight performance loss as the application
might have to ramp its readahead back up again. Even though such problem
happens, it might be hidden by something else since migration is typically
triggered by compaction and NUMA balancing, any of which should be more
noticeable.
Migrate the flag after end_page_writeback() since it may clear PG_reclaim
flag, which is the same bit as PG_readahead, for the new page.
[akpm@linux-foundation.org: tweak comment]
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1581640185-95731-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It can currently happen that we store the status of a page twice:
* Once we detect that it is already on the target node
* Once we moved a bunch of pages, and a page that's already on the
target node is contained in the current interval.
Let's simplify the code and always call do_move_pages_to_node() in case we
did not queue a page for migration. Note that pages that are already on
the target node are not added to the pagelist and are, therefore, ignored
by do_move_pages_to_node() - there is no functional change.
The status of such a page is now only stored once.
[david@redhat.com rephrase changelog]
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200214003017.25558-5-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pagelist is empty, it is not necessary to do the move and store.
Also it consolidate the empty list check in one place.
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200214003017.25558-4-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Usually, do_move_pages_to_node() and store_status() are used in
combination. We have three similar call sites.
Let's provide a wrapper for both function calls -
move_pages_and_store_status - to make the calling code easier to maintain
and fix (as noted by Yang Shi, the return value handling of
do_move_pages_to_node() has a flaw).
[david@redhat.com rephrase changelog]
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200214003017.25558-3-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "cleanup on do_pages_move()", v5.
The logic in do_pages_move() is a little mess for audience to read and has
some potential error on handling the return value. Especially there are
three calls on do_move_pages_to_node() and store_status() with almost the
same form.
This patch set tries to make the code a little friendly for audience by
consolidate the calls.
This patch (of 4):
At this point, we always have i >= start. If i == start, store_status()
will return 0. So we can drop the check for i > start.
[david@redhat.com rephrase changelog]
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200214003017.25558-2-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a typo in comment, fix it.
"exeeds" -> "exceeds"
Signed-off-by: Qiujun Huang <hqjagain@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200404060136.10838-1-hqjagain@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 4e4a9eb921 ("mm/rmap.c: reuse mergeable
anon_vma as parent when fork").
In dup_mmap(), anon_vma_fork() is called for attaching anon_vma and
parameter 'tmp' (i.e., the new vma of child) has same ->vm_next and
->vm_prev as its parent vma. That causes the anon_vma used by parent been
mistakenly shared by child (In anon_vma_clone(), the code added by that
commit will do this reuse work).
Besides this issue, the design of reusing anon_vma from vma which has gone
through fork should be avoided ([1]). So, this patch reverts that commit
and maintains the consistent logic of reusing anon_vma for
fork/split/merge vma.
Reusing anon_vma within the process is fine. But if a vma has gone
through fork(), then that vma's anon_vma should not be shared with its
neighbor vma. As explained in [1], when vma gone through fork(), the
check for list_is_singular(vma->anon_vma_chain) will be false, and
don't share anon_vma.
With current issue, one example can clarify more. Parent process do
below two steps:
1. p_vma_1 is created and p_anon_vma_1 is prepared;
2. p_vma_2 is created and share p_anon_vma_1; (this is allowed,
becaues p_vma_1 didn't gothrough fork()); parent process do fork():
3. c_vma_1 is dup from p_vma_1, and has its own c_anon_vma_1
prepared; at this point, c_vma_1->anon_vma_chain has two items, one
for p_anon_vma_1 and one for c_anon_vma_1;
4. c_vma_2 is dup from p_vma_2, it is not allowed to share
c_anon_vma_1, because
c_vma_1->anon_vma_chain has two items.
[1] commit d0e9fe1758 ("Simplify and comment on anon_vma re-use for
anon_vma_prepare()") explains the test of "list_is_singular()".
Fixes: 4e4a9eb921 ("mm/rmap.c: reuse mergeable anon_vma as parent when fork")
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1581150928-3214-3-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The root of the hierarchy cannot have high set, so we will never reclaim
based on it. This makes that clearer and avoids another entry.
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200312164137.GA1753625@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJehnToAAoJEAx081l5xIa+bYEP/3IW+bip83OSR/Ay/29qmeBh
FMZjz9G+jClVArea+8dlbmGohpQfkLuBiDBE1Ujxl9iqsm3STdIdbv9bHccqs2g8
mtptkZ5qKwuOi7NhcNG5E5vy60bEAbZ9/QtXok5nckega2sdP7cr+uzZgp/Zc/Vo
v9H8Wk6/l/MUF8agIXmgChpXII17lIyYbtbH5NV+PpsZMhAaAg2g4Z4vBP5Ue+Nc
myNcdzKLF3nq++gBfIZ4gzAAnnqN2eYFvkSdvRSdn9HuXcur1tQHjMwC/DJuk8h7
5dsaplrRLceMEqn6d61oWBJclPefXlkazvHzqNA9Zwr98yVev5h7tiT3BKNVTbKW
iPoXCt55fJosvXAsJxW4UgXZy7kMGZdZ8GmSlwmZsA0kJRvOuuvWChvu/ugwnIeR
DUWb5sa0Bn9aoczJ4Qq61O7CqtvhOf6NK24Jcc/HSk/iDbZ2tEnCPEXeCm0GibQ5
PAFLfE1fZUcEeZlOp+zbZ6ni6XbLL9LX2Dkum/3zEvhf1rdF+0692ZM4o9VwedAX
2TpE4kywhbYxhUq3MbyRzP3knu7pJYb0KCOfyg6Rqn/vCo17+PksRF+6XvzUVlzr
VtRYU87TVP5FqIw+e3yela2alP/oo4kEe37n536TcRgFtU7vItcCA5vLuDSOivjX
08B6Hy4QK2M0yKFuuAT5
=KO6E
-----END PGP SIGNATURE-----
Merge tag 'drm-next-2020-04-03-1' of git://anongit.freedesktop.org/drm/drm
Pull drm hugepage support from Dave Airlie:
"This adds support for hugepages to TTM and has been tested with the
vmwgfx drivers, though I expect other drivers to start using it"
* tag 'drm-next-2020-04-03-1' of git://anongit.freedesktop.org/drm/drm:
drm/vmwgfx: Hook up the helpers to align buffer objects
drm/vmwgfx: Introduce a huge page aligning TTM range manager
drm: Add a drm_get_unmapped_area() helper
drm/vmwgfx: Support huge page faults
drm/ttm, drm/vmwgfx: Support huge TTM pagefaults
mm: Add vmf_insert_pfn_xxx_prot() for huge page-table entries
mm: Split huge pages on write-notify or COW
mm: Introduce vma_is_special_huge
fs: Constify vma argument to vma_is_dax
Pull cgroup updates from Tejun Heo:
- Christian extended clone3 so that processes can be spawned into
cgroups directly.
This is not only neat in terms of semantics but also avoids grabbing
the global cgroup_threadgroup_rwsem for migration.
- Daniel added !root xattr support to cgroupfs.
Userland already uses xattrs on cgroupfs for bookkeeping. This will
allow delegated cgroups to support such usages.
- Prateek tried to make cpuset hotplug handling synchronous but that
led to possible deadlock scenarios. Reverted.
- Other minor changes including release_agent_path handling cleanup.
* 'for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
docs: cgroup-v1: Document the cpuset_v2_mode mount option
Revert "cpuset: Make cpuset hotplug synchronous"
cgroupfs: Support user xattrs
kernfs: Add option to enable user xattrs
kernfs: Add removed_size out param for simple_xattr_set
kernfs: kvmalloc xattr value instead of kmalloc
cgroup: Restructure release_agent_path handling
selftests/cgroup: add tests for cloning into cgroups
clone3: allow spawning processes into cgroups
cgroup: add cgroup_may_write() helper
cgroup: refactor fork helpers
cgroup: add cgroup_get_from_file() helper
cgroup: unify attach permission checking
cpuset: Make cpuset hotplug synchronous
cgroup.c: Use built-in RCU list checking
kselftest/cgroup: add cgroup destruction test
cgroup: Clean up css_set task traversal
- Promote numa_map_to_online_node() to a cross-kernel generic facility.
- Save x86 numa information to allow for node-id lookups for reserved
memory ranges, deploy that capability for the e820-pmem driver.
- Introduce phys_to_target_node() to facilitate drivers that want to
know resulting numa node if a given reserved address range was
onlined.
Huge page-table entries for TTM
In order to reduce CPU usage [1] and in theory TLB misses this patchset enables
huge- and giant page-table entries for TTM and TTM-enabled graphics drivers.
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Thomas Hellstrom (VMware) <thomas_os@shipmail.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20200325073102.6129-1-thomas_os@shipmail.org
Pull percpu updates from Dennis Zhou:
"This is just a few documentation fixes for percpu refcount and bitmap
helpers that went in v5.6, and moving my emails to all be at korg"
* 'for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: update copyright emails to dennis@kernel.org
include/bitmap.h: add new functions to documentation
include/bitmap.h: add missing parameter in docs
percpu_ref: Fix comment regarding percpu_ref_init flags
Merge updates from Andrew Morton:
"A large amount of MM, plenty more to come.
Subsystems affected by this patch series:
- tools
- kthread
- kbuild
- scripts
- ocfs2
- vfs
- mm: slub, kmemleak, pagecache, gup, swap, memcg, pagemap, mremap,
sparsemem, kasan, pagealloc, vmscan, compaction, mempolicy,
hugetlbfs, hugetlb"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (155 commits)
include/linux/huge_mm.h: check PageTail in hpage_nr_pages even when !THP
mm/hugetlb: fix build failure with HUGETLB_PAGE but not HUGEBTLBFS
selftests/vm: fix map_hugetlb length used for testing read and write
mm/hugetlb: remove unnecessary memory fetch in PageHeadHuge()
mm/hugetlb.c: clean code by removing unnecessary initialization
hugetlb_cgroup: add hugetlb_cgroup reservation docs
hugetlb_cgroup: add hugetlb_cgroup reservation tests
hugetlb: support file_region coalescing again
hugetlb_cgroup: support noreserve mappings
hugetlb_cgroup: add accounting for shared mappings
hugetlb: disable region_add file_region coalescing
hugetlb_cgroup: add reservation accounting for private mappings
mm/hugetlb_cgroup: fix hugetlb_cgroup migration
hugetlb_cgroup: add interface for charge/uncharge hugetlb reservations
hugetlb_cgroup: add hugetlb_cgroup reservation counter
hugetlbfs: Use i_mmap_rwsem to address page fault/truncate race
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
mm/memblock.c: remove redundant assignment to variable max_addr
mm: mempolicy: require at least one nodeid for MPOL_PREFERRED
mm: mempolicy: use VM_BUG_ON_VMA in queue_pages_test_walk()
...
Pull exec/proc updates from Eric Biederman:
"This contains two significant pieces of work: the work to sort out
proc_flush_task, and the work to solve a deadlock between strace and
exec.
Fixing proc_flush_task so that it no longer requires a persistent
mount makes improvements to proc possible. The removal of the
persistent mount solves an old regression that that caused the hidepid
mount option to only work on remount not on mount. The regression was
found and reported by the Android folks. This further allows Alexey
Gladkov's work making proc mount options specific to an individual
mount of proc to move forward.
The work on exec starts solving a long standing issue with exec that
it takes mutexes of blocking userspace applications, which makes exec
extremely deadlock prone. For the moment this adds a second mutex with
a narrower scope that handles all of the easy cases. Which makes the
tricky cases easy to spot. With a little luck the code to solve those
deadlocks will be ready by next merge window"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (25 commits)
signal: Extend exec_id to 64bits
pidfd: Use new infrastructure to fix deadlocks in execve
perf: Use new infrastructure to fix deadlocks in execve
proc: io_accounting: Use new infrastructure to fix deadlocks in execve
proc: Use new infrastructure to fix deadlocks in execve
kernel/kcmp.c: Use new infrastructure to fix deadlocks in execve
kernel: doc: remove outdated comment cred.c
mm: docs: Fix a comment in process_vm_rw_core
selftests/ptrace: add test cases for dead-locks
exec: Fix a deadlock in strace
exec: Add exec_update_mutex to replace cred_guard_mutex
exec: Move exec_mmap right after de_thread in flush_old_exec
exec: Move cleanup of posix timers on exec out of de_thread
exec: Factor unshare_sighand out of de_thread and call it separately
exec: Only compute current once in flush_old_exec
pid: Improve the comment about waiting in zap_pid_ns_processes
proc: Remove the now unnecessary internal mount of proc
uml: Create a private mount of proc for mconsole
uml: Don't consult current to find the proc_mnt in mconsole_proc
proc: Use a list of inodes to flush from proc
...
Commit f1e61557f0 ("mm: pack compound_dtor and compound_order into one
word in struct page") changed compound_dtor from a pointer to an array
index in order to pack it. To check if page has the hugeltbfs
compound_dtor, we can just compare the index directly without fetching the
function pointer. Said commit did that with PageHuge() and we can do the
same with PageHeadHuge() to make the code a bit smaller and faster.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Neha Agarwal <nehaagarwal@google.com>
Link: http://lkml.kernel.org/r/20200311172440.6988-1-vbabka@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously variable 'check_addr' was initialized, but was not read later
before reassigning. So the initialization can be removed.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Link: http://lkml.kernel.org/r/20200303212354.25226-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An earlier patch in this series disabled file_region coalescing in order
to hang the hugetlb_cgroup uncharge info on the file_region entries.
This patch re-adds support for coalescing of file_region entries.
Essentially everytime we add an entry, we call a recursive function that
tries to coalesce the added region with the regions next to it. The worst
case call depth for this function is 3: one to coalesce with the region
next to it, one to coalesce to the region prev, and one to reach the base
case.
This is an important performance optimization as private mappings add
their entries page by page, and we could incur big performance costs for
large mappings with lots of file_region entries in their resv_map.
[almasrymina@google.com: fix CONFIG_CGROUP_HUGETLB ifdefs]
Link: http://lkml.kernel.org/r/20200214204544.231482-1-almasrymina@google.com
[almasrymina@google.com: remove check_coalesce_bug debug code]
Link: http://lkml.kernel.org/r/20200219233610.13808-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-7-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Support MAP_NORESERVE accounting as part of the new counter.
For each hugepage allocation, at allocation time we check if there is a
reservation for this allocation or not. If there is a reservation for
this allocation, then this allocation was charged at reservation time, and
we don't re-account it. If there is no reserevation for this allocation,
we charge the appropriate hugetlb_cgroup.
The hugetlb_cgroup to uncharge for this allocation is stored in
page[3].private. We use new APIs added in an earlier patch to set this
pointer.
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-6-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A follow up patch in this series adds hugetlb cgroup uncharge info the
file_region entries in resv->regions. The cgroup uncharge info may differ
for different regions, so they can no longer be coalesced at region_add
time. So, disable region coalescing in region_add in this patch.
Behavior change:
Say a resv_map exists like this [0->1], [2->3], and [5->6].
Then a region_chg/add call comes in region_chg/add(f=0, t=5).
Old code would generate resv->regions: [0->5], [5->6].
New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5],
[5->6].
Special care needs to be taken to handle the resv->adds_in_progress
variable correctly. In the past, only 1 region would be added for every
region_chg and region_add call. But now, each call may add multiple
regions, so we can no longer increment adds_in_progress by 1 in
region_chg, or decrement adds_in_progress by 1 after region_add or
region_abort. Instead, region_chg calls add_reservation_in_range() to
count the number of regions needed and allocates those, and that info is
passed to region_add and region_abort to decrement adds_in_progress
correctly.
We've also modified the assumption that region_add after region_chg never
fails. region_chg now pre-allocates at least 1 region for region_add. If
region_add needs more regions than region_chg has allocated for it, then
it may fail.
[almasrymina@google.com: fix file_region entry allocations]
Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Normally the pointer to the cgroup to uncharge hangs off the struct page,
and gets queried when it's time to free the page. With hugetlb_cgroup
reservations, this is not possible. Because it's possible for a page to
be reserved by one task and actually faulted in by another task.
The best place to put the hugetlb_cgroup pointer to uncharge for
reservations is in the resv_map. But, because the resv_map has different
semantics for private and shared mappings, the code patch to
charge/uncharge shared and private mappings is different. This patch
implements charging and uncharging for private mappings.
For private mappings, the counter to uncharge is in
resv_map->reservation_counter. On initializing the resv_map this is set
to NULL. On reservation of a region in private mapping, the tasks
hugetlb_cgroup is charged and the hugetlb_cgroup is placed is
resv_map->reservation_counter.
On hugetlb_vm_op_close, we uncharge resv_map->reservation_counter.
[akpm@linux-foundation.org: forward declare struct resv_map]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-3-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c32300516047 ("hugetlb_cgroup: add interface for charge/uncharge
hugetlb reservations") mistakingly doesn't handle the migration of *both*
the reservation hugetlb_cgroup and the fault hugetlb_cgroup correctly.
What should happen is that both cgroups shuold be queried from the old
page, then both set to NULL on the old page, then both inserted into the
new page.
The mistake also creates the following warning:
mm/hugetlb_cgroup.c: In function 'hugetlb_cgroup_migrate':
mm/hugetlb_cgroup.c:777:25: warning: variable 'h_cg' set but not used
[-Wunused-but-set-variable]
struct hugetlb_cgroup *h_cg;
^~~~
Solution is to add the missing steps, namly setting the reservation
hugetlb_cgroup to NULL on the old page, and setting the fault
hugetlb_cgroup on the new page.
Fixes: c32300516047 ("hugetlb_cgroup: add interface for charge/uncharge hugetlb reservations")
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200218194727.46995-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Augments hugetlb_cgroup_charge_cgroup to be able to charge hugetlb usage
or hugetlb reservation counter.
Adds a new interface to uncharge a hugetlb_cgroup counter via
hugetlb_cgroup_uncharge_counter.
Integrates the counter with hugetlb_cgroup, via hugetlb_cgroup_init,
hugetlb_cgroup_have_usage, and hugetlb_cgroup_css_offline.
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-2-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlbfs page faults can race with truncate and hole punch operations.
Current code in the page fault path attempts to handle this by 'backing
out' operations if we encounter the race. One obvious omission in the
current code is removing a page newly added to the page cache. This is
pretty straight forward to address, but there is a more subtle and
difficult issue of backing out hugetlb reservations. To handle this
correctly, the 'reservation state' before page allocation needs to be
noted so that it can be properly backed out. There are four distinct
possibilities for reservation state: shared/reserved, shared/no-resv,
private/reserved and private/no-resv. Backing out a reservation may
require memory allocation which could fail so that needs to be taken
into account as well.
Instead of writing the required complicated code for this rare
occurrence, just eliminate the race. i_mmap_rwsem is now held in read
mode for the duration of page fault processing. Hold i_mmap_rwsem in
write mode when modifying i_size. In this way, truncation can not
proceed when page faults are being processed. In addition, i_size
will not change during fault processing so a single check can be made
to ensure faults are not beyond (proposed) end of file. Faults can
still race with hole punch, but that race is handled by existing code
and the use of hugetlb_fault_mutex.
With this modification, checks for races with truncation in the page
fault path can be simplified and removed. remove_inode_hugepages no
longer needs to take hugetlb_fault_mutex in the case of truncation.
Comments are expanded to explain reasoning behind locking.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-3-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable max_addr is being initialized with a value that is never read
and it is being updated later with a new value. The initialization is
redundant and can be removed.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200228235003.112718-1-colin.king@canonical.com
Addresses-Coverity: ("Unused value")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using an empty (malformed) nodelist that is not caught during mount option
parsing leads to a stack-out-of-bounds access.
The option string that was used was: "mpol=prefer:,". However,
MPOL_PREFERRED requires a single node number, which is not being provided
here.
Add a check that 'nodes' is not empty after parsing for MPOL_PREFERRED's
nodeid.
Fixes: 095f1fc4eb ("mempolicy: rework shmem mpol parsing and display")
Reported-by: Entropy Moe <3ntr0py1337@gmail.com>
Reported-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Link: http://lkml.kernel.org/r/89526377-7eb6-b662-e1d8-4430928abde9@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM_BUG_ON() is already used by queue_pages_test_walk(), it sounds
better to dump more debug information by using VM_BUG_ON_VMA() to help
debugging.
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Li Xinhai" <lixinhai.lxh@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/1579068565-110432-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma_migratable() is called to check if pages in vma can be migrated before
go ahead to further actions. Currently it is used in below code path:
- task_numa_work
- mbind
- move_pages
For hugetlb mapping, whether vma is migratable or not is determined by:
- CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
- arch_hugetlb_migration_supported
Issue: current code only checks for CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
alone, and no code should use it directly. (note that current code in
vma_migratable don't cause failure or bug because
unmap_and_move_huge_page() will catch unsupported hugepage and handle it
properly)
This patch checks the two factors by hugepage_migration_supported for
impoving code logic and robustness. It will enable early bail out of
hugepage migration procedure, but because currently all architecture
supporting hugepage migration is able to support all page size, we would
not see performance gain with this patch applied.
vma_migratable() is moved to mm/mempolicy.c, because of the circular
reference of mempolicy.h and hugetlb.h cause defining it as inline not
feasible.
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Link: http://lkml.kernel.org/r/1579786179-30633-1-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MPOL_MF_STRICT is used in mbind() for purposes:
(1) MPOL_MF_STRICT is set alone without MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL, to check if there is misplaced page and return -EIO;
(2) MPOL_MF_STRICT is set with MPOL_MF_MOVE or MPOL_MF_MOVE_ALL, to
check if there is misplaced page which is failed to isolate, or page
is success on isolate but failed to move, and return -EIO.
For non hugepage mapping, (1) and (2) are implemented as expectation. For
hugepage mapping, (1) is not implemented. And in (2), the part about
failed to isolate and report -EIO is not implemented.
This patch implements the missed parts for hugepage mapping. Benefits
with it applied:
- User space can apply same code logic to handle mbind() on hugepage and
non hugepage mapping;
- Reliably using MPOL_MF_STRICT alone to check whether there is
misplaced page or not when bind policy on address range, especially for
address range which contains both hugepage and non hugepage mapping.
Analysis of potential impact to existing users:
- If MPOL_MF_STRICT alone was previously used, hugetlb pages not
following the memory policy would not cause an EIO error. After this
change, hugetlb pages are treated like all other pages. If
MPOL_MF_STRICT alone is used and hugetlb pages do not follow memory
policy an EIO error will be returned.
- For users who using MPOL_MF_STRICT with MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL, the semantic about some pages could not be moved will
not be changed by this patch, because failed to isolate and failed to
move have same effects to users, so their existing code will not be
impacted.
In mbind man page, the note about 'MPOL_MF_STRICT is ignored on huge page
mappings' can be removed after this patch is applied.
Mike:
: The current behavior with MPOL_MF_STRICT and hugetlb pages is inconsistent
: and does not match documentation (as described above). The special
: behavior for hugetlb pages ideally should have been removed when hugetlb
: page migration was introduced. It is unlikely that anyone relies on
: today's inconsistent behavior, and removing one more case of special
: handling for hugetlb pages is a good thing.
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-man <linux-man@vger.kernel.org>
Link: http://lkml.kernel.org/r/1581559627-6206-1-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously 0 was assigned to variable 'last_migrated_pfn'. But the
variable is not read after that, so the assignment can be removed.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/20200318174509.15021-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 5bbe3547aa ("mm: allow compaction of unevictable pages")
it is allowed to examine mlocked pages and compact them by default. On
-RT even minor pagefaults are problematic because it may take a few 100us
to resolve them and until then the task is blocked.
Make compact_unevictable_allowed = 0 default and issue a warning on RT if
it is changed.
[bigeasy@linutronix.de: v5]
Link: https://lore.kernel.org/linux-mm/20190710144138.qyn4tuttdq6h7kqx@linutronix.de/
Link: http://lkml.kernel.org/r/20200319165536.ovi75tsr2seared4@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/linux-mm/20190710144138.qyn4tuttdq6h7kqx@linutronix.de/
Link: http://lkml.kernel.org/r/20200303202225.nhqc3v5gwlb7x6et@linutronix.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan reports:
The patch 5e1f0f098b: "mm, compaction: capture a page under direct
compaction" from Mar 5, 2019, leads to the following Smatch complaint:
mm/compaction.c:2321 compact_zone_order()
error: we previously assumed 'capture' could be null (see line 2313)
mm/compaction.c
2288 static enum compact_result compact_zone_order(struct zone *zone, int order,
2289 gfp_t gfp_mask, enum compact_priority prio,
2290 unsigned int alloc_flags, int classzone_idx,
2291 struct page **capture)
^^^^^^^
2313 if (capture)
^^^^^^^
Check for NULL
2314 current->capture_control = &capc;
2315
2316 ret = compact_zone(&cc, &capc);
2317
2318 VM_BUG_ON(!list_empty(&cc.freepages));
2319 VM_BUG_ON(!list_empty(&cc.migratepages));
2320
2321 *capture = capc.page;
^^^^^^^^
Unchecked dereference.
2322 current->capture_control = NULL;
2323
In practice this is not an issue, as the only caller path passes non-NULL
capture:
__alloc_pages_direct_compact()
struct page *page = NULL;
try_to_compact_pages(capture = &page);
compact_zone_order(capture = capture);
So let's remove the unnecessary check, which should also make Smatch happy.
Fixes: 5e1f0f098b ("mm, compaction: capture a page under direct compaction")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/18b0df3c-0589-d96c-23fa-040798fee187@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code to implement THP migrations already exists, and the code for CMA
to clear out a region of memory already exists.
Only a few small tweaks are needed to allow CMA to move THP memory when
attempting an allocation from alloc_contig_range.
With these changes, migrating THPs from a CMA area works when allocating a
1GB hugepage from CMA memory.
[riel@surriel.com: fix hugetlbfs pages per Mike, cleanup per Vlastimil]
Link: http://lkml.kernel.org/r/20200228104700.0af2f18d@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200227213238.1298752-2-riel@surriel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "fix THP migration for CMA allocations", v2.
Transparent huge pages are allocated with __GFP_MOVABLE, and can end up in
CMA memory blocks. Transparent huge pages also have most of the
infrastructure in place to allow migration.
However, a few pieces were missing, causing THP migration to fail when
attempting to use CMA to allocate 1GB hugepages.
With these patches in place, THP migration from CMA blocks seems to work,
both for anonymous THPs and for tmpfs/shmem THPs.
This patch (of 2):
Add information to struct compact_control to indicate that the allocator
would really like to clear out this specific part of memory, used by for
example CMA.
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200227213238.1298752-1-riel@surriel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sc->memcg_low_skipped resets skipped_deactivate to 0 but this is not
needed as this code path is never reachable with skipped_deactivate != 0
due to previous sc->skipped_deactivate branch.
[mhocko@kernel.org: rewrite changelog]
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200319165938.23354-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This gives some size improvement:
$size mm/vmscan.o (before)
text data bss dec hex filename
53670 24123 12 77805 12fed mm/vmscan.o
$size mm/vmscan.o (after)
text data bss dec hex filename
53648 24123 12 77783 12fd7 mm/vmscan.o
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/Message-ID:
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously 0 was assigned to variable 'lruvec_size', but the variable was
never read later. So the assignment can be removed.
Fixes: f87bccde6a ("mm/vmscan: remove unused lru_pages argument")
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Link: http://lkml.kernel.org/r/20200229214022.11853-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pgdat->kswapd_classzone_idx could be accessed concurrently in
wakeup_kswapd(). Plain writes and reads without any lock protection
result in data races. Fix them by adding a pair of READ|WRITE_ONCE() as
well as saving a branch (compilers might well optimize the original code
in an unintentional way anyway). While at it, also take care of
pgdat->kswapd_order and non-kswapd threads in allow_direct_reclaim(). The
data races were reported by KCSAN,
BUG: KCSAN: data-race in wakeup_kswapd / wakeup_kswapd
write to 0xffff9f427ffff2dc of 4 bytes by task 7454 on cpu 13:
wakeup_kswapd+0xf1/0x400
wakeup_kswapd at mm/vmscan.c:3967
wake_all_kswapds+0x59/0xc0
wake_all_kswapds at mm/page_alloc.c:4241
__alloc_pages_slowpath+0xdcc/0x1290
__alloc_pages_slowpath at mm/page_alloc.c:4512
__alloc_pages_nodemask+0x3bb/0x450
alloc_pages_vma+0x8a/0x2c0
do_anonymous_page+0x16e/0x6f0
__handle_mm_fault+0xcd5/0xd40
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
1 lock held by mtest01/7454:
#0: ffff9f425afe8808 (&mm->mmap_sem#2){++++}, at:
do_page_fault+0x143/0x6f9
do_user_addr_fault at arch/x86/mm/fault.c:1405
(inlined by) do_page_fault at arch/x86/mm/fault.c:1539
irq event stamp: 6944085
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x34c/0x57c
irq_exit+0xa2/0xc0
read to 0xffff9f427ffff2dc of 4 bytes by task 7472 on cpu 38:
wakeup_kswapd+0xc8/0x400
wake_all_kswapds+0x59/0xc0
__alloc_pages_slowpath+0xdcc/0x1290
__alloc_pages_nodemask+0x3bb/0x450
alloc_pages_vma+0x8a/0x2c0
do_anonymous_page+0x16e/0x6f0
__handle_mm_fault+0xcd5/0xd40
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
1 lock held by mtest01/7472:
#0: ffff9f425a9ac148 (&mm->mmap_sem#2){++++}, at:
do_page_fault+0x143/0x6f9
irq event stamp: 6793561
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x34c/0x57c
irq_exit+0xa2/0xc0
BUG: KCSAN: data-race in kswapd / wakeup_kswapd
write to 0xffff90973ffff2dc of 4 bytes by task 820 on cpu 6:
kswapd+0x27c/0x8d0
kthread+0x1e0/0x200
ret_from_fork+0x27/0x50
read to 0xffff90973ffff2dc of 4 bytes by task 6299 on cpu 0:
wakeup_kswapd+0xf3/0x450
wake_all_kswapds+0x59/0xc0
__alloc_pages_slowpath+0xdcc/0x1290
__alloc_pages_nodemask+0x3bb/0x450
alloc_pages_vma+0x8a/0x2c0
do_anonymous_page+0x170/0x700
__handle_mm_fault+0xc9f/0xd00
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/1582749472-5171-1-git-send-email-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd kernel thread starts either with a CPU affinity set to the full cpu
mask of its target node or without any affinity at all if the node is
CPUless. There is a cpu hotplug callback (kswapd_cpu_online) that
implements an elaborate way to update this mask when a cpu is onlined.
It is not really clear whether there is any actual benefit from this
scheme. Completely CPU-less NUMA nodes rarely gain a new CPU during
runtime. Drop the code for that reason. If there is a real usecase then
we can resurrect and simplify the code.
[mhocko@suse.com rewrite changelog]
Suggested-by: Michal Hocko <mhocko@suse.org>
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/20200218224422.3407-1-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit 98fa15f34c ("mm: replace all open encodings for
NUMA_NO_NODE") did the replacement across the kernel tree, but we got
some more in vmscan.c since then.
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1581568298-45317-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use mem_cgroup_is_root() API to check if memcg is root memcg instead of
open coding.
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1581398649-125989-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When kstrndup fails, no memory was allocated and we can exit directly.
[david@redhat.com: reword changelog]
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1581398649-125989-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously if branch condition was false, the assignment was not executed.
The assignment can be safely executed even when the condition is false
and it is not incorrect as it assigns the value of 'nodemask' to
'ac.nodemask' which already has the same value.
So as the assignment can be executed unconditionally, the branch can be
removed.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200307225335.31300-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use free_area_empty() API to replace list_empty() for better code
readability.
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: http://lkml.kernel.org/r/1583674354-7713-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes ALLOC_KSWAPD equal to __GFP_KSWAPD_RECLAIM (cast to int).
Thanks to that code like:
if (gfp_mask & __GFP_KSWAPD_RECLAIM)
alloc_flags |= ALLOC_KSWAPD;
can be changed to:
alloc_flags |= (__force int) (gfp_mask &__GFP_KSWAPD_RECLAIM);
Thanks to this one branch less is generated in the assembly.
In case of ALLOC_KSWAPD flag two branches are saved, first one in code
that always executes in the beginning of page allocation and the second
one in loop in page allocator slowpath.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/20200304162118.14784-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the vm.min_free_kbytes sysctl value is capped at a hardcoded
64M in init_per_zone_wmark_min (unless it is overridden by khugepaged
initialization).
This value has not been modified since 2005, and enterprise-grade systems
now frequently have hundreds of GB of RAM and multiple 10, 40, or even 100
GB NICs. We have seen page allocation failures on heavily loaded systems
related to NIC drivers. These issues were resolved by an increase to
vm.min_free_kbytes.
This patch increases the hardcoded value by a factor of 4 as a temporary
solution.
Further work to make the calculation of vm.min_free_kbytes more consistent
throughout the kernel would be desirable.
As an example of the inconsistency of the current method, this value is
recalculated by init_per_zone_wmark_min() in the case of memory hotplug
which will override the value set by set_recommended_min_free_kbytes()
called during khugepaged initialization even if khugepaged remains
enabled, however an on/off toggle of khugepaged will then recalculate and
set the value via set_recommended_min_free_kbytes().
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Rafael Aquini <aquini@redhat.com>
Link: http://lkml.kernel.org/r/20200220150103.5183-1-jsavitz@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "fix the missing underflow in memory operation function", v4.
The patchset helps to produce a KASAN report when size is negative in
memory operation functions. It is helpful for programmer to solve an
undefined behavior issue. Patch 1 based on Dmitry's review and
suggestion, patch 2 is a test in order to verify the patch 1.
[1]https://bugzilla.kernel.org/show_bug.cgi?id=199341
[2]https://lore.kernel.org/linux-arm-kernel/20190927034338.15813-1-walter-zh.wu@mediatek.com/
This patch (of 2):
KASAN missed detecting size is a negative number in memset(), memcpy(),
and memmove(), it will cause out-of-bounds bug. So needs to be detected
by KASAN.
If size is a negative number, then it has a reason to be defined as
out-of-bounds bug type. Casting negative numbers to size_t would indeed
turn up as a large size_t and its value will be larger than ULONG_MAX/2,
so that this can qualify as out-of-bounds.
KASAN report is shown below:
BUG: KASAN: out-of-bounds in kmalloc_memmove_invalid_size+0x70/0xa0
Read of size 18446744073709551608 at addr ffffff8069660904 by task cat/72
CPU: 2 PID: 72 Comm: cat Not tainted 5.4.0-rc1-next-20191004ajb-00001-gdb8af2f372b2-dirty #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x288
show_stack+0x14/0x20
dump_stack+0x10c/0x164
print_address_description.isra.9+0x68/0x378
__kasan_report+0x164/0x1a0
kasan_report+0xc/0x18
check_memory_region+0x174/0x1d0
memmove+0x34/0x88
kmalloc_memmove_invalid_size+0x70/0xa0
[1] https://bugzilla.kernel.org/show_bug.cgi?id=199341
[cai@lca.pw: fix -Wdeclaration-after-statement warn]
Link: http://lkml.kernel.org/r/1583509030-27939-1-git-send-email-cai@lca.pw
[peterz@infradead.org: fix objtool warning]
Link: http://lkml.kernel.org/r/20200305095436.GV2596@hirez.programming.kicks-ass.net
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Link: http://lkml.kernel.org/r/20191112065302.7015-1-walter-zh.wu@mediatek.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When allocating memmap for hot added memory with the classic sparse, the
specified 'nid' is ignored in populate_section_memmap().
While in allocating memmap for the classic sparse during boot, the node
given by 'nid' is preferred. And VMEMMAP prefers the node of 'nid' in
both boot stage and memory hot adding. So seems no reason to not respect
the node of 'nid' for the classic sparse when hot adding memory.
Use kvmalloc_node instead to use the passed in 'nid'.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/20200316125625.GH3486@MiWiFi-R3L-srv
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change makes populate_section_memmap()/depopulate_section_memmap
much simpler.
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200316125450.GG3486@MiWiFi-R3L-srv
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After introducing mem sub section concept, pfn_present() loses its literal
meaning, and will not be necessary a truth on partial populated mem
section.
Since all of the callers use it to judge an absent section, it is better
to rename pfn_present() as pfn_in_present_section().
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Leonardo Bras <leonardo@linux.ibm.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Link: http://lkml.kernel.org/r/1581919110-29575-1-git-send-email-kernelfans@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memmap should be the address to page struct instead of address to pfn.
As mentioned by David, if system memory and devmem sit within a section,
the mismatch address would lead kdump to dump unexpected memory.
Since sub-section only works for SPARSEMEM_VMEMMAP, pfn_to_page() is valid
to get the page struct address at this point.
Fixes: ba72b4c8cf ("mm/sparsemem: support sub-section hotplug")
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Link: http://lkml.kernel.org/r/20200210005048.10437-1-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>