If x86_vector_alloc_irq() fails x86_vector_free_irqs() is invoked to cleanup
the already allocated vectors. This subsequently calls clear_vector_irq().
The failed irq has no vector assigned, which triggers the BUG_ON(!vector) in
clear_vector_irq().
We cannot suppress the call to x86_vector_free_irqs() for the failed
interrupt, because the other data related to this irq must be cleaned up as
well. So calling clear_vector_irq() with vector == 0 is legitimate.
Remove the BUG_ON and return if vector is zero,
[ tglx: Massaged changelog ]
Fixes: b5dc8e6c21 "x86/irq: Use hierarchical irqdomain to manage CPU interrupt vectors"
Signed-off-by: Keith Busch <keith.busch@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The notifier is missing the CPU_DOWN_FAILED transition. That leaves the
heartbeat disabled when CPU_DOWN_PREPARE fails.
It also does not handle the FROZEN transition variants. That might not be an
issue for UV, but it's inconsistent.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Harry reported, that he's able to trigger a system freeze with cpu hot
unplug. The freeze turned out to be a live lock caused by recent changes in
irq_force_complete_move().
When fixup_irqs() and from there irq_force_complete_move() is called on the
dying cpu, then all other cpus are in stop machine an wait for the dying cpu
to complete the teardown. If there is a move of an interrupt pending then
irq_force_complete_move() sends the cleanup IPI to the cpus in the old_domain
mask and waits for them to clear the mask. That's obviously impossible as
those cpus are firmly stuck in stop machine with interrupts disabled.
I should have known that, but I completely overlooked it being concentrated on
the locking issues around the vectors. And the existance of the call to
__irq_complete_move() in the code, which actually sends the cleanup IPI made
it reasonable to wait for that cleanup to complete. That call was bogus even
before the recent changes as it was just a pointless distraction.
We have to look at two cases:
1) The move_in_progress flag of the interrupt is set
This means the ioapic has been updated with the new vector, but it has not
fired yet. In theory there is a race:
set_ioapic(new_vector) <-- Interrupt is raised before update is effective,
i.e. it's raised on the old vector.
So if the target cpu cannot handle that interrupt before the old vector is
cleaned up, we get a spurious interrupt and in the worst case the ioapic
irq line becomes stale, but my experiments so far have only resulted in
spurious interrupts.
But in case of cpu hotplug this should be a non issue because if the
affinity update happens right before all cpus rendevouz in stop machine,
there is no way that the interrupt can be blocked on the target cpu because
all cpus loops first with interrupts enabled in stop machine, so the old
vector is not yet cleaned up when the interrupt fires.
So the only way to run into this issue is if the delivery of the interrupt
on the apic/system bus would be delayed beyond the point where the target
cpu disables interrupts in stop machine. I doubt that it can happen, but at
least there is a theroretical chance. Virtualization might be able to
expose this, but AFAICT the IOAPIC emulation is not as stupid as the real
hardware.
I've spent quite some time over the weekend to enforce that situation,
though I was not able to trigger the delayed case.
2) The move_in_progress flag is not set and the old_domain cpu mask is not
empty.
That means, that an interrupt was delivered after the change and the
cleanup IPI has been sent to the cpus in old_domain, but not all CPUs have
responded to it yet.
In both cases we can assume that the next interrupt will arrive on the new
vector, so we can cleanup the old vectors on the cpus in the old_domain cpu
mask.
Fixes: 98229aa36c "x86/irq: Plug vector cleanup race"
Reported-by: Harry Junior <harryjr@outlook.fr>
Tested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603140931430.3657@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull irq updates from Thomas Gleixner:
"The 4.6 pile of irq updates contains:
- Support for IPI irqdomains to support proper integration of IPIs to
and from coprocessors. The first user of this new facility is
MIPS. The relevant MIPS patches come with the core to avoid merge
ordering issues and have been acked by Ralf.
- A new command line option to set the default interrupt affinity
mask at boot time.
- Support for some more new ARM and MIPS interrupt controllers:
tango, alpine-msix and bcm6345-l1
- Two small cleanups for x86/apic which we merged into irq/core to
avoid yet another branch in x86 with two tiny commits.
- The usual set of updates, cleanups in drivers/irqchip. Mostly in
the area of ARM-GIC, arada-37-xp and atmel chips. Nothing
outstanding here"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (56 commits)
irqchip/irq-alpine-msi: Release the correct domain on error
irqchip/mxs: Fix error check of of_io_request_and_map()
irqchip/sunxi-nmi: Fix error check of of_io_request_and_map()
genirq: Export IRQ functions for module use
irqchip/gic/realview: Support more RealView DCC variants
Documentation/bindings: Document the Alpine MSIX driver
irqchip: Add the Alpine MSIX interrupt controller
irqchip/gic-v3: Always return IRQ_SET_MASK_OK_DONE in gic_set_affinity
irqchip/gic-v3-its: Mark its_init() and its children as __init
irqchip/gic-v3: Remove gic_root_node variable from the ITS code
irqchip/gic-v3: ACPI: Add redistributor support via GICC structures
irqchip/gic-v3: Add ACPI support for GICv3/4 initialization
irqchip/gic-v3: Refactor gic_of_init() for GICv3 driver
x86/apic: Deinline _flat_send_IPI_mask, save ~150 bytes
x86/apic: Deinline __default_send_IPI_*, save ~200 bytes
dt-bindings: interrupt-controller: Add SoC-specific compatible string to Marvell ODMI
irqchip/mips-gic: Add new DT property to reserve IPIs
MIPS: Delete smp-gic.c
MIPS: Make smp CMP, CPS and MT use the new generic IPI functions
MIPS: Add generic SMP IPI support
...
Pull x86 asm updates from Ingo Molnar:
"This is another big update. Main changes are:
- lots of x86 system call (and other traps/exceptions) entry code
enhancements. In particular the complex parts of the 64-bit entry
code have been migrated to C code as well, and a number of dusty
corners have been refreshed. (Andy Lutomirski)
- vDSO special mapping robustification and general cleanups (Andy
Lutomirski)
- cpufeature refactoring, cleanups and speedups (Borislav Petkov)
- lots of other changes ..."
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
x86/cpufeature: Enable new AVX-512 features
x86/entry/traps: Show unhandled signal for i386 in do_trap()
x86/entry: Call enter_from_user_mode() with IRQs off
x86/entry/32: Change INT80 to be an interrupt gate
x86/entry: Improve system call entry comments
x86/entry: Remove TIF_SINGLESTEP entry work
x86/entry/32: Add and check a stack canary for the SYSENTER stack
x86/entry/32: Simplify and fix up the SYSENTER stack #DB/NMI fixup
x86/entry: Only allocate space for tss_struct::SYSENTER_stack if needed
x86/entry: Vastly simplify SYSENTER TF (single-step) handling
x86/entry/traps: Clear DR6 early in do_debug() and improve the comment
x86/entry/traps: Clear TIF_BLOCKSTEP on all debug exceptions
x86/entry/32: Restore FLAGS on SYSEXIT
x86/entry/32: Filter NT and speed up AC filtering in SYSENTER
x86/entry/compat: In SYSENTER, sink AC clearing below the existing FLAGS test
selftests/x86: In syscall_nt, test NT|TF as well
x86/asm-offsets: Remove PARAVIRT_enabled
x86/entry/32: Introduce and use X86_BUG_ESPFIX instead of paravirt_enabled
uprobes: __create_xol_area() must nullify xol_mapping.fault
x86/cpufeature: Create a new synthetic cpu capability for machine check recovery
...
For per package oriented services we must be able to rely on the number of CPU
packages to be within bounds. Create a tracking facility, which
- calculates the number of possible packages depending on nr_cpu_ids after boot
- makes sure that the package id is within the number of possible packages. If
the apic id is outside we map it to a logical package id if there is enough
space available.
Provide interfaces for drivers to query the mapping and do translations from
physcial to logical ids.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160222221011.541071755@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So the old one didn't work properly before alternatives had run.
And it was supposed to provide an optimized JMP because the
assumption was that the offset it is jumping to is within a
signed byte and thus a two-byte JMP.
So I did an x86_64 allyesconfig build and dumped all possible
sites where static_cpu_has() was used. The optimization amounted
to all in all 12(!) places where static_cpu_has() had generated
a 2-byte JMP. Which has saved us a whopping 36 bytes!
This clearly is not worth the trouble so we can remove it. The
only place where the optimization might count - in __switch_to()
- we will handle differently. But that's not subject of this
patch.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453842730-28463-6-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit a5d90c923b ("x86/efi: Quirk out SGI UV") added a quirk
to efi_apply_memmap_quirks to force SGI UV systems to fall back
to the old EFI memmap mechanism. We have a BIOS fix for this
issue on all systems except for UV1. This commit fixes up the
EFI quirk/MMR mapping code so that we only apply the special
case to UV1 hardware.
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1449867585-189233-2-git-send-email-athorlton@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We still can end up with a stale vector due to the following:
CPU0 CPU1 CPU2
lock_vector()
data->move_in_progress=0
sendIPI()
unlock_vector()
set_affinity()
assign_irq_vector()
lock_vector() handle_IPI
move_in_progress = 1 lock_vector()
unlock_vector()
move_in_progress == 1
So we need to serialize the vector assignment against a pending cleanup. The
solution is rather simple now. We not only check for the move_in_progress flag
in assign_irq_vector(), we also check whether there is still a cleanup pending
in the old_domain cpumask. If so, we return -EBUSY to the caller and let him
deal with it. Though we have to be careful in the cpu unplug case. If the
cleanout has not yet completed then the following setaffinity() call would
return -EBUSY. Add code which prevents this.
Full context is here: http://lkml.kernel.org/r/5653B688.4050809@stratus.com
Reported-and-tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160107.207265407@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
First of all there is no point in looking up the irq descriptor again, but we
also need the descriptor for the final cleanup race fix in the next
patch. Make that change seperate. No functional difference.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160107.125211743@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We want to synchronize new vector assignments with a pending cleanup. Remove a
dying cpu from a pending cleanup mask.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160107.045961667@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is no need to allocate a new cpumask for sending the cleanup vector. The
old_domain mask is now protected by the vector_lock, so we can safely remove
the offline cpus from it and send the IPI with the resulting mask.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160106.967993932@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
send_cleanup_vector() fiddles with the old_domain mask unprotected because it
relies on the protection by the move_in_progress flag. But this is fatal, as
the flag is reset after the IPI has been sent. So a cpu which receives the IPI
can still see the flag set and therefor ignores the cleanup request. If no
other cleanup request happens then the vector stays stale on that cpu and in
case of an irq removal the vector still persists. That can lead to use after
free when the next cleanup IPI happens.
Protect the code with vector_lock and clear move_in_progress before sending
the IPI.
This does not plug the race which Joe reported because:
CPU0 CPU1 CPU2
lock_vector()
data->move_in_progress=0
sendIPI()
unlock_vector()
set_affinity()
assign_irq_vector()
lock_vector() handle_IPI
move_in_progress = 1 lock_vector()
unlock_vector()
move_in_progress == 1
The full fix comes with a later patch.
Reported-and-tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160106.892412198@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point of keeping offline cpus in the cleanup mask.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160106.808642683@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reusing an existing vector and assigning a new vector has duplicated
code. Consolidate it.
This is also a preparatory patch for finally plugging the cleanup race.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160106.721599216@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In the case that the new vector mask is a subset of the existing mask there is
no point to do a AND operation of currentmask & newmask. The result is
newmask. So we can simply copy the new mask to the current mask and be done
with it. Preparatory patch for further consolidation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160106.640253454@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
__assign_irq_vector() uses the vector_cpumask which is assigned by
apic->vector_allocation_domain() without doing basic sanity checks. That can
result in a situation where the final assignement of a newly found vector
fails in apic->cpu_mask_to_apicid_and(). So we have to do rollbacks for no
reason.
apic->cpu_mask_to_apicid_and() only fails if
vector_cpumask & requested_cpumask & cpu_online_mask
is empty.
Check for this condition right away and if the result is empty try immediately
the next possible cpu in the requested mask. So in case of a failure the old
setting is unchanged and we can remove the rollback code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160106.561877324@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Split out the code which advances the target cpu for the search so we can
reuse it for the next patch which adds an early validation check for the
vectormask which we get from the apic.
Add comments while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160106.484562040@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use an explicit goto for the cases where we have success in the search/update
and return -ENOSPC if the search loop ends due to no space.
Preparatory patch for fixes. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/20151231160106.403491024@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Function __assign_irq_vector() makes use of apic_chip_data.old_domain as a
temporary buffer, which is in the way of using apic_chip_data.old_domain for
synchronizing the vector cleanup with the vector assignement code.
Use a proper temporary cpumask for this.
[ tglx: Renamed the mask to searched_cpumask for clarity ]
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/1450880014-11741-1-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There's a race condition between
x86_vector_free_irqs()
{
free_apic_chip_data(irq_data->chip_data);
xxxxx //irq_data->chip_data has been freed, but the pointer
//hasn't been reset yet
irq_domain_reset_irq_data(irq_data);
}
and
smp_irq_move_cleanup_interrupt()
{
raw_spin_lock(&vector_lock);
data = apic_chip_data(irq_desc_get_irq_data(desc));
access data->xxxx // may access freed memory
raw_spin_unlock(&desc->lock);
}
which may cause smp_irq_move_cleanup_interrupt() to access freed memory.
Call irq_domain_reset_irq_data(), which clears the pointer with vector lock
held.
[ tglx: Free memory outside of lock held region. ]
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org #4.3+
Link: http://lkml.kernel.org/r/1450880014-11741-3-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
setup_ioapic_dest() calls irqchip->irq_set_affinity() completely
unprotected. That's wrong in several aspects:
- it opens a race window where irq_set_affinity() can be interrupted and the
irq chip left in unconsistent state.
- it triggers a lockdep splat when we fix the vector race for 4.3+ because
vector lock is taken with interrupts enabled.
The proper calling convention is irq descriptor lock held and interrupts
disabled.
Reported-and-tested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Joe Lawrence <joe.lawrence@stratus.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1601140919420.3575@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 apic updates from Ingo Molnar:
"The main changes in this cycle were:
- introduce optimized single IPI sending methods on modern APICs
(Linus Torvalds, Thomas Gleixner)
- kexec/crash APIC handling fixes and enhancements (Hidehiro Kawai)
- extend lapic vector saving/restoring to the CMCI (MCE) vector as
well (Juergen Gross)
- various fixes and enhancements (Jake Oshins, Len Brown)"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/irq: Export functions to allow MSI domains in modules
Documentation: Document kernel.panic_on_io_nmi sysctl
x86/nmi: Save regs in crash dump on external NMI
x86/apic: Introduce apic_extnmi command line parameter
kexec: Fix race between panic() and crash_kexec()
panic, x86: Allow CPUs to save registers even if looping in NMI context
panic, x86: Fix re-entrance problem due to panic on NMI
x86/apic: Fix the saving and restoring of lapic vectors during suspend/resume
x86/smpboot: Re-enable init_udelay=0 by default on modern CPUs
x86/smp: Remove single IPI wrapper
x86/apic: Use default send single IPI wrapper
x86/apic: Provide default send single IPI wrapper
x86/apic: Implement single IPI for apic_noop
x86/apic: Wire up single IPI for apic_numachip
x86/apic: Wire up single IPI for x2apic_uv
x86/apic: Implement single IPI for x2apic_phys
x86/apic: Wire up single IPI for bigsmp_apic
x86/apic: Remove pointless indirections from bigsmp_apic
x86/apic: Wire up single IPI for apic_physflat
x86/apic: Remove pointless indirections from apic_physflat
...
The MMCFG PCI accessors weren't being setup for NumacConnect2
correctly due to over-early assignment; this would create the
potential for the wrong PCI domain to be accessed.
Fix this by using the correct arch-specific PCI init function.
Signed-off-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Steffen Persvold <sp@numascale.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1451498807-15920-1-git-send-email-daniel@numascale.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch introduces a command line parameter apic_extnmi:
apic_extnmi=( bsp|all|none )
The default value is "bsp" and this is the current behavior: only the
Boot-Strapping Processor receives an external NMI.
"all" allows external NMIs to be broadcast to all CPUs. This would
raise the success rate of panic on NMI when BSP hangs in NMI context
or the external NMI is swallowed by other NMI handlers on the BSP.
If you specify "none", no CPUs receive external NMIs. This is useful for
the dump capture kernel so that it cannot be shot down by accidentally
pressing the external NMI button (on platforms which have it) while
saving a crash dump.
Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Bandan Das <bsd@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: kexec@lists.infradead.org
Cc: linux-doc@vger.kernel.org
Cc: "Maciej W. Rozycki" <macro@linux-mips.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Ribalda Delgado <ricardo.ribalda@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20151210014632.25437.43778.stgit@softrs
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Saving and restoring lapic vectors in lapic_suspend() and
lapic_resume() is not consistent: the thmr vector saving is
guarded by a different config option than the restore part. The
cmci vector isn't handled at all.
Those inconsistencies are not very critical, as the missing cmci
vector will be set via mce resume handling, the wrong config
option used for restoring the thmr vector can't be configured
differently than the one which should be used.
Nevertheless correct the thmr vector restore and add cmci vector
handling.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448276364-31334-1-git-send-email-jgross@suse.com
[ Minor code edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit d32932d02e ("x86/irq: Convert IOAPIC to use hierarchical irqdomain
interfaces") brought a regression for Hyper-V Gen2 instances. These
instances don't have i8259 legacy PIC but they use legacy IRQs for serial
port, rtc, and acpi. With this commit included we end up with these IRQs
not initialized. Earlier, there was a special workaround for legacy IRQs
in mp_map_pin_to_irq() doing mp_irqdomain_map() without looking at
nr_legacy_irqs() and now we fail in __irq_domain_alloc_irqs() when
irq_domain_alloc_descs() returns -EEXIST.
The essence of the issue seems to be that early_irq_init() calls
arch_probe_nr_irqs() to figure out the number of legacy IRQs before
we probe for i8259 and gets 16. Later when init_8259A() is called we switch
to NULL legacy PIC and nr_legacy_irqs() starts to return 0 but we already
have 16 descs allocated.
Solve the issue by separating i8259 probe from init and calling it in
arch_probe_nr_irqs() before we actually use nr_legacy_irqs() information.
Fixes: d32932d02e ("x86/irq: Convert IOAPIC to use hierarchical irqdomain interfaces")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1446543614-3621-1-git-send-email-vkuznets@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Wire up the default_send_IPI_single() wrapper to the last holdouts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Daniel J Blueman <daniel@numascale.com>
Link: http://lkml.kernel.org/r/20151104220849.711224890@linutronix.de
Instead of doing the wrapping in the smp code we can provide a default
wrapper for those APICs which insist on cpumasks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Daniel J Blueman <daniel@numascale.com>
Link: http://lkml.kernel.org/r/20151104220849.631111846@linutronix.de
No value in having 32 byte extra text.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Daniel J Blueman <daniel@numascale.com>
Link: http://lkml.kernel.org/r/20151104220848.975653382@linutronix.de
[ tglx: Split it out from the patch which provides the new callback ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Daniel J Blueman <daniel@numascale.com>
Link: http://lkml.kernel.org/r/20151104220848.817975597@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 apic changes from Ingo Molnar:
"The main changes in this cycle were:
- Numachip updates: new hardware support, fixes and cleanups.
(Daniel J Blueman)
- misc smaller cleanups and fixlets"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/io_apic: Make eoi_ioapic_pin() static
x86/irq: Drop unlikely before IS_ERR_OR_NULL
x86/x2apic: Make stub functions available even if !CONFIG_X86_LOCAL_APIC
x86/apic: Deinline various functions
x86/numachip: Fix timer build conflict
x86/numachip: Introduce Numachip2 timer mechanisms
x86/numachip: Add Numachip IPI optimisations
x86/numachip: Add Numachip2 APIC support
x86/numachip: Cleanup Numachip support
Commit 4857c91f0d changed the way how irq affinity is setup in
setup_ioapic_dest() from using the core helper function to
unconditionally calling the irq_set_affinity() callback of the
underlying irq chip.
That results in a NULL pointer dereference for the rare case where the
underlying irq chip is lapic_chip which has no irq_set_affinity()
callback. lapic_chip is occasionally used for the timer interrupt (irq
0).
The fix is simple: Check the availability of the callback instead of
calling it unconditionally.
Fixes: 4857c91f0d "x86/ioapic: Force affinity setting in setup_ioapic_dest()"
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org