CodingStyle chapter 2:
"[...] never break user-visible strings such as printk messages,
because that breaks the ability to grep for them."
This patch unsplits user-visible strings.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't track the reloc roots in any sort of normal way, so the only way the
root/commit_root nodes get free'd is if the relocation finishes successfully and
the reloc root is deleted. Fix this by free'ing them in free_reloc_roots.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When relocating tree blocks, we firstly get block information from
back references in the extent tree, we then search fs tree to try to
find all parents of a block.
However, if fs tree is corrupted, eg. if there're some missing
items, we could come across these WARN_ONs and BUG_ONs.
This makes us print some error messages and return gracefully
from balance.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a lot of random ints in btrfs_fs_info that can be put into flags. This
is mostly equivalent with the exception of how we deal with quota going on or
off, now instead we set a flag when we are turning it on or off and deal with
that appropriately, rather than just having a pending state that the current
quota_enabled gets set to. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extend btrfs_set_extent_delalloc() and extent_clear_unlock_delalloc()
parameters for both in-band dedupe and subpage sector size patchset.
This should reduce conflict of both patchset and the effort to rebase
them.
Cc: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Qgroup function may overwrite the saved error 'err' with 0
in case quota is not enabled, and this ends up with a
endless loop in balance because we keep going back to balance
the same block group.
It really should use 'ret' instead.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch can fix some false ENOSPC errors, below test script can
reproduce one false ENOSPC error:
#!/bin/bash
dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=128
dev=$(losetup --show -f fs.img)
mkfs.btrfs -f -M $dev
mkdir /tmp/mntpoint
mount $dev /tmp/mntpoint
cd /tmp/mntpoint
xfs_io -f -c "falloc 0 $((64*1024*1024))" testfile
Above script will fail for ENOSPC reason, but indeed fs still has free
space to satisfy this request. Please see call graph:
btrfs_fallocate()
|-> btrfs_alloc_data_chunk_ondemand()
| bytes_may_use += 64M
|-> btrfs_prealloc_file_range()
|-> btrfs_reserve_extent()
|-> btrfs_add_reserved_bytes()
| alloc_type is RESERVE_ALLOC_NO_ACCOUNT, so it does not
| change bytes_may_use, and bytes_reserved += 64M. Now
| bytes_may_use + bytes_reserved == 128M, which is greater
| than btrfs_space_info's total_bytes, false enospc occurs.
| Note, the bytes_may_use decrease operation will be done in
| end of btrfs_fallocate(), which is too late.
Here is another simple case for buffered write:
CPU 1 | CPU 2
|
|-> cow_file_range() |-> __btrfs_buffered_write()
|-> btrfs_reserve_extent() | |
| | |
| | |
| ..... | |-> btrfs_check_data_free_space()
| |
| |
|-> extent_clear_unlock_delalloc() |
In CPU 1, btrfs_reserve_extent()->find_free_extent()->
btrfs_add_reserved_bytes() do not decrease bytes_may_use, the decrease
operation will be delayed to be done in extent_clear_unlock_delalloc().
Assume in this case, btrfs_reserve_extent() reserved 128MB data, CPU2's
btrfs_check_data_free_space() tries to reserve 100MB data space.
If
100MB > data_sinfo->total_bytes - data_sinfo->bytes_used -
data_sinfo->bytes_reserved - data_sinfo->bytes_pinned -
data_sinfo->bytes_readonly - data_sinfo->bytes_may_use
btrfs_check_data_free_space() will try to allcate new data chunk or call
btrfs_start_delalloc_roots(), or commit current transaction in order to
reserve some free space, obviously a lot of work. But indeed it's not
necessary as long as decreasing bytes_may_use timely, we still have
free space, decreasing 128M from bytes_may_use.
To fix this issue, this patch chooses to update bytes_may_use for both
data and metadata in btrfs_add_reserved_bytes(). For compress path, real
extent length may not be equal to file content length, so introduce a
ram_bytes argument for btrfs_reserve_extent(), find_free_extent() and
btrfs_add_reserved_bytes(), it's becasue bytes_may_use is increased by
file content length. Then compress path can update bytes_may_use
correctly. Also now we can discard RESERVE_ALLOC_NO_ACCOUNT, RESERVE_ALLOC
and RESERVE_FREE.
As we know, usually EXTENT_DO_ACCOUNTING is used for error path. In
run_delalloc_nocow(), for inode marked as NODATACOW or extent marked as
PREALLOC, we also need to update bytes_may_use, but can not pass
EXTENT_DO_ACCOUNTING, because it also clears metadata reservation, so
here we introduce EXTENT_CLEAR_DATA_RESV flag to indicate btrfs_clear_bit_hook()
to update btrfs_space_info's bytes_may_use.
Meanwhile __btrfs_prealloc_file_range() will call
btrfs_free_reserved_data_space() internally for both sucessful and failed
path, btrfs_prealloc_file_range()'s callers does not need to call
btrfs_free_reserved_data_space() any more.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In prealloc_file_extent_cluster(), btrfs_check_data_free_space() uses
wrong file offset for reloc_inode, it uses cluster->start and cluster->end,
which indeed are extent's bytenr. The correct value should be
cluster->[start|end] minus block group's start bytenr.
start bytenr cluster->start
| | extent | extent | ...| extent |
|----------------------------------------------------------------|
| block group reloc_inode |
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch fixes a REGRESSION introduced in 4.2, caused by the big quota
rework.
When balancing data extents, qgroup will leak all its numbers for
relocated data extents.
The relocation is done in the following steps for data extents:
1) Create data reloc tree and inode
2) Copy all data extents to data reloc tree
And commit transaction
3) Create tree reloc tree(special snapshot) for any related subvolumes
4) Replace file extent in tree reloc tree with new extents in data reloc
tree
And commit transaction
5) Merge tree reloc tree with original fs, by swapping tree blocks
For 1)~4), since tree reloc tree and data reloc tree doesn't count to
qgroup, everything is OK.
But for 5), the swapping of tree blocks will only info qgroup to track
metadata extents.
If metadata extents contain file extents, qgroup number for file extents
will get lost, leading to corrupted qgroup accounting.
The fix is, before commit transaction of step 5), manually info qgroup to
track all file extents in data reloc tree.
Since at commit transaction time, the tree swapping is done, and qgroup
will account these data extents correctly.
Cc: Mark Fasheh <mfasheh@suse.de>
Reported-by: Mark Fasheh <mfasheh@suse.de>
Reported-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
__btrfs_abort_transaction doesn't use its root parameter except to
obtain an fs_info pointer. We can obtain that from trans->root->fs_info
for now and from trans->fs_info in a later patch.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During build_backref_tree(), if we fail to read a btree node,
we can eventually run into BUG_ON(cache->nr_nodes) that we put
in backref_cache_cleanup(), meaning we have at least one
memory leak.
This frees the backref_node that we's allocated at the very
beginning of build_backref_tree().
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since it is just an in-memory building of the backrefs of several
btree blocks, nothing is fatal other than memory leaks, so this
changes BUG_ON()'s to ASSERT()'s.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We used to allow you to set FLUSH_ALL and then just wouldn't do things like
commit transactions or wait on ordered extents if we noticed you were in a
transaction. However now that all the flushing for FLUSH_ALL is asynchronous
we've lost the ability to tell, and we could end up deadlocking. So instead use
FLUSH_LIMIT in reserve_metadata_bytes in relocation and then return -EAGAIN if
we error out to preserve the previous behavior. I've also added an ASSERT() to
catch anybody else who tries to do this. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we set the reloc control before we've reserved our space for relocation we
could race with a root being dirtied and not actually have space to do our init
reloc root. So once we've allocated it and set it up go ahead and make our
reservation before setting the relocate control, that way anybody who tries to
do the reloc root init has space to use. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
So btrfs_block_rsv_migrate just unconditionally calls block_rsv_migrate_bytes.
Not only this but it unconditionally changes the size of the block_rsv. This
isn't a bug strictly speaking, but it makes truncate block rsv's look funny
because every time we migrate bytes over its size grows, even though we only
want it to be a specific size. So collapse this into one function that takes an
update_size argument and make truncate and evict not update the size for
consistency sake. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Relocation of a block group waits for all existing tasks flushing
dellaloc, starting direct IO writes and any ordered extents before
starting the relocation process. However for direct IO writes that end
up doing nocow (inode either has the flag nodatacow set or the write is
against a prealloc extent) we have a short time window that allows for a
race that makes relocation proceed without waiting for the direct IO
write to complete first, resulting in data loss after the relocation
finishes. This is illustrated by the following diagram:
CPU 1 CPU 2
btrfs_relocate_block_group(bg X)
direct IO write starts against
an extent in block group X
using nocow mode (inode has the
nodatacow flag or the write is
for a prealloc extent)
btrfs_direct_IO()
btrfs_get_blocks_direct()
--> can_nocow_extent() returns 1
btrfs_inc_block_group_ro(bg X)
--> turns block group into RO mode
btrfs_wait_ordered_roots()
--> returns and does not know about
the DIO write happening at CPU 2
(the task there has not created
yet an ordered extent)
relocate_block_group(bg X)
--> rc->stage == MOVE_DATA_EXTENTS
find_next_extent()
--> returns extent that the DIO
write is going to write to
relocate_data_extent()
relocate_file_extent_cluster()
--> reads the extent from disk into
pages belonging to the relocation
inode and dirties them
--> creates DIO ordered extent
btrfs_submit_direct()
--> submits bio against a location
on disk obtained from an extent
map before the relocation started
btrfs_wait_ordered_range()
--> writes all the pages read before
to disk (belonging to the
relocation inode)
relocation finishes
bio completes and wrote new data
to the old location of the block
group
So fix this by tracking the number of nocow writers for a block group and
make sure relocation waits for that number to go down to 0 before starting
to move the extents.
The same race can also happen with buffered writes in nocow mode since the
patch I recently made titled "Btrfs: don't do unnecessary delalloc flushes
when relocating", because we are no longer flushing all delalloc which
served as a synchonization mechanism (due to page locking) and ensured
the ordered extents for nocow buffered writes were created before we
called btrfs_wait_ordered_roots(). The race with direct IO writes in nocow
mode existed before that patch (no pages are locked or used during direct
IO) and that fixed only races with direct IO writes that do cow.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Before we start the actual relocation process of a block group, we do
calls to flush delalloc of all inodes and then wait for ordered extents
to complete. However we do these flush calls just to make sure we don't
race with concurrent tasks that have actually already started to run
delalloc and have allocated an extent from the block group we want to
relocate, right before we set it to readonly mode, but have not yet
created the respective ordered extents. The flush calls make us wait
for such concurrent tasks because they end up calling
filemap_fdatawrite_range() (through btrfs_start_delalloc_roots() ->
__start_delalloc_inodes() -> btrfs_alloc_delalloc_work() ->
btrfs_run_delalloc_work()) which ends up serializing us with those tasks
due to attempts to lock the same pages (and the delalloc flush procedure
calls the allocator and creates the ordered extents before unlocking the
pages).
These flushing calls not only make us waste time (cpu, IO) but also reduce
the chances of writing larger extents (applications might be writing to
contiguous ranges and we flush before they finish dirtying the whole
ranges).
So make sure we don't flush delalloc and just wait for concurrent tasks
that have already started flushing delalloc and have allocated an extent
from the block group we are about to relocate.
This change also ends up fixing a race with direct IO writes that makes
relocation not wait for direct IO ordered extents. This race is
illustrated by the following diagram:
CPU 1 CPU 2
btrfs_relocate_block_group(bg X)
starts direct IO write,
target inode currently has no
ordered extents ongoing nor
dirty pages (delalloc regions),
therefore the root for our inode
is not in the list
fs_info->ordered_roots
btrfs_direct_IO()
__blockdev_direct_IO()
btrfs_get_blocks_direct()
btrfs_lock_extent_direct()
locks range in the io tree
btrfs_new_extent_direct()
btrfs_reserve_extent()
--> extent allocated
from bg X
btrfs_inc_block_group_ro(bg X)
btrfs_start_delalloc_roots()
__start_delalloc_inodes()
--> does nothing, no dealloc ranges
in the inode's io tree so the
inode's root is not in the list
fs_info->delalloc_roots
btrfs_wait_ordered_roots()
--> does not find the inode's root in the
list fs_info->ordered_roots
--> ends up not waiting for the direct IO
write started by the task at CPU 2
relocate_block_group(rc->stage ==
MOVE_DATA_EXTENTS)
prepare_to_relocate()
btrfs_commit_transaction()
iterates the extent tree, using its
commit root and moves extents into new
locations
btrfs_add_ordered_extent_dio()
--> now a ordered extent is
created and added to the
list root->ordered_extents
and the root added to the
list fs_info->ordered_roots
--> this is too late and the
task at CPU 1 already
started the relocation
btrfs_commit_transaction()
btrfs_finish_ordered_io()
btrfs_alloc_reserved_file_extent()
--> adds delayed data reference
for the extent allocated
from bg X
relocate_block_group(rc->stage ==
UPDATE_DATA_PTRS)
prepare_to_relocate()
btrfs_commit_transaction()
--> delayed refs are run, so an extent
item for the allocated extent from
bg X is added to extent tree
--> commit roots are switched, so the
next scan in the extent tree will
see the extent item
sees the extent in the extent tree
When this happens the relocation produces the following warning when it
finishes:
[ 7260.832836] ------------[ cut here ]------------
[ 7260.834653] WARNING: CPU: 5 PID: 6765 at fs/btrfs/relocation.c:4318 btrfs_relocate_block_group+0x245/0x2a1 [btrfs]()
[ 7260.838268] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7260.850935] CPU: 5 PID: 6765 Comm: btrfs Not tainted 4.5.0-rc6-btrfs-next-28+ #1
[ 7260.852998] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7260.852998] 0000000000000000 ffff88020bf57bc0 ffffffff812648b3 0000000000000000
[ 7260.852998] 0000000000000009 ffff88020bf57bf8 ffffffff81051608 ffffffffa03c1b2d
[ 7260.852998] ffff8800b2bbb800 0000000000000000 ffff8800b17bcc58 ffff8800399dd000
[ 7260.852998] Call Trace:
[ 7260.852998] [<ffffffff812648b3>] dump_stack+0x67/0x90
[ 7260.852998] [<ffffffff81051608>] warn_slowpath_common+0x99/0xb2
[ 7260.852998] [<ffffffffa03c1b2d>] ? btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998] [<ffffffff810516d4>] warn_slowpath_null+0x1a/0x1c
[ 7260.852998] [<ffffffffa03c1b2d>] btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998] [<ffffffffa039d9de>] btrfs_relocate_chunk.isra.29+0x66/0xdb [btrfs]
[ 7260.852998] [<ffffffffa039f314>] btrfs_balance+0xde1/0xe4e [btrfs]
[ 7260.852998] [<ffffffff8127d671>] ? debug_smp_processor_id+0x17/0x19
[ 7260.852998] [<ffffffffa03a9583>] btrfs_ioctl_balance+0x255/0x2d3 [btrfs]
[ 7260.852998] [<ffffffffa03ac96a>] btrfs_ioctl+0x11e0/0x1dff [btrfs]
[ 7260.852998] [<ffffffff811451df>] ? handle_mm_fault+0x443/0xd63
[ 7260.852998] [<ffffffff81491817>] ? _raw_spin_unlock+0x31/0x44
[ 7260.852998] [<ffffffff8108b36a>] ? arch_local_irq_save+0x9/0xc
[ 7260.852998] [<ffffffff811876ab>] vfs_ioctl+0x18/0x34
[ 7260.852998] [<ffffffff81187cb2>] do_vfs_ioctl+0x550/0x5be
[ 7260.852998] [<ffffffff81190c30>] ? __fget_light+0x4d/0x71
[ 7260.852998] [<ffffffff81187d77>] SyS_ioctl+0x57/0x79
[ 7260.852998] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7260.893268] ---[ end trace eb7803b24ebab8ad ]---
This is because at the end of the first stage, in relocate_block_group(),
we commit the current transaction, which makes delayed refs run, the
commit roots are switched and so the second stage will find the extent
item that the ordered extent added to the delayed refs. But this extent
was not moved (ordered extent completed after first stage finished), so
at the end of the relocation our block group item still has a positive
used bytes counter, triggering a warning at the end of
btrfs_relocate_block_group(). Later on when trying to read the extent
contents from disk we hit a BUG_ON() due to the inability to map a block
with a logical address that belongs to the block group we relocated and
is no longer valid, resulting in the following trace:
[ 7344.885290] BTRFS critical (device sdi): unable to find logical 12845056 len 4096
[ 7344.887518] ------------[ cut here ]------------
[ 7344.888431] kernel BUG at fs/btrfs/inode.c:1833!
[ 7344.888431] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[ 7344.888431] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7344.888431] CPU: 0 PID: 6831 Comm: od Tainted: G W 4.5.0-rc6-btrfs-next-28+ #1
[ 7344.888431] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7344.888431] task: ffff880215818600 ti: ffff880204684000 task.ti: ffff880204684000
[ 7344.888431] RIP: 0010:[<ffffffffa037c88c>] [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431] RSP: 0018:ffff8802046878f0 EFLAGS: 00010282
[ 7344.888431] RAX: 00000000ffffffea RBX: 0000000000001000 RCX: 0000000000000001
[ 7344.888431] RDX: ffff88023ec0f950 RSI: ffffffff8183b638 RDI: 00000000ffffffff
[ 7344.888431] RBP: ffff880204687908 R08: 0000000000000001 R09: 0000000000000000
[ 7344.888431] R10: ffff880204687770 R11: ffffffff82f2d52d R12: 0000000000001000
[ 7344.888431] R13: ffff88021afbfee8 R14: 0000000000006208 R15: ffff88006cd199b0
[ 7344.888431] FS: 00007f1f9e1d6700(0000) GS:ffff88023ec00000(0000) knlGS:0000000000000000
[ 7344.888431] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 7344.888431] CR2: 00007f1f9dc8cb60 CR3: 000000023e3b6000 CR4: 00000000000006f0
[ 7344.888431] Stack:
[ 7344.888431] 0000000000001000 0000000000001000 ffff880204687b98 ffff880204687950
[ 7344.888431] ffffffffa0395c8f ffffea0004d64d48 0000000000000000 0000000000001000
[ 7344.888431] ffffea0004d64d48 0000000000001000 0000000000000000 0000000000000000
[ 7344.888431] Call Trace:
[ 7344.888431] [<ffffffffa0395c8f>] submit_extent_page+0xf5/0x16f [btrfs]
[ 7344.888431] [<ffffffffa03970ac>] __do_readpage+0x4a0/0x4f1 [btrfs]
[ 7344.888431] [<ffffffffa039680d>] ? btrfs_create_repair_bio+0xcb/0xcb [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffff8108df55>] ? trace_hardirqs_on+0xd/0xf
[ 7344.888431] [<ffffffffa039728c>] __do_contiguous_readpages.constprop.26+0xc2/0xe4 [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffffa039739b>] __extent_readpages.constprop.25+0xed/0x100 [btrfs]
[ 7344.888431] [<ffffffff81129d24>] ? lru_cache_add+0xe/0x10
[ 7344.888431] [<ffffffffa0397ea8>] extent_readpages+0x160/0x1aa [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffff8115daad>] ? alloc_pages_current+0xa9/0xcd
[ 7344.888431] [<ffffffffa037cdc9>] btrfs_readpages+0x1f/0x21 [btrfs]
[ 7344.888431] [<ffffffff81128316>] __do_page_cache_readahead+0x168/0x1fc
[ 7344.888431] [<ffffffff811285a0>] ondemand_readahead+0x1f6/0x207
[ 7344.888431] [<ffffffff811285a0>] ? ondemand_readahead+0x1f6/0x207
[ 7344.888431] [<ffffffff8111cf34>] ? pagecache_get_page+0x2b/0x154
[ 7344.888431] [<ffffffff8112870e>] page_cache_sync_readahead+0x3d/0x3f
[ 7344.888431] [<ffffffff8111dbf7>] generic_file_read_iter+0x197/0x4e1
[ 7344.888431] [<ffffffff8117773a>] __vfs_read+0x79/0x9d
[ 7344.888431] [<ffffffff81178050>] vfs_read+0x8f/0xd2
[ 7344.888431] [<ffffffff81178a38>] SyS_read+0x50/0x7e
[ 7344.888431] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7344.888431] Code: 8d 4d e8 45 31 c9 45 31 c0 48 8b 00 48 c1 e2 09 48 8b 80 80 fc ff ff 4c 89 65 e8 48 8b b8 f0 01 00 00 e8 1d 42 02 00 85 c0 79 02 <0f> 0b 4c 0
[ 7344.888431] RIP [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431] RSP <ffff8802046878f0>
[ 7344.970544] ---[ end trace eb7803b24ebab8ae ]---
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Before the relocation process of a block group starts, it sets the block
group to readonly mode, then flushes all delalloc writes and then finally
it waits for all ordered extents to complete. This last step includes
waiting for ordered extents destinated at extents allocated in other block
groups, making us waste unecessary time.
So improve this by waiting only for ordered extents that fall into the
block group's range.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
btrfs_std_error() handles errors, puts FS into readonly mode
(as of now). So its good idea to rename it to btrfs_handle_fs_error().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ edit changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"These are bug fixes, including a really old fsync bug, and a few trace
points to help us track down problems in the quota code"
* 'for-linus-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix file/data loss caused by fsync after rename and new inode
btrfs: Reset IO error counters before start of device replacing
btrfs: Add qgroup tracing
Btrfs: don't use src fd for printk
btrfs: fallback to vmalloc in btrfs_compare_tree
btrfs: handle non-fatal errors in btrfs_qgroup_inherit()
btrfs: Output more info for enospc_debug mount option
Btrfs: fix invalid reference in replace_path
Btrfs: Improve FL_KEEP_SIZE handling in fallocate
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan Carpenter's static checker has found this error, it's introduced by
commit 64c043de46
("Btrfs: fix up read_tree_block to return proper error")
It's really supposed to 'break' the loop on error like others.
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"Dave had a small collection of fixes to the new free space tree code,
one of which was keeping our sysfs files more up to date with feature
bits as different things get enabled (lzo, raid5/6, etc).
I should have kept the sysfs stuff for rc3, since we always manage to
trip over something. This time it was GFP_KERNEL from somewhere that
is NOFS only. Instead of rebasing it out I've put a revert in, and
we'll fix it properly for rc3.
Otherwise, Filipe fixed a btrfs DIO race and Qu Wenruo fixed up a
use-after-free in our tracepoints that Dave Jones reported"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Revert "btrfs: synchronize incompat feature bits with sysfs files"
btrfs: don't use GFP_HIGHMEM for free-space-tree bitmap kzalloc
btrfs: sysfs: check initialization state before updating features
Revert "btrfs: clear PF_NOFREEZE in cleaner_kthread()"
btrfs: async-thread: Fix a use-after-free error for trace
Btrfs: fix race between fsync and lockless direct IO writes
btrfs: add free space tree to the cow-only list
btrfs: add free space tree to lockdep classes
btrfs: tweak free space tree bitmap allocation
btrfs: tests: switch to GFP_KERNEL
btrfs: synchronize incompat feature bits with sysfs files
btrfs: sysfs: introduce helper for syncing bits with sysfs files
btrfs: sysfs: add free-space-tree bit attribute
btrfs: sysfs: fix typo in compat_ro attribute definition
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Replace the integers by enums for better readability. The value 2 does
not have any meaning since a717531942
"Btrfs: do less aggressive btree readahead" (2009-01-22).
Signed-off-by: David Sterba <dsterba@suse.com>
In the kernel 4.2 merge window we had a big changes to the implementation
of delayed references and qgroups which made the no_quota field of delayed
references not used anymore. More specifically the no_quota field is not
used anymore as of:
commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.")
Leaving the no_quota field actually prevents delayed references from
getting merged, which in turn cause the following BUG_ON(), at
fs/btrfs/extent-tree.c, to be hit when qgroups are enabled:
static int run_delayed_tree_ref(...)
{
(...)
BUG_ON(node->ref_mod != 1);
(...)
}
This happens on a scenario like the following:
1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota.
3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref2 is incompatible
due to Ref2->no_quota != Ref3->no_quota.
4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref3 is incompatible
due to Ref3->no_quota != Ref4->no_quota.
5) We run delayed references, trigger merging of delayed references,
through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs().
6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and
all other conditions are satisfied too. So Ref1 gets a ref_mod
value of 2.
7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and
all other conditions are satisfied too. So Ref2 gets a ref_mod
value of 2.
8) Ref1 and Ref2 aren't merged, because they have different values
for their no_quota field.
9) Delayed reference Ref1 is picked for running (select_delayed_ref()
always prefers references with an action == BTRFS_ADD_DELAYED_REF).
So run_delayed_tree_ref() is called for Ref1 which triggers the
BUG_ON because Ref1->red_mod != 1 (equals 2).
So fix this by removing the no_quota field, as it's not used anymore as
of commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented
qgroup mechanism.").
The use of no_quota was also buggy in at least two places:
1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting
no_quota to 0 instead of 1 when the following condition was true:
is_fstree(ref_root) || !fs_info->quota_enabled
2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to
reset a node's no_quota when the condition "!is_fstree(root_objectid)
|| !root->fs_info->quota_enabled" was true but we did it only in
an unused local stack variable, that is, we never reset the no_quota
value in the node itself.
This fixes the remainder of problems several people have been having when
running delayed references, mostly while a balance is running in parallel,
on a 4.2+ kernel.
Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).
Also, this fixes deadlock issue when using the clone ioctl with qgroups
enabled, as reported by Elias Probst in the mailing list. The deadlock
happens because after calling btrfs_insert_empty_item we have our path
holding a write lock on a leaf of the fs/subvol tree and then before
releasing the path we called check_ref() which did backref walking, when
qgroups are enabled, and tried to read lock the same leaf. The trace for
this case is the following:
INFO: task systemd-nspawn:6095 blocked for more than 120 seconds.
(...)
Call Trace:
[<ffffffff86999201>] schedule+0x74/0x83
[<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea
[<ffffffff86137ed7>] ? wait_woken+0x74/0x74
[<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810
[<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce
[<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127
[<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667
[<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe
[<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6
[<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0
[<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65
[<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88
[<ffffffff863e852e>] check_ref+0x64/0xc4
[<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d
[<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb
[<ffffffff86048a68>] ? native_sched_clock+0x28/0x77
[<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb
(...)
The problem goes away by eleminating check_ref(), which no longer is
needed as its purpose was to get a value for the no_quota field of
a delayed reference (this patch removes the no_quota field as mentioned
earlier).
Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Elias Probst <mail@eliasprobst.eu>
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Cleanup the old facilities which use old btrfs_qgroup_reserve() function
call, replace them with the newer version, and remove the "__" prefix in
them.
Also, make btrfs_qgroup_reserve/free() functions private, as they are
now only used inside qgroup codes.
Now, the whole btrfs qgroup is swithed to use the new reserve facilities.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Use new reserve/free for buffered write and inode cache.
For buffered write case, as nodatacow write won't increase quota account,
so unlike old behavior which does reserve before check nocow, now we
check nocow first and then only reserve data if we can't do nocow write.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_error() and btrfs_std_error() does the same thing
and calls _btrfs_std_error(), so consolidate them together.
And the main motivation is that btrfs_error() is closely
named with btrfs_err(), one handles error action the other
is to log the error, so don't closely name them.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Suggested-by: David Sterba <dsterba@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These arguments are not used in functions, remove them for cleanup
and make kernel stack happy.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
objectid's init-value is not used in any case, remove it.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We need error checking code for get_ref_objectid_v0() in
relocate_block_group(), to avoid unpredictable result, especially
for accessing uninitialized value(when function failed) after
this line.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
More than one code call set_block_group_ro() and restore rw in fail.
Old code use bool bit to save blockgroup's ro state, it can not
support parallel case(it is confirmd exist in my debug log).
This patch use ref count to store ro state, and rename
set_block_group_ro/set_block_group_rw
to
inc_block_group_ro/dec_block_group_ro.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_force_chunk_alloc() return 1 for allocation chunk successfully.
This problem exists since commit c87f08ca4.
With this patch, we might fix some enospc problems for balances.
Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The return value of read_tree_block() can confuse callers as it always
returns NULL for either -ENOMEM or -EIO, so it's likely that callers
parse it to a wrong error, for instance, in btrfs_read_tree_root().
This fixes the above issue.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
There are two problems in qgroup:
a). The PAGE_CACHE is 4K, even when we are writing a data of 1K,
qgroup will reserve a 4K size. It will cause the last 3K in a qgroup
is not available to user.
b). When user is writing a inline data, qgroup will not reserve it,
it means this is a window we can exceed the limit of a qgroup.
The main idea of this patch is reserving the data size of write_bytes
rather than the reserve_bytes. It means qgroup will not care about
the data size btrfs will reserve for user, but only care about the
data size user is going to write. Then reserve it when user want to
write and release it in transaction committed.
In this way, qgroup can be released from the complex procedure in
btrfs and only do the reserve when user want to write and account
when the data is written in commit_transaction().
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We loop through all of the dirty block groups during commit and write
the free space cache. In order to make sure the cache is currect, we do
this while no other writers are allowed in the commit.
If a large number of block groups are dirty, this can introduce long
stalls during the final stages of the commit, which can block new procs
trying to change the filesystem.
This commit changes the block group cache writeout to take appropriate
locks and allow it to run earlier in the commit. We'll still have to
redo some of the block groups, but it means we can get most of the work
out of the way without blocking the entire FS.
Signed-off-by: Chris Mason <clm@fb.com>
Marc Merlin sent me a broken fs image months ago where it would blow up in the
upper->checked BUG_ON() in build_backref_tree. This is because we had a
scenario like this
block a -- level 4 (not shared)
|
block b -- level 3 (reloc block, shared)
|
block c -- level 2 (not shared)
|
block d -- level 1 (shared)
|
block e -- level 0 (shared)
We go to build a backref tree for block e, we notice block d is shared and add
it to the list of blocks to lookup it's backrefs for. Now when we loop around
we will check edges for the block, so we will see we looked up block c last
time. So we lookup block d and then see that the block that points to it is
block c and we can just skip that edge since we've already been up this path.
The problem is because we clear need_check when we see block d (as it is shared)
we never add block b as needing to be checked. And because block c is in our
path already we bail out before we walk up to block b and add it to the backref
check list.
To fix this we need to reset need_check if we trip over a block that doesn't
need to be checked. This will make sure that any subsequent blocks in the path
as we're walking up afterwards are added to the list to be processed. With this
patch I can now mount Marc's fs image and it'll complete the balance without
panicing. Thanks,
Reported-by: Marc MERLIN <marc@merlins.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When balance panics it tends to panic in the
BUG_ON(!upper->checked);
test, because it means it couldn't build the backref tree properly. This is
annoying to users and frankly a recoverable error, nothing in this function is
actually fatal since it is just an in-memory building of the backrefs for a
given bytenr. So go through and change all the BUG_ON()'s to ASSERT()'s, and
fix the BUG_ON(!upper->checked) thing to just return an error.
This patch also fixes the error handling so it tears down the work we've done
properly. This code was horribly broken since we always just panic'ed instead
of actually erroring out, so it needed to be completely re-worked. With this
patch my broken image no longer panics when I mount it. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>