Lockdep now has an integrated IRQs disabled/enabled sanity check. Just
use it instead of the ad-hoc RCU version.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David S . Miller <davem@davemloft.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1509980490-4285-15-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
First, number of CPUs can't be negative number.
Second, different signnnedness leads to suboptimal code in the following
cases:
1)
kmalloc(nr_cpu_ids * sizeof(X));
"int" has to be sign extended to size_t.
2)
while (loff_t *pos < nr_cpu_ids)
MOVSXD is 1 byte longed than the same MOV.
Other cases exist as well. Basically compiler is told that nr_cpu_ids
can't be negative which can't be deduced if it is "int".
Code savings on allyesconfig kernel: -3KB
add/remove: 0/0 grow/shrink: 25/264 up/down: 261/-3631 (-3370)
function old new delta
coretemp_cpu_online 450 512 +62
rcu_init_one 1234 1272 +38
pci_device_probe 374 399 +25
...
pgdat_reclaimable_pages 628 556 -72
select_fallback_rq 446 369 -77
task_numa_find_cpu 1923 1807 -116
Link: http://lkml.kernel.org/r/20170819114959.GA30580@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds assertions verifying the consistency of the rcu_node
structure's ->blkd_tasks list and its ->gp_tasks, ->exp_tasks, and
->boost_tasks pointers. In particular, the ->blkd_tasks lists must be
empty except for leaf rcu_node structures.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
There is currently event tracing to track when a task is preempted
within a preemptible RCU read-side critical section, and also when that
task subsequently reaches its outermost rcu_read_unlock(), but none
indicating when a new grace period starts when that grace period must
wait on pre-existing readers that have been been preempted at least once
since the beginning of their current RCU read-side critical sections.
This commit therefore adds an event trace at grace-period start in
the case where there are such readers. Note that only the first
reader in the list is traced.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Strings used in event tracing need to be specially handled, for example,
using the TPS() macro. Without the TPS() macro, although output looks
fine from within a running kernel, extracting traces from a crash dump
produces garbage instead of strings. This commit therefore adds the TPS()
macro to some unadorned strings that were passed to event-tracing macros.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
RCU's CPU-hotplug callback-migration code first moves the outgoing
CPU's callbacks to ->orphan_done and ->orphan_pend, and only then
moves them to the NOCB callback list. This commit avoids the
extra step (and simplifies the code) by moving the callbacks directly
from the outgoing CPU's callback list to the NOCB callback list.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The handling of RCU's no-CBs CPUs has a maintenance headache, namely
that if call_rcu() is invoked with interrupts disabled, the rcuo kthread
wakeup must be defered to a point where we can be sure that scheduler
locks are not held. Of course, there are a lot of code paths leading
from an interrupts-disabled invocation of call_rcu(), and missing any
one of these can result in excessive callback-invocation latency, and
potentially even system hangs.
This commit therefore uses a timer to guarantee that the wakeup will
eventually occur. If one of the deferred-wakeup points kicks in, then
the timer is simply cancelled.
This commit also fixes up an incomplete removal of commits that were
intended to plug remaining exit paths, which should have the added
benefit of reducing the overhead of RCU's context-switch hooks. In
addition, it simplifies leader-to-follower callback-list handoff by
introducing locking. The call_rcu()-to-leader handoff continues to
use atomic operations in order to maintain good real-time latency for
common-case use of call_rcu().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Dan Carpenter fix for mod_timer() usage bug found by smatch. ]
The CONFIG_RCU_NOCB_CPU_ALL, CONFIG_RCU_NOCB_CPU_NONE, and
CONFIG_RCU_NOCB_CPU_ZERO Kconfig options are used only in testing and
are redundant with the rcu_nocbs= boot parameter. This commit therefore
removes these three Kconfig options and adjusts the rcutorture scripts
to use the boot parameter instead.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
RCU's debugfs tracing used to be the only reasonable low-level debug
information available, but ftrace and event tracing has since surpassed
the RCU debugfs level of usefulness. This commit therefore removes
RCU's debugfs tracing.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The PROVE_RCU_REPEATEDLY Kconfig option was initially added due to
the volume of messages from PROVE_RCU: Doing just one per boot would
have required excessive numbers of boots to locate them all. However,
PROVE_RCU messages are now relatively rare, so there is no longer any
reason to need more than one such message per boot. This commit therefore
removes the PROVE_RCU_REPEATEDLY Kconfig option.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
The NO_HZ_FULL_SYSIDLE full-system-idle capability was added in 2013
by commit 0edd1b1784 ("nohz_full: Add full-system-idle state machine"),
but has not been used. This commit therefore removes it.
If it turns out to be needed later, this commit can always be reverted.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
The RCU_TORTURE_TEST_SLOW_PREINIT, RCU_TORTURE_TEST_SLOW_PREINIT_DELAY,
RCU_TORTURE_TEST_SLOW_PREINIT_DELAY, RCU_TORTURE_TEST_SLOW_INIT,
RCU_TORTURE_TEST_SLOW_INIT_DELAY, RCU_TORTURE_TEST_SLOW_CLEANUP,
and RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY Kconfig options are only
useful for torture testing, and there are the rcutree.gp_cleanup_delay,
rcutree.gp_init_delay, and rcutree.gp_preinit_delay kernel boot parameters
that rcutorture can use instead. The effect of these parameters is to
artificially slow down grace period initialization and cleanup in order
to make some types of race conditions happen more often.
This commit therefore simplifies Tree RCU a bit by removing the Kconfig
options and adding the corresponding kernel parameters to rcutorture's
.boot files instead. However, this commit also leaves out the kernel
parameters for TREE02, TREE04, and TREE07 in order to have about the
same number of tests slowed as not slowed. TREE01, TREE03, TREE05,
and TREE06 are slowed, and the rest are not slowed.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The include/linux/rcupdate.h file is included by more than 200
files, so shrinking it should provide some build-time benefits.
This commit therefore moves several docbook comments from rcupdate.h to
kernel/rcu/update.c, kernel/rcu/tree.c, and kernel/rcu/tree_plugin.h, thus
reducing the number of times that the compiler has to scan these comments.
This likely provides only a small benefit, but every little bit helps.
This commit also fixes a malformed bulleted list noted by the 0day
Test Robot.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Wait/wakeup operations do not guarantee ordering on their own. Instead,
either locking or memory barriers are required. This commit therefore
adds memory barriers to wake_nocb_leader() and nocb_leader_wait().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Krister Johansen <kjlx@templeofstupid.com>
Cc: <stable@vger.kernel.org> # 4.6.x
The RCU_NOGP_WAKE_NOT, RCU_NOGP_WAKE, and RCU_NOGP_WAKE_FORCE flags
are used to mediate wakeups for the no-CBs CPU kthreads. The "NOGP"
really doesn't make any sense, so this commit does s/NOGP/NOCB/.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Comments can be helpful, but assertions carry more force. This commit
therefore adds lockdep_assert_held() and RCU_LOCKDEP_WARN() calls to
enforce lock-held and interrupt-disabled preconditions.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit updates rcu_bootup_announce_oddness() to check additional
Kconfig options and module/boot parameters.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds a rcupdate_announce_bootup_oddness() function to
print out non-default values of significant kernel boot parameter
settings to aid in debugging.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The synchronize_kernel() primitive was removed in favor of
synchronize_sched() more than a decade ago, and it seems likely that
rather few kernel hackers are familiar with it. Its continued presence
is therefore providing more confusion than enlightenment. This commit
therefore removes the reference from the synchronize_sched() header
comment, and adds the corresponding information to the synchronize_rcu(0
header comment.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although preemptible RCU allows its read-side critical sections to be
preempted, general blocking is forbidden. The reason for this is that
excessive preemption times can be handled by CONFIG_RCU_BOOST=y, but a
voluntarily blocked task doesn't care how high you boost its priority.
Because preemptible RCU is a global mechanism, one ill-behaved reader
hurts everyone. Hence the prohibition against general blocking in
RCU-preempt read-side critical sections. Preemption yes, blocking no.
This commit enforces this prohibition.
There is a special exception for the -rt patchset (which they kindly
volunteered to implement): It is OK to block (as opposed to merely being
preempted) within an RCU-preempt read-side critical section, but only if
the blocking is subject to priority inheritance. This exception permits
CONFIG_RCU_BOOST=y to get -rt RCU readers out of trouble.
Why doesn't this exception also apply to mainline's rt_mutex? Because
of the possibility that someone does general blocking while holding
an rt_mutex. Yes, the priority boosting will affect the rt_mutex,
but it won't help with the task doing general blocking while holding
that rt_mutex.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Because the rcu_cblist_n_lazy_cbs() just samples the ->len_lazy counter,
and because the rcu_cblist structure is quite straightforward, it makes
sense to open-code rcu_cblist_n_lazy_cbs(p) as p->len_lazy, cutting out
a level of indirection. This commit makes this change.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Because the rcu_cblist_n_cbs() just samples the ->len counter, and
because the rcu_cblist structure is quite straightforward, it makes
sense to open-code rcu_cblist_n_cbs(p) as p->len, cutting out a level
of indirection. This commit makes this change.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Because the rcu_cblist_empty() just samples the ->head pointer, and
because the rcu_cblist structure is quite straightforward, it makes
sense to open-code rcu_cblist_empty(p) as !p->head, cutting out a
level of indirection. This commit makes this change.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
This commit makes the parse_rcu_nocb_poll() function assign true
(rather than the constant 1) to the bool variable rcu_nocb_poll.
Signed-off-by: Nicholas Mc Guire <der.herr@hofr.at>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_all_qs() and rcu_note_context_switch() do a series of checks,
taking various actions to supply RCU with quiescent states, depending
on the outcomes of the various checks. This is a bit much for scheduling
fastpaths, so this commit creates a separate ->rcu_urgent_qs field in
the rcu_dynticks structure that acts as a global guard for these checks.
Thus, in the common case, rcu_all_qs() and rcu_note_context_switch()
check the ->rcu_urgent_qs field, find it false, and simply return.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/debug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to move scheduler ABI details to <uapi/linux/sched/types.h>,
which will be used from a number of .c files.
Create empty placeholder header that maps to <linux/types.h>.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is the fourth step towards full abstraction of all accesses
to the ->dynticks counter, implementing previously open-coded checks and
comparisons in new rcu_dynticks_in_eqs() and rcu_dynticks_in_eqs_since()
functions. This abstraction will ease changes to the ->dynticks counter
operation.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
It used to be that the rcuo callback-offload kthreads were spawned
in rcu_organize_nocb_kthreads(), and the comment before the "for"
loop says as much. However, this spawning has long since moved to
the CPU-hotplug code, so this commit fixes this comment.
Reported-by: Michalis Kokologiannakis <mixaskok@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The current preemptible RCU implementation goes through three phases
during bootup. In the first phase, there is only one CPU that is running
with preemption disabled, so that a no-op is a synchronous grace period.
In the second mid-boot phase, the scheduler is running, but RCU has
not yet gotten its kthreads spawned (and, for expedited grace periods,
workqueues are not yet running. During this time, any attempt to do
a synchronous grace period will hang the system (or complain bitterly,
depending). In the third and final phase, RCU is fully operational and
everything works normally.
This has been OK for some time, but there has recently been some
synchronous grace periods showing up during the second mid-boot phase.
This code worked "by accident" for awhile, but started failing as soon
as expedited RCU grace periods switched over to workqueues in commit
8b355e3bc1 ("rcu: Drive expedited grace periods from workqueue").
Note that the code was buggy even before this commit, as it was subject
to failure on real-time systems that forced all expedited grace periods
to run as normal grace periods (for example, using the rcu_normal ksysfs
parameter). The callchain from the failure case is as follows:
early_amd_iommu_init()
|-> acpi_put_table(ivrs_base);
|-> acpi_tb_put_table(table_desc);
|-> acpi_tb_invalidate_table(table_desc);
|-> acpi_tb_release_table(...)
|-> acpi_os_unmap_memory
|-> acpi_os_unmap_iomem
|-> acpi_os_map_cleanup
|-> synchronize_rcu_expedited
The kernel showing this callchain was built with CONFIG_PREEMPT_RCU=y,
which caused the code to try using workqueues before they were
initialized, which did not go well.
This commit therefore reworks RCU to permit synchronous grace periods
to proceed during this mid-boot phase. This commit is therefore a
fix to a regression introduced in v4.9, and is therefore being put
forward post-merge-window in v4.10.
This commit sets a flag from the existing rcu_scheduler_starting()
function which causes all synchronous grace periods to take the expedited
path. The expedited path now checks this flag, using the requesting task
to drive the expedited grace period forward during the mid-boot phase.
Finally, this flag is updated by a core_initcall() function named
rcu_exp_runtime_mode(), which causes the runtime codepaths to be used.
Note that this arrangement assumes that tasks are not sent POSIX signals
(or anything similar) from the time that the first task is spawned
through core_initcall() time.
Fixes: 8b355e3bc1 ("rcu: Drive expedited grace periods from workqueue")
Reported-by: "Zheng, Lv" <lv.zheng@intel.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Stan Kain <stan.kain@gmail.com>
Tested-by: Ivan <waffolz@hotmail.com>
Tested-by: Emanuel Castelo <emanuel.castelo@gmail.com>
Tested-by: Bruno Pesavento <bpesavento@infinito.it>
Tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Frederic Bezies <fredbezies@gmail.com>
Cc: <stable@vger.kernel.org> # 4.9.0-
In many cases in the RCU tree code, we iterate over the set of cpus for
a leaf node described by rcu_node::grplo and rcu_node::grphi, checking
per-cpu data for each cpu in this range. However, if the set of possible
cpus is sparse, some cpus described in this range are not possible, and
thus no per-cpu region will have been allocated (or initialised) for
them by the generic percpu code.
Erroneous accesses to a per-cpu area for these !possible cpus may fault
or may hit other data depending on the addressed generated when the
erroneous per cpu offset is applied. In practice, both cases have been
observed on arm64 hardware (the former being silent, but detectable with
additional patches).
To avoid issues resulting from this, we must iterate over the set of
*possible* cpus for a given leaf node. This patch add a new helper,
for_each_leaf_node_possible_cpu, to enable this. As iteration is often
intertwined with rcu_node local bitmask manipulation, a new
leaf_node_cpu_bit helper is added to make this simpler and more
consistent. The RCU tree code is made to use both of these where
appropriate.
Without this patch, running reboot at a shell can result in an oops
like:
[ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c
[ 3369.083881] pgd = ffffffc3ecdda000
[ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000
[ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP
[ 3369.101781] Modules linked in:
[ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3
[ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000
[ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510
[ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5
[ 3369.146860] sp : ffffffc3eb9435a0
[ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88
[ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600
[ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88
[ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80
[ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40
[ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000
[ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0
[ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000
[ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000
[ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78
[ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000
[ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003
[ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280
[ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001
[ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140
...
[ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8
[ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30
[ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298
[ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0
[ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40
[ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158
[ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60
[ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918
[ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8
[ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220
[ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8
[ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40
[ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238
[ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358
[ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30
[ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280
[ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88
[ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20
[ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Dennis Chen <dennis.chen@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit removes CONFIG_RCU_TORTURE_TEST_RUNNABLE in favor of the
already-existing rcutorture.torture_runnable kernel boot parameter.
It also converts an #ifdef into IS_ENABLED(), saving a few lines of code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
People have been having some difficulty finding their way around the
RCU code. This commit therefore pulls some of the expedited grace-period
code from tree_plugin.h to a new tree_exp.h file. This commit is strictly
code movement.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit pulls the grace-period-start counter adjustment and tracing
from synchronize_rcu_expedited() and synchronize_sched_expedited()
into exp_funnel_lock(), thus eliminating some code duplication.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit moves some duplicate code from synchronize_rcu_expedited()
and synchronize_sched_expedited() into rcu_exp_gp_seq_snap(). This
doesn't save lines of code, but does eliminate a "tell me twice" issue.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, synchronize_rcu_expedited() and rcu_sched_expedited() have
significant duplicate code. This commit therefore consolidates some of
this code into rcu_exp_wake(), which is now renamed to rcu_exp_wait_wake()
in recognition of its added responsibilities.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current mutex-based funnel-locking approach used by expedited grace
periods is subject to severe unfairness. The problem arises when a
few tasks, making a path from leaves to root, all wake up before other
tasks do. A new task can then follow this path all the way to the root,
which needlessly delays tasks whose grace period is done, but who do
not happen to acquire the lock quickly enough.
This commit avoids this problem by maintaining per-rcu_node wait queues,
along with a per-rcu_node counter that tracks the latest grace period
sought by an earlier task to visit this node. If that grace period
would satisfy the current task, instead of proceeding up the tree,
it waits on the current rcu_node structure using a pair of wait queues
provided for that purpose. This decouples awakening of old tasks from
the arrival of new tasks.
If the wakeups prove to be a bottleneck, additional kthreads can be
brought to bear for that purpose.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit brings the synchronize_rcu_expedited() function's header
comment into line with the new implementation.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
As of commit dae6e64d2b ("rcu: Introduce proper blocking to no-CBs kthreads
GP waits") the RCU subsystem started making use of wait queues.
Here we convert all additions of RCU wait queues to use simple wait queues,
since they don't need the extra overhead of the full wait queue features.
Originally this was done for RT kernels[1], since we would get things like...
BUG: sleeping function called from invalid context at kernel/rtmutex.c:659
in_atomic(): 1, irqs_disabled(): 1, pid: 8, name: rcu_preempt
Pid: 8, comm: rcu_preempt Not tainted
Call Trace:
[<ffffffff8106c8d0>] __might_sleep+0xd0/0xf0
[<ffffffff817d77b4>] rt_spin_lock+0x24/0x50
[<ffffffff8106fcf6>] __wake_up+0x36/0x70
[<ffffffff810c4542>] rcu_gp_kthread+0x4d2/0x680
[<ffffffff8105f910>] ? __init_waitqueue_head+0x50/0x50
[<ffffffff810c4070>] ? rcu_gp_fqs+0x80/0x80
[<ffffffff8105eabb>] kthread+0xdb/0xe0
[<ffffffff8106b912>] ? finish_task_switch+0x52/0x100
[<ffffffff817e0754>] kernel_thread_helper+0x4/0x10
[<ffffffff8105e9e0>] ? __init_kthread_worker+0x60/0x60
[<ffffffff817e0750>] ? gs_change+0xb/0xb
...and hence simple wait queues were deployed on RT out of necessity
(as simple wait uses a raw lock), but mainline might as well take
advantage of the more streamline support as well.
[1] This is a carry forward of work from v3.10-rt; the original conversion
was by Thomas on an earlier -rt version, and Sebastian extended it to
additional post-3.10 added RCU waiters; here I've added a commit log and
unified the RCU changes into one, and uprev'd it to match mainline RCU.
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-6-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
rcu_nocb_gp_cleanup() is called while holding rnp->lock. Currently,
this is okay because the wake_up_all() in rcu_nocb_gp_cleanup() will
not enable the IRQs. lockdep is happy.
By switching over using swait this is not true anymore. swake_up_all()
enables the IRQs while processing the waiters. __do_softirq() can now
run and will eventually call rcu_process_callbacks() which wants to
grap nrp->lock.
Let's move the rcu_nocb_gp_cleanup() call outside the lock before we
switch over to swait.
If we would hold the rnp->lock and use swait, lockdep reports
following:
=================================
[ INFO: inconsistent lock state ]
4.2.0-rc5-00025-g9a73ba0 #136 Not tainted
---------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
rcu_preempt/8 [HC0[0]:SC0[0]:HE1:SE1] takes:
(rcu_node_1){+.?...}, at: [<ffffffff811387c7>] rcu_gp_kthread+0xb97/0xeb0
{IN-SOFTIRQ-W} state was registered at:
[<ffffffff81109b9f>] __lock_acquire+0xd5f/0x21e0
[<ffffffff8110be0f>] lock_acquire+0xdf/0x2b0
[<ffffffff81841cc9>] _raw_spin_lock_irqsave+0x59/0xa0
[<ffffffff81136991>] rcu_process_callbacks+0x141/0x3c0
[<ffffffff810b1a9d>] __do_softirq+0x14d/0x670
[<ffffffff810b2214>] irq_exit+0x104/0x110
[<ffffffff81844e96>] smp_apic_timer_interrupt+0x46/0x60
[<ffffffff81842e70>] apic_timer_interrupt+0x70/0x80
[<ffffffff810dba66>] rq_attach_root+0xa6/0x100
[<ffffffff810dbc2d>] cpu_attach_domain+0x16d/0x650
[<ffffffff810e4b42>] build_sched_domains+0x942/0xb00
[<ffffffff821777c2>] sched_init_smp+0x509/0x5c1
[<ffffffff821551e3>] kernel_init_freeable+0x172/0x28f
[<ffffffff8182cdce>] kernel_init+0xe/0xe0
[<ffffffff8184231f>] ret_from_fork+0x3f/0x70
irq event stamp: 76
hardirqs last enabled at (75): [<ffffffff81841330>] _raw_spin_unlock_irq+0x30/0x60
hardirqs last disabled at (76): [<ffffffff8184116f>] _raw_spin_lock_irq+0x1f/0x90
softirqs last enabled at (0): [<ffffffff810a8df2>] copy_process.part.26+0x602/0x1cf0
softirqs last disabled at (0): [< (null)>] (null)
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(rcu_node_1);
<Interrupt>
lock(rcu_node_1);
*** DEADLOCK ***
1 lock held by rcu_preempt/8:
#0: (rcu_node_1){+.?...}, at: [<ffffffff811387c7>] rcu_gp_kthread+0xb97/0xeb0
stack backtrace:
CPU: 0 PID: 8 Comm: rcu_preempt Not tainted 4.2.0-rc5-00025-g9a73ba0 #136
Hardware name: Dell Inc. PowerEdge R820/066N7P, BIOS 2.0.20 01/16/2014
0000000000000000 000000006d7e67d8 ffff881fb081fbd8 ffffffff818379e0
0000000000000000 ffff881fb0812a00 ffff881fb081fc38 ffffffff8110813b
0000000000000000 0000000000000001 ffff881f00000001 ffffffff8102fa4f
Call Trace:
[<ffffffff818379e0>] dump_stack+0x4f/0x7b
[<ffffffff8110813b>] print_usage_bug+0x1db/0x1e0
[<ffffffff8102fa4f>] ? save_stack_trace+0x2f/0x50
[<ffffffff811087ad>] mark_lock+0x66d/0x6e0
[<ffffffff81107790>] ? check_usage_forwards+0x150/0x150
[<ffffffff81108898>] mark_held_locks+0x78/0xa0
[<ffffffff81841330>] ? _raw_spin_unlock_irq+0x30/0x60
[<ffffffff81108a28>] trace_hardirqs_on_caller+0x168/0x220
[<ffffffff81108aed>] trace_hardirqs_on+0xd/0x10
[<ffffffff81841330>] _raw_spin_unlock_irq+0x30/0x60
[<ffffffff810fd1c7>] swake_up_all+0xb7/0xe0
[<ffffffff811386e1>] rcu_gp_kthread+0xab1/0xeb0
[<ffffffff811089bf>] ? trace_hardirqs_on_caller+0xff/0x220
[<ffffffff81841341>] ? _raw_spin_unlock_irq+0x41/0x60
[<ffffffff81137c30>] ? rcu_barrier+0x20/0x20
[<ffffffff810d2014>] kthread+0x104/0x120
[<ffffffff81841330>] ? _raw_spin_unlock_irq+0x30/0x60
[<ffffffff810d1f10>] ? kthread_create_on_node+0x260/0x260
[<ffffffff8184231f>] ret_from_fork+0x3f/0x70
[<ffffffff810d1f10>] ? kthread_create_on_node+0x260/0x260
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-5-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In patch:
"rcu: Add transitivity to remaining rcu_node ->lock acquisitions"
All locking operations on rcu_node::lock are replaced with the wrappers
because of the need of transitivity, which indicates we should never
write code using LOCK primitives alone(i.e. without a proper barrier
following) on rcu_node::lock outside those wrappers. We could detect
this kind of misuses on rcu_node::lock in the future by adding __private
modifier on rcu_node::lock.
To privatize rcu_node::lock, unlock wrappers are also needed. Replacing
spinlock unlocks with these wrappers not only privatizes rcu_node::lock
but also makes it easier to figure out critical sections of rcu_node.
This patch adds __private modifier to rcu_node::lock and makes every
access to it wrapped by ACCESS_PRIVATE(). Besides, unlock wrappers are
added and raw_spin_unlock(&rnp->lock) and its friends are replaced with
those wrappers.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>