* pci/aer:
PCI/AER: Log aer_inject error injections
PCI/AER: Log actual error causes in aer_inject
PCI/AER: Use dev_warn() in aer_inject
PCI/AER: Fix aer_inject error codes
* pci/enumeration:
PCI: Fix broken URL for Dell biosdevname
* pci/kconfig:
PCI: Cleanup pci/pcie/Kconfig whitespace
PCI: Include pci/hotplug Kconfig directly from pci/Kconfig
PCI: Include pci/pcie/Kconfig directly from pci/Kconfig
* pci/misc:
PCI: Add PCI_CLASS_SERIAL_USB_DEVICE definition
PCI: Add QEMU top-level IDs for (sub)vendor & device
unicore32: Remove unused HAVE_ARCH_PCI_SET_DMA_MASK definition
PCI: Consolidate PCI DMA constants and interfaces in linux/pci-dma-compat.h
PCI: Move pci_dma_* helpers to common code
frv/PCI: Remove stray pci_{alloc,free}_consistent() declaration
* pci/virtualization:
PCI: Wait for up to 1000ms after FLR reset
PCI: Support SR-IOV on any function type
* pci/vpd:
PCI: Prevent VPD access for buggy devices
PCI: Sleep rather than busy-wait for VPD access completion
PCI: Fold struct pci_vpd_pci22 into struct pci_vpd
PCI: Rename VPD symbols to remove unnecessary "pci22"
PCI: Remove struct pci_vpd_ops.release function pointer
PCI: Move pci_vpd_release() from header file to pci/access.c
PCI: Move pci_read_vpd() and pci_write_vpd() close to other VPD code
PCI: Determine actual VPD size on first access
PCI: Use bitfield instead of bool for struct pci_vpd_pci22.busy
PCI: Allow access to VPD attributes with size 0
PCI: Update VPD definitions
When booting Hyper-V Generation 2 guests KASAN reports the following
out-of-bounds access:
BUG: KASAN: slab-out-of-bounds in fb_is_primary_device+0x58/0x70 at addr ffff880079cf0eb0
Read of size 8 by task swapper/0/1
...
[<ffffffff81581308>] dump_stack+0x63/0x8b
[<ffffffff812e1f99>] print_trailer+0xf9/0x150
[<ffffffff812e7344>] object_err+0x34/0x40
[<ffffffff812e9630>] kasan_report_error+0x230/0x550
[<ffffffff812e9ee8>] kasan_report+0x58/0x60
[<ffffffff812e4500>] ? ___slab_alloc+0x80/0x490
[<ffffffff81878a28>] ? fb_is_primary_device+0x58/0x70
[<ffffffff812e87cd>] __asan_load8+0x5d/0x70
[<ffffffff81878a28>] fb_is_primary_device+0x58/0x70
[<ffffffff8162357a>] register_framebuffer+0xda/0x5b0
[<ffffffff816234a0>] ? remove_conflicting_framebuffers+0x50/0x50
...
The issue is caused by the to_pci_dev() call with no check that the given
info->device is in fact a PCI device and some FB devices (Hyper-V FB, EFI
FB,...) are not.
While on it, clean up the function.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Bjorn Helgaas <helgaas@kernel.org>
Cc: Cathy Avery <cavery@redhat.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458030033-10122-1-git-send-email-vkuznets@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- Make schedstats a runtime tunable (disabled by default) and
optimize it via static keys.
As most distributions enable CONFIG_SCHEDSTATS=y due to its
instrumentation value, this is a nice performance enhancement.
(Mel Gorman)
- Implement 'simple waitqueues' (swait): these are just pure
waitqueues without any of the more complex features of full-blown
waitqueues (callbacks, wake flags, wake keys, etc.). Simple
waitqueues have less memory overhead and are faster.
Use simple waitqueues in the RCU code (in 4 different places) and
for handling KVM vCPU wakeups.
(Peter Zijlstra, Daniel Wagner, Thomas Gleixner, Paul Gortmaker,
Marcelo Tosatti)
- sched/numa enhancements (Rik van Riel)
- NOHZ performance enhancements (Rik van Riel)
- Various sched/deadline enhancements (Steven Rostedt)
- Various fixes (Peter Zijlstra)
- ... and a number of other fixes, cleanups and smaller enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
sched/cputime: Fix steal_account_process_tick() to always return jiffies
sched/deadline: Remove dl_new from struct sched_dl_entity
Revert "kbuild: Add option to turn incompatible pointer check into error"
sched/deadline: Remove superfluous call to switched_to_dl()
sched/debug: Fix preempt_disable_ip recording for preempt_disable()
sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity
time, acct: Drop irq save & restore from __acct_update_integrals()
acct, time: Change indentation in __acct_update_integrals()
sched, time: Remove non-power-of-two divides from __acct_update_integrals()
sched/rt: Kick RT bandwidth timer immediately on start up
sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched_debug
sched/debug: Move sched_domain_sysctl to debug.c
sched/debug: Move the /sys/kernel/debug/sched_features file setup into debug.c
sched/rt: Fix PI handling vs. sched_setscheduler()
sched/core: Remove duplicated sched_group_set_shares() prototype
sched/fair: Consolidate nohz CPU load update code
sched/fair: Avoid using decay_load_missed() with a negative value
sched/deadline: Always calculate end of period on sched_yield()
sched/cgroup: Fix cgroup entity load tracking tear-down
rcu: Use simple wait queues where possible in rcutree
...
Pull RAS updates from Ingo Molnar:
"Various RAS updates:
- AMD MCE support updates for future CPUs, fixes and 'SMCA' (Scalable
MCA) error decoding support (Aravind Gopalakrishnan)
- x86 memcpy_mcsafe() support, to enable smart(er) hardware error
recovery in NVDIMM drivers, based on an extension of the x86
exception handling code. (Tony Luck)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
EDAC/sb_edac: Fix computation of channel address
x86/mm, x86/mce: Add memcpy_mcsafe()
x86/mce/AMD: Document some functionality
x86/mce: Clarify comments regarding deferred error
x86/mce/AMD: Fix logic to obtain block address
x86/mce/AMD, EDAC: Enable error decoding of Scalable MCA errors
x86/mce: Move MCx_CONFIG MSR definitions
x86/mce: Check for faults tagged in EXTABLE_CLASS_FAULT exception table entries
x86/mm: Expand the exception table logic to allow new handling options
x86/mce/AMD: Set MCAX Enable bit
x86/mce/AMD: Carve out threshold block preparation
x86/mce/AMD: Fix LVT offset configuration for thresholding
x86/mce/AMD: Reduce number of blocks scanned per bank
x86/mce/AMD: Do not perform shared bank check for future processors
x86/mce: Fix order of AMD MCE init function call
Pull perf updates from Ingo Molnar:
"Main kernel side changes:
- Big reorganization of the x86 perf support code. The old code grew
organically deep inside arch/x86/kernel/cpu/perf* and its naming
became somewhat messy.
The new location is under arch/x86/events/, using the following
cleaner hierarchy of source code files:
perf/x86: Move perf_event.c .................. => x86/events/core.c
perf/x86: Move perf_event_amd.c .............. => x86/events/amd/core.c
perf/x86: Move perf_event_amd_ibs.c .......... => x86/events/amd/ibs.c
perf/x86: Move perf_event_amd_iommu.[ch] ..... => x86/events/amd/iommu.[ch]
perf/x86: Move perf_event_amd_uncore.c ....... => x86/events/amd/uncore.c
perf/x86: Move perf_event_intel_bts.c ........ => x86/events/intel/bts.c
perf/x86: Move perf_event_intel.c ............ => x86/events/intel/core.c
perf/x86: Move perf_event_intel_cqm.c ........ => x86/events/intel/cqm.c
perf/x86: Move perf_event_intel_cstate.c ..... => x86/events/intel/cstate.c
perf/x86: Move perf_event_intel_ds.c ......... => x86/events/intel/ds.c
perf/x86: Move perf_event_intel_lbr.c ........ => x86/events/intel/lbr.c
perf/x86: Move perf_event_intel_pt.[ch] ...... => x86/events/intel/pt.[ch]
perf/x86: Move perf_event_intel_rapl.c ....... => x86/events/intel/rapl.c
perf/x86: Move perf_event_intel_uncore.[ch] .. => x86/events/intel/uncore.[ch]
perf/x86: Move perf_event_intel_uncore_nhmex.c => x86/events/intel/uncore_nmhex.c
perf/x86: Move perf_event_intel_uncore_snb.c => x86/events/intel/uncore_snb.c
perf/x86: Move perf_event_intel_uncore_snbep.c => x86/events/intel/uncore_snbep.c
perf/x86: Move perf_event_knc.c .............. => x86/events/intel/knc.c
perf/x86: Move perf_event_p4.c ............... => x86/events/intel/p4.c
perf/x86: Move perf_event_p6.c ............... => x86/events/intel/p6.c
perf/x86: Move perf_event_msr.c .............. => x86/events/msr.c
(Borislav Petkov)
- Update various x86 PMU constraint and hw support details (Stephane
Eranian)
- Optimize kprobes for BPF execution (Martin KaFai Lau)
- Rewrite, refactor and fix the Intel uncore PMU driver code (Thomas
Gleixner)
- Rewrite, refactor and fix the Intel RAPL PMU code (Thomas Gleixner)
- Various fixes and smaller cleanups.
There are lots of perf tooling updates as well. A few highlights:
perf report/top:
- Hierarchy histogram mode for 'perf top' and 'perf report',
showing multiple levels, one per --sort entry: (Namhyung Kim)
On a mostly idle system:
# perf top --hierarchy -s comm,dso
Then expand some levels and use 'P' to take a snapshot:
# cat perf.hist.0
- 92.32% perf
58.20% perf
22.29% libc-2.22.so
5.97% [kernel]
4.18% libelf-0.165.so
1.69% [unknown]
- 4.71% qemu-system-x86
3.10% [kernel]
1.60% qemu-system-x86_64 (deleted)
+ 2.97% swapper
#
- Add 'L' hotkey to dynamicly set the percent threshold for
histogram entries and callchains, i.e. dynamicly do what the
--percent-limit command line option to 'top' and 'report' does.
(Namhyung Kim)
perf mem:
- Allow specifying events via -e in 'perf mem record', also listing
what events can be specified via 'perf mem record -e list' (Jiri
Olsa)
perf record:
- Add 'perf record' --all-user/--all-kernel options, so that one
can tell that all the events in the command line should be
restricted to the user or kernel levels (Jiri Olsa), i.e.:
perf record -e cycles:u,instructions:u
is equivalent to:
perf record --all-user -e cycles,instructions
- Make 'perf record' collect CPU cache info in the perf.data file header:
$ perf record usleep 1
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.017 MB perf.data (7 samples) ]
$ perf report --header-only -I | tail -10 | head -8
# CPU cache info:
# L1 Data 32K [0-1]
# L1 Instruction 32K [0-1]
# L1 Data 32K [2-3]
# L1 Instruction 32K [2-3]
# L2 Unified 256K [0-1]
# L2 Unified 256K [2-3]
# L3 Unified 4096K [0-3]
Will be used in 'perf c2c' and eventually in 'perf diff' to
allow, for instance running the same workload in multiple
machines and then when using 'diff' show the hardware difference.
(Jiri Olsa)
- Improved support for Java, using the JVMTI agent library to do
jitdumps that then will be inserted in synthesized
PERF_RECORD_MMAP2 events via 'perf inject' pointed to synthesized
ELF files stored in ~/.debug and keyed with build-ids, to allow
symbol resolution and even annotation with source line info, see
the changeset comments to see how to use it (Stephane Eranian)
perf script/trace:
- Decode data_src values (e.g. perf.data files generated by 'perf
mem record') in 'perf script': (Jiri Olsa)
# perf script
perf 693 [1] 4.088652: 1 cpu/mem-loads,ldlat=30/P: ffff88007d0b0f40 68100142 L1 hit|SNP None|TLB L1 or L2 hit|LCK No <SNIP>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Improve support to 'data_src', 'weight' and 'addr' fields in
'perf script' (Jiri Olsa)
- Handle empty print fmts in 'perf script -s' i.e. when running
python or perl scripts (Taeung Song)
perf stat:
- 'perf stat' now shows shadow metrics (insn per cycle, etc) in
interval mode too. E.g:
# perf stat -I 1000 -e instructions,cycles sleep 1
# time counts unit events
1.000215928 519,620 instructions # 0.69 insn per cycle
1.000215928 752,003 cycles
<SNIP>
- Port 'perf kvm stat' to PowerPC (Hemant Kumar)
- Implement CSV metrics output in 'perf stat' (Andi Kleen)
perf BPF support:
- Support converting data from bpf events in 'perf data' (Wang Nan)
- Print bpf-output events in 'perf script': (Wang Nan).
# perf record -e bpf-output/no-inherit,name=evt/ -e ./test_bpf_output_3.c/map:channel.event=evt/ usleep 1000
# perf script
usleep 4882 21384.532523: evt: ffffffff810e97d1 sys_nanosleep ([kernel.kallsyms])
BPF output: 0000: 52 61 69 73 65 20 61 20 Raise a
0008: 42 50 46 20 65 76 65 6e BPF even
0010: 74 21 00 00 t!..
BPF string: "Raise a BPF event!"
#
- Add API to set values of map entries in a BPF object, be it
individual map slots or ranges (Wang Nan)
- Introduce support for the 'bpf-output' event (Wang Nan)
- Add glue to read perf events in a BPF program (Wang Nan)
- Improve support for bpf-output events in 'perf trace' (Wang Nan)
... and tons of other changes as well - see the shortlog and git log
for details!"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (342 commits)
perf stat: Add --metric-only support for -A
perf stat: Implement --metric-only mode
perf stat: Document CSV format in manpage
perf hists browser: Check sort keys before hot key actions
perf hists browser: Allow thread filtering for comm sort key
perf tools: Add sort__has_comm variable
perf tools: Recalc total periods using top-level entries in hierarchy
perf tools: Remove nr_sort_keys field
perf hists browser: Cleanup hist_browser__fprintf_hierarchy_entry()
perf tools: Remove hist_entry->fmt field
perf tools: Fix command line filters in hierarchy mode
perf tools: Add more sort entry check functions
perf tools: Fix hist_entry__filter() for hierarchy
perf jitdump: Build only on supported archs
tools lib traceevent: Add '~' operation within arg_num_eval()
perf tools: Omit unnecessary cast in perf_pmu__parse_scale
perf tools: Pass perf_hpp_list all the way through setup_sort_list
perf tools: Fix perf script python database export crash
perf jitdump: DWARF is also needed
perf bench mem: Prepare the x86-64 build for upstream memcpy_mcsafe() changes
...
Pull read-only kernel memory updates from Ingo Molnar:
"This tree adds two (security related) enhancements to the kernel's
handling of read-only kernel memory:
- extend read-only kernel memory to a new class of formerly writable
kernel data: 'post-init read-only memory' via the __ro_after_init
attribute, and mark the ARM and x86 vDSO as such read-only memory.
This kind of attribute can be used for data that requires a once
per bootup initialization sequence, but is otherwise never modified
after that point.
This feature was based on the work by PaX Team and Brad Spengler.
(by Kees Cook, the ARM vDSO bits by David Brown.)
- make CONFIG_DEBUG_RODATA always enabled on x86 and remove the
Kconfig option. This simplifies the kernel and also signals that
read-only memory is the default model and a first-class citizen.
(Kees Cook)"
* 'mm-readonly-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ARM/vdso: Mark the vDSO code read-only after init
x86/vdso: Mark the vDSO code read-only after init
lkdtm: Verify that '__ro_after_init' works correctly
arch: Introduce post-init read-only memory
x86/mm: Always enable CONFIG_DEBUG_RODATA and remove the Kconfig option
mm/init: Add 'rodata=off' boot cmdline parameter to disable read-only kernel mappings
asm-generic: Consolidate mark_rodata_ro()
Pull locking changes from Ingo Molnar:
"Various updates:
- Futex scalability improvements: remove page lock use for shared
futex get_futex_key(), which speeds up 'perf bench futex hash'
benchmarks by over 40% on a 60-core Westmere. This makes anon-mem
shared futexes perform close to private futexes. (Mel Gorman)
- lockdep hash collision detection and fix (Alfredo Alvarez
Fernandez)
- lockdep testing enhancements (Alfredo Alvarez Fernandez)
- robustify lockdep init by using hlists (Andrew Morton, Andrey
Ryabinin)
- mutex and csd_lock micro-optimizations (Davidlohr Bueso)
- small x86 barriers tweaks (Michael S Tsirkin)
- qspinlock updates (Waiman Long)"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
locking/csd_lock: Use smp_cond_acquire() in csd_lock_wait()
locking/csd_lock: Explicitly inline csd_lock*() helpers
futex: Replace barrier() in unqueue_me() with READ_ONCE()
locking/lockdep: Detect chain_key collisions
locking/lockdep: Prevent chain_key collisions
tools/lib/lockdep: Fix link creation warning
tools/lib/lockdep: Add tests for AA and ABBA locking
tools/lib/lockdep: Add userspace version of READ_ONCE()
tools/lib/lockdep: Fix the build on recent kernels
locking/qspinlock: Move __ARCH_SPIN_LOCK_UNLOCKED to qspinlock_types.h
locking/mutex: Allow next waiter lockless wakeup
locking/pvqspinlock: Enable slowpath locking count tracking
locking/qspinlock: Use smp_cond_acquire() in pending code
locking/pvqspinlock: Move lock stealing count tracking code into pv_queued_spin_steal_lock()
locking/mcs: Fix mcs_spin_lock() ordering
futex: Remove requirement for lock_page() in get_futex_key()
futex: Rename barrier references in ordering guarantees
locking/atomics: Update comment about READ_ONCE() and structures
locking/lockdep: Eliminate lockdep_init()
locking/lockdep: Convert hash tables to hlists
...
Pull ram resource handling changes from Ingo Molnar:
"Core kernel resource handling changes to support NVDIMM error
injection.
This tree introduces a new I/O resource type, IORESOURCE_SYSTEM_RAM,
for System RAM while keeping the current IORESOURCE_MEM type bit set
for all memory-mapped ranges (including System RAM) for backward
compatibility.
With this resource flag it no longer takes a strcmp() loop through the
resource tree to find "System RAM" resources.
The new resource type is then used to extend ACPI/APEI error injection
facility to also support NVDIMM"
* 'core-resources-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ACPI/EINJ: Allow memory error injection to NVDIMM
resource: Kill walk_iomem_res()
x86/kexec: Remove walk_iomem_res() call with GART type
x86, kexec, nvdimm: Use walk_iomem_res_desc() for iomem search
resource: Add walk_iomem_res_desc()
memremap: Change region_intersects() to take @flags and @desc
arm/samsung: Change s3c_pm_run_res() to use System RAM type
resource: Change walk_system_ram() to use System RAM type
drivers: Initialize resource entry to zero
xen, mm: Set IORESOURCE_SYSTEM_RAM to System RAM
kexec: Set IORESOURCE_SYSTEM_RAM for System RAM
arch: Set IORESOURCE_SYSTEM_RAM flag for System RAM
ia64: Set System RAM type and descriptor
x86/e820: Set System RAM type and descriptor
resource: Add I/O resource descriptor
resource: Handle resource flags properly
resource: Add System RAM resource type
This patch updates csum_ipv6_magic so that it correctly recognizes that
protocol is a unsigned 8 bit value.
This will allow us to better understand what limitations may or may not be
present in how we handle the data. For example there are a number of
places that call htonl on the protocol value. This is likely not necessary
and can be replaced with a multiplication by ntohl(1) which will be
converted to a shift by the compiler.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch updates all instances of csum_tcpudp_magic and
csum_tcpudp_nofold to reflect the types that are usually used as the source
inputs. For example the protocol field is populated based on nexthdr which
is actually an unsigned 8 bit value. The length is usually populated based
on skb->len which is an unsigned integer.
This addresses an issue in which the IPv6 function csum_ipv6_magic was
generating a checksum using the full 32b of skb->len while
csum_tcpudp_magic was only using the lower 16 bits. As a result we could
run into issues when attempting to adjust the checksum as there was no
protocol agnostic way to update it.
With this change the value is still truncated as many architectures use
"(len + proto) << 8", however this truncation only occurs for values
greater than 16776960 in length and as such is unlikely to occur as we stop
the inner headers at ~64K in size.
I did have to make a few minor changes in the arm, mn10300, nios2, and
score versions of the function in order to support these changes as they
were either using things such as an OR to combine the protocol and length,
or were using ntohs to convert the length which would have truncated the
value.
I also updated a few spots in terms of whitespace and type differences for
the addresses. Most of this was just to make sure all of the definitions
were in sync going forward.
Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull turbostat updates for 4.6 from Len Brown.
* 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux:
tools/power turbostat: bugfix: TDP MSRs print bits fixing
tools/power turbostat: correct output for MSR_NHM_SNB_PKG_CST_CFG_CTL dump
tools/power turbostat: call __cpuid() instead of __get_cpuid()
tools/power turbostat: indicate SMX and SGX support
tools/power turbostat: detect and work around syscall jitter
tools/power turbostat: show GFX%rc6
tools/power turbostat: show GFXMHz
tools/power turbostat: show IRQs per CPU
tools/power turbostat: make fewer systems calls
tools/power turbostat: fix compiler warnings
tools/power turbostat: add --out option for saving output in a file
tools/power turbostat: re-name "%Busy" field to "Busy%"
tools/power turbostat: Intel Xeon x200: fix turbo-ratio decoding
tools/power turbostat: Intel Xeon x200: fix erroneous bclk value
tools/power turbostat: allow sub-sec intervals
tools/power turbostat: Decode MSR_MISC_PWR_MGMT
tools/power turbostat: decode HWP registers
x86 msr-index: Simplify syntax for HWP fields
tools/power turbostat: CPUID(0x16) leaf shows base, max, and bus frequency
tools/power turbostat: decode more CPUID fields
Pull x86 fixes from Ingo Molnar:
"This fixes 3 FPU handling related bugs, an EFI boot crash and a
runtime warning.
The EFI fix arrived late but I didn't want to delay it to after v4.5
because the effects are pretty bad for the systems that are affected
by it"
[ Actually, I don't think the EFI fix really matters yet, because we
haven't switched to the separate EFI page tables in mainline yet ]
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/efi: Fix boot crash by always mapping boot service regions into new EFI page tables
x86/fpu: Fix eager-FPU handling on legacy FPU machines
x86/delay: Avoid preemptible context checks in delay_mwaitx()
x86/fpu: Revert ("x86/fpu: Disable AVX when eagerfpu is off")
x86/fpu: Fix 'no387' regression
A few new AVX-512 instruction groups/features are added in cpufeatures.h
for enuermation: AVX512DQ, AVX512BW, and AVX512VL.
Clear the flags in fpu__xstate_clear_all_cpu_caps().
The specification for latest AVX-512 including the features can be found at:
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
Note, I didn't enable the flags in KVM. Hopefully the KVM guys can pick up
the flags and enable them in KVM.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/1457667498-37357-1-git-send-email-fenghua.yu@intel.com
[ Added more detailed feature descriptions. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some machines have EFI regions in page zero (physical address
0x00000000) and historically that region has been added to the e820
map via trim_bios_range(), and ultimately mapped into the kernel page
tables. It was not mapped via efi_map_regions() as one would expect.
Alexis reports that with the new separate EFI page tables some boot
services regions, such as page zero, are not mapped. This triggers an
oops during the SetVirtualAddressMap() runtime call.
For the EFI boot services quirk on x86 we need to memblock_reserve()
boot services regions until after SetVirtualAddressMap(). Doing that
while respecting the ownership of regions that may have already been
reserved by the kernel was the motivation behind this commit:
7d68dc3f10 ("x86, efi: Do not reserve boot services regions within reserved areas")
That patch was merged at a time when the EFI runtime virtual mappings
were inserted into the kernel page tables as described above, and the
trick of setting ->numpages (and hence the region size) to zero to
track regions that should not be freed in efi_free_boot_services()
meant that we never mapped those regions in efi_map_regions(). Instead
we were relying solely on the existing kernel mappings.
Now that we have separate page tables we need to make sure the EFI
boot services regions are mapped correctly, even if someone else has
already called memblock_reserve(). Instead of stashing a tag in
->numpages, set the EFI_MEMORY_RUNTIME bit of ->attribute. Since it
generally makes no sense to mark a boot services region as required at
runtime, it's pretty much guaranteed the firmware will not have
already set this bit.
For the record, the specific circumstances under which Alexis
triggered this bug was that an EFI runtime driver on his machine was
responding to the EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event during
SetVirtualAddressMap().
The event handler for this driver looks like this,
sub rsp,0x28
lea rdx,[rip+0x2445] # 0xaa948720
mov ecx,0x4
call func_aa9447c0 ; call to ConvertPointer(4, & 0xaa948720)
mov r11,QWORD PTR [rip+0x2434] # 0xaa948720
xor eax,eax
mov BYTE PTR [r11+0x1],0x1
add rsp,0x28
ret
Which is pretty typical code for an EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
handler. The "mov r11, QWORD PTR [rip+0x2424]" was the faulting
instruction because ConvertPointer() was being called to convert the
address 0x0000000000000000, which when converted is left unchanged and
remains 0x0000000000000000.
The output of the oops trace gave the impression of a standard NULL
pointer dereference bug, but because we're accessing physical
addresses during ConvertPointer(), it wasn't. EFI boot services code
is stored at that address on Alexis' machine.
Reported-by: Alexis Murzeau <amurzeau@gmail.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raphael Hertzog <hertzog@debian.org>
Cc: Roger Shimizu <rogershimizu@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1457695163-29632-2-git-send-email-matt@codeblueprint.co.uk
Link: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=815125
Signed-off-by: Ingo Molnar <mingo@kernel.org>
i486 derived cores like Intel Quark support only the very old,
legacy x87 FPU (FSAVE/FRSTOR, CPUID bit FXSR is not set), and
our FPU code wasn't handling the saving and restoring there
properly in the 'eagerfpu' case.
So after we made eagerfpu the default for all CPU types:
58122bf1d8 x86/fpu: Default eagerfpu=on on all CPUs
these old FPU designs broke. First, Andy Shevchenko reported a splat:
WARNING: CPU: 0 PID: 823 at arch/x86/include/asm/fpu/internal.h:163 fpu__clear+0x8c/0x160
which was us trying to execute FXRSTOR on those machines even though
they don't support it.
After taking care of that, Bryan O'Donoghue reported that a simple FPU
test still failed because we weren't initializing the FPU state properly
on those machines.
Take care of all that.
Reported-and-tested-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Reported-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/20160311113206.GD4312@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kirill Shutemov pointed this out to me.
The tip tree currently has commit:
dfb4a70f2 [x86/cpufeature, x86/mm/pkeys: Add protection keys related CPUID definitions]
whioch added support for two new CPUID bits: X86_FEATURE_PKU and
X86_FEATURE_OSPKE. But, those bits were mis-merged and put in
cpufeature.h instead of cpufeatures.h.
This didn't cause any breakage *except* it keeps the "ospke" and
"pku" bits from showing up in cpuinfo.
Now cpuinfo has the two new flags:
flags : ... pku ospke
BTW, is it really wise to have cpufeature.h and cpufeatures.h?
It seems like they can only cause confusion and mahem with tab
completion.
Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160310221213.06F9DB53@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently on i386 and on X86_64 when emulating X86_32 in legacy mode, only
the stack and the executable are randomized but not other mmapped files
(libraries, vDSO, etc.). This patch enables randomization for the
libraries, vDSO and mmap requests on i386 and in X86_32 in legacy mode.
By default on i386 there are 8 bits for the randomization of the libraries,
vDSO and mmaps which only uses 1MB of VA.
This patch preserves the original randomness, using 1MB of VA out of 3GB or
4GB. We think that 1MB out of 3GB is not a big cost for having the ASLR.
The first obvious security benefit is that all objects are randomized (not
only the stack and the executable) in legacy mode which highly increases
the ASLR effectiveness, otherwise the attackers may use these
non-randomized areas. But also sensitive setuid/setgid applications are
more secure because currently, attackers can disable the randomization of
these applications by setting the ulimit stack to "unlimited". This is a
very old and widely known trick to disable the ASLR in i386 which has been
allowed for too long.
Another trick used to disable the ASLR was to set the ADDR_NO_RANDOMIZE
personality flag, but fortunately this doesn't work on setuid/setgid
applications because there is security checks which clear Security-relevant
flags.
This patch always randomizes the mmap_legacy_base address, removing the
possibility to disable the ASLR by setting the stack to "unlimited".
Signed-off-by: Hector Marco-Gisbert <hecmargi@upv.es>
Acked-by: Ismael Ripoll Ripoll <iripoll@upv.es>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/1457639460-5242-1-git-send-email-hecmargi@upv.es
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The bus always starts at 0. Due to alignment and down-casting, this
happened to work before, but looked alarmingly incorrect in kernel logs.
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Comment the less obvious portion of the code for setting up memory windows,
and the platform dependency for initializing the h/w with appropriate
resources.
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Commit abd4f7505b ("x86: i386-show-unhandled-signals-v3") did turn on
the showing-unhandled-signal behaviour for i386 for some exception handlers,
but for no reason do_trap() is left out (my naive guess is because turning it on
for do_trap() would be too noisy since do_trap() is shared by several exceptions).
And since the same commit make "show_unhandled_signals" a debug tunable(in
/proc/sys/debug/exception-trace), and x86 by default turning it on.
So it would be strange for i386 users who turing it on manually and expect
seeing the unhandled signal output in log, but nothing.
This patch turns it on for i386 in do_trap() as well.
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: dave.hansen@linux.intel.com
Cc: heukelum@fastmail.fm
Cc: jbeulich@novell.com
Cc: jdike@addtoit.com
Cc: joe@perches.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/1457612398-4568-1-git-send-email-nasa4836@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We do use this_cpu_ptr(&cpu_tss) as a cacheline-aligned, seldomly
accessed per-cpu var as the MONITORX target in delay_mwaitx(). However,
when called in preemptible context, this_cpu_ptr -> smp_processor_id() ->
debug_smp_processor_id() fires:
BUG: using smp_processor_id() in preemptible [00000000] code: udevd/312
caller is delay_mwaitx+0x40/0xa0
But we don't care about that check - we only need cpu_tss as a MONITORX
target and it doesn't really matter which CPU's var we're touching as
we're going idle anyway. Fix that.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: spg_linux_kernel@amd.com
Link: http://lkml.kernel.org/r/20160309205622.GG6564@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KVM has special logic to handle pages with pte.u=1 and pte.w=0 when
CR0.WP=1. These pages' SPTEs flip continuously between two states:
U=1/W=0 (user and supervisor reads allowed, supervisor writes not allowed)
and U=0/W=1 (supervisor reads and writes allowed, user writes not allowed).
When SMEP is in effect, however, U=0 will enable kernel execution of
this page. To avoid this, KVM also sets NX=1 in the shadow PTE together
with U=0, making the two states U=1/W=0/NX=gpte.NX and U=0/W=1/NX=1.
When guest EFER has the NX bit cleared, the reserved bit check thinks
that the latter state is invalid; teach it that the smep_andnot_wp case
will also use the NX bit of SPTEs.
Cc: stable@vger.kernel.org
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.inel.com>
Fixes: c258b62b26
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Yes, all of these are needed. :) This is admittedly a bit odd, but
kvm-unit-tests access.flat tests this if you run it with "-cpu host"
and of course ept=0.
KVM runs the guest with CR0.WP=1, so it must handle supervisor writes
specially when pte.u=1/pte.w=0/CR0.WP=0. Such writes cause a fault
when U=1 and W=0 in the SPTE, but they must succeed because CR0.WP=0.
When KVM gets the fault, it sets U=0 and W=1 in the shadow PTE and
restarts execution. This will still cause a user write to fault, while
supervisor writes will succeed. User reads will fault spuriously now,
and KVM will then flip U and W again in the SPTE (U=1, W=0). User reads
will be enabled and supervisor writes disabled, going back to the
originary situation where supervisor writes fault spuriously.
When SMEP is in effect, however, U=0 will enable kernel execution of
this page. To avoid this, KVM also sets NX=1 in the shadow PTE together
with U=0. If the guest has not enabled NX, the result is a continuous
stream of page faults due to the NX bit being reserved.
The fix is to force EFER.NX=1 even if the CPU is taking care of the EFER
switch. (All machines with SMEP have the CPU_LOAD_IA32_EFER vm-entry
control, so they do not use user-return notifiers for EFER---if they did,
EFER.NX would be forced to the same value as the host).
There is another bug in the reserved bit check, which I've split to a
separate patch for easier application to stable kernels.
Cc: stable@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Fixes: f6577a5fa1
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that slow-path syscalls always enter C before enabling
interrupts, it's straightforward to call enter_from_user_mode() before
enabling interrupts rather than doing it as part of entry tracing.
With this change, we should finally be able to retire exception_enter().
This will also enable optimizations based on knowing that we never
change context tracking state with interrupts on.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/bc376ecf87921a495e874ff98139b1ca2f5c5dd7.1457558566.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want all of the syscall entries to run with interrupts off so that
we can efficiently run context tracking before enabling interrupts.
This will regress int $0x80 performance on 32-bit kernels by a
couple of cycles. This shouldn't matter much -- int $0x80 is not a
fast path.
This effectively reverts:
657c1eea00 ("x86/entry/32: Fix entry_INT80_32() to expect interrupts to be on")
... and fixes the same issue differently.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/59b4f90c9ebfccd8c937305dbbbca680bc74b905.1457558566.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Leonid Shatz noticed that the SDM interpretation of the following
recent commit:
394db20ca2 ("x86/fpu: Disable AVX when eagerfpu is off")
... is incorrect and that the original behavior of the FPU code was correct.
Because AVX is not stated in CR0 TS bit description, it was mistakenly
believed to be not supported for lazy context switch. This turns out
to be false:
Intel Software Developer's Manual Vol. 3A, Sec. 2.5 Control Registers:
'TS Task Switched bit (bit 3 of CR0) -- Allows the saving of the x87 FPU/
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be delayed until
an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is actually executed
by the new task.'
Intel Software Developer's Manual Vol. 2A, Sec. 2.4 Instruction Exception
Specification:
'AVX instructions refer to exceptions by classes that include #NM
"Device Not Available" exception for lazy context switch.'
So revert the commit.
Reported-by: Leonid Shatz <leonid.shatz@ravellosystems.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457569734-3785-1-git-send-email-yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ingo suggested that the comments should explain when the various
entries are used. This adds these explanations and improves other
parts of the comments.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/9524ecef7a295347294300045d08354d6a57c6e7.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that SYSENTER with TF set puts X86_EFLAGS_TF directly into
regs->flags, we don't need a TIF_SINGLESTEP fixup in the syscall
entry code. Remove it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2d15f24da52dafc9d2f0b8d76f55544f4779c517.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The first instruction of the SYSENTER entry runs on its own tiny
stack. That stack can be used if a #DB or NMI is delivered before
the SYSENTER prologue switches to a real stack.
We have code in place to prevent us from overflowing the tiny stack.
For added paranoia, add a canary to the stack and check it in
do_debug() -- that way, if something goes wrong with the #DB logic,
we'll eventually notice.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6ff9a806f39098b166dc2c41c1db744df5272f29.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Right after SYSENTER, we can get a #DB or NMI. On x86_32, there's no IST,
so the exception handler is invoked on the temporary SYSENTER stack.
Because the SYSENTER stack is very small, we have a fixup to switch
off the stack quickly when this happens. The old fixup had several issues:
1. It checked the interrupt frame's CS and EIP. This wasn't
obviously correct on Xen or if vm86 mode was in use [1].
2. In the NMI handler, it did some frightening digging into the
stack frame. I'm not convinced this digging was correct.
3. The fixup didn't switch stacks and then switch back. Instead, it
synthesized a brand new stack frame that would redirect the IRET
back to the SYSENTER code. That frame was highly questionable.
For one thing, if NMI nested inside #DB, we would effectively
abort the #DB prologue, which was probably safe but was
frightening. For another, the code used PUSHFL to write the
FLAGS portion of the frame, which was simply bogus -- by the time
PUSHFL was called, at least TF, NT, VM, and all of the arithmetic
flags were clobbered.
Simplify this considerably. Instead of looking at the saved frame
to see where we came from, check the hardware ESP register against
the SYSENTER stack directly. Malicious user code cannot spoof the
kernel ESP register, and by moving the check after SAVE_ALL, we can
use normal PER_CPU accesses to find all the relevant addresses.
With this patch applied, the improved syscall_nt_32 test finally
passes on 32-bit kernels.
[1] It isn't obviously correct, but it is nonetheless safe from vm86
shenanigans as far as I can tell. A user can't point EIP at
entry_SYSENTER_32 while in vm86 mode because entry_SYSENTER_32,
like all kernel addresses, is greater than 0xffff and would thus
violate the CS segment limit.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/b2cdbc037031c07ecf2c40a96069318aec0e7971.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SYSENTER stack is only used on 32-bit kernels. Remove it on 64-bit kernels.
( We may end up using it down the road on 64-bit kernels. If so,
we'll re-enable it for CONFIG_IA32_EMULATION. )
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/9dbd18429f9ff61a76b6eda97a9ea20510b9f6ba.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to a blatant design error, SYSENTER doesn't clear TF (single-step).
As a result, if a user does SYSENTER with TF set, we will single-step
through the kernel until something clears TF. There is absolutely
nothing we can do to prevent this short of turning off SYSENTER [1].
Simplify the handling considerably with two changes:
1. We already sanitize EFLAGS in SYSENTER to clear NT and AC. We can
add TF to that list of flags to sanitize with no overhead whatsoever.
2. Teach do_debug() to ignore single-step traps in the SYSENTER prologue.
That's all we need to do.
Don't get too excited -- our handling is still buggy on 32-bit
kernels. There's nothing wrong with the SYSENTER code itself, but
the #DB prologue has a clever fixup for traps on the very first
instruction of entry_SYSENTER_32, and the fixup doesn't work quite
correctly. The next two patches will fix that.
[1] We could probably prevent it by forcing BTF on at all times and
making sure we clear TF before any branches in the SYSENTER
code. Needless to say, this is a bad idea.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a30d2ea06fe4b621fe6a9ef911b02c0f38feb6f2.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Leaving any bits set in DR6 on return from a debug exception is
asking for trouble. Prevent it by writing zero right away and
clarify the comment.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3857676e1be8fb27db4b89bbb1e2052b7f435ff4.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SDM says that debug exceptions clear BTF, and we need to keep
TIF_BLOCKSTEP in sync with BTF. Clear it unconditionally and improve
the comment.
I suspect that the fact that kmemcheck could cause TIF_BLOCKSTEP not
to be cleared was just an oversight.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/fa86e55d196e6dde5b38839595bde2a292c52fdc.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We weren't restoring FLAGS at all on SYSEXIT. Apparently no one cared.
With this patch applied, native kernels should always honor
task_pt_regs()->flags, which opens the door for some sys_iopl()
cleanups. I'll do those as a separate series, though, since getting
it right will involve tweaking some paravirt ops.
( The short version is that, before this patch, sys_iopl(), invoked via
SYSENTER, wasn't guaranteed to ever transfer the updated
regs->flags, so sys_iopl() had to change the hardware flags register
as well. )
Reported-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3f98b207472dc9784838eb5ca2b89dcc845ce269.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This makes the 32-bit code work just like the 64-bit code. It should
speed up syscalls on 32-bit kernels on Skylake by something like 20
cycles (by analogy to the 64-bit compat case).
It also cleans up NT just like we do for the 64-bit case.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/07daef3d44bd1ed62a2c866e143e8df64edb40ee.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CLAC is slow, and the SYSENTER code already has an unlikely path
that runs if unusual flags are set. Drop the CLAC and instead rely
on the unlikely path to clear AC.
This seems to save ~24 cycles on my Skylake laptop. (Hey, Intel,
make this faster please!)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/90d6db2189f9add83bc7bddd75a0c19ebbd676b2.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a write is directed at a known bad block perform the following:
1/ write the data
2/ send a clear poison command
3/ invalidate the poison out of the cache hierarchy
Cc: <x86@kernel.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When eager FPU is disabled, KVM will still see the MPX bit in CPUID and
presumably the MPX vmentry and vmexit controls. However, it will not
be able to expose the MPX XSAVE features to the guest, because the guest's
accessible XSAVE features are always a subset of host_xcr0.
In this case, we should disable the MPX CPUID bit, the BNDCFGS MSR,
and the MPX vmentry and vmexit controls for nested virtualization.
It is then unnecessary to enable guest eager FPU if the guest has the
MPX CPUID bit set.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After fixing FPU option parsing, we now parse the 'no387' boot option
too early: no387 clears X86_FEATURE_FPU before it's even probed, so
the boot CPU promptly re-enables it.
I suspect it gets even more confused on SMP.
Fix the probing code to leave X86_FEATURE_FPU off if it's been
disabled by setup_clear_cpu_cap().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yu-cheng yu <yu-cheng.yu@intel.com>
Fixes: 4f81cbafcc ("x86/fpu: Fix early FPU command-line parsing")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- Various optimizations to the vgic save/restore code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW36xjAAoJECPQ0LrRPXpDGQkQAMDppzcTOixT3e8VPdHAX09a
Z5PO0gyTMVV7Jyz5Ul3pedPJA2GSK9mxOCwqvIFbdxLAR6ZB00juO5FrTHkSdI91
1XLPj4bKoMWcVvhL/g5A4Glp/pVMW1k/9Yq8zZAtYlsLRlqG5rLOutSadcqHcYaJ
cTD/pFf7b2oPtkTPyoFml75KgHBT/8uvAvFDOWA66Id2z6T11+PsBT/6XnGDiwKg
tpGTNzx3kPIKIzOAOHqVW6UBxFOeabebXLT8wUz3VwNn/UbG6gkumMNApMAyF2q1
zU0nAh8+7Ek6Dr4OFWE6BfW6sgg/l7i1lA8XoAmqG7ZTrSptCc59fvaZJxPruG+Q
dMsU6QgR77JJjbZTinf9a1jReZ/liZrx2gZXedVKdILrjmDSq0UnGcxjUOEDZOGy
2/dbrlJhv+LhpcJtuPpxPCfoqbW5L0ynzmuYuXRdRz3lTHiOWIRx5gugrhO+wH4D
4gvZhbw3XCiYfpYHYhl8A1EH5kanKgdXDocz9yIm7mZm89gngufF/HkeXS3ZU25T
yThyBGulGjqN4FCdgf1HolkTfFjnfSx4qJovJ58eHga+HNLXRkTecZZcbFy2OOHv
8Bx0PIlwj4RgSaRLWQUudAhdhKS2g22DKDDljxFwhkMPNghvqkYMJCRDKLu6GBXQ
4YsLKM+TaShHFjSpx+ao
=rpvb
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for 4.6
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- Various optimizations to the vgic save/restore code
Conflicts:
include/uapi/linux/kvm.h
Include pci/hotplug/Kconfig directly from pci/Kconfig, so arches don't
have to source both pci/Kconfig and pci/hotplug/Kconfig.
Note that this effectively adds pci/hotplug/Kconfig to the following
arches, because they already sourced drivers/pci/Kconfig but they
previously did not source drivers/pci/hotplug/Kconfig:
alpha
arm
avr32
frv
m68k
microblaze
mn10300
sparc
unicore32
Inspired-by-patch-from: Bogicevic Sasa <brutallesale@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Include pci/pcie/Kconfig directly from pci/Kconfig, so arches don't
have to source both pci/Kconfig and pci/pcie/Kconfig.
Note that this effectively adds pci/pcie/Kconfig to the following
arches, because they already sourced drivers/pci/Kconfig but they
previously did not source drivers/pci/pcie/Kconfig:
alpha
avr32
blackfin
frv
m32r
m68k
microblaze
mn10300
parisc
sparc
unicore32
xtensa
[bhelgaas: changelog, source pci/pcie/Kconfig at top of pci/Kconfig, whitespace]
Signed-off-by: Sasa Bogicevic <brutallesale@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
IORESOURCE_ROM_SHADOW means there is a copy of a device's option ROM in
RAM. The existence of such a copy and its location are arch-specific.
Previously the IORESOURCE_ROM_SHADOW flag was set in arch code, but the
0xC0000-0xDFFFF location was hard-coded into the PCI core.
If we're using a shadow copy in RAM, disable the ROM BAR and release the
address space it was consuming. Move the location information from the PCI
core to the arch code that sets IORESOURCE_ROM_SHADOW. Save the location
of the RAM copy in the struct resource for PCI_ROM_RESOURCE.
After this change, pci_map_rom() will call pci_assign_resource() and
pci_enable_rom() for these IORESOURCE_ROM_SHADOW resources, which we did
not do before. This is safe because:
- pci_assign_resource() will do nothing because the resource is marked
IORESOURCE_PCI_FIXED, which means we can't move it, and
- pci_enable_rom() will not turn on the ROM BAR's enable bit because the
resource is marked IORESOURCE_ROM_SHADOW, which means it is in RAM
rather than in PCI memory space.
Storing the location in the struct resource means "lspci" will show the
shadow location, not the value from the ROM BAR.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
A shadow copy of an option ROM is placed by the BIOS as a fixed address.
Set IORESOURCE_PCI_FIXED to indicate that we can't move the shadow copy.
This prevents warnings like the following when we assign resources:
BAR 6: [??? 0x00000000 flags 0x2] has bogus alignment
This warning is emitted by pdev_sort_resources(), which already ignores
IORESOURCE_PCI_FIXED resources.
Link: http://lkml.kernel.org/r/CA+55aFyVMfTBB0oz_yx8+eQOEJnzGtCsYSj9QuhEpdZ9BHdq5A@mail.gmail.com
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
The Home Agent and PCU PCI devices in Broadwell-EP have a non-BAR register
where a BAR should be. We don't know what the side effects of sizing the
"BAR" would be, and we don't know what address space the "BAR" might appear
to describe.
Mark these devices as having non-compliant BARs so the PCI core doesn't
touch them.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Tested-by: Andi Kleen <ak@linux.intel.com>
CC: stable@vger.kernel.org
Several cases of overlapping changes, as well as one instance
(vxlan) of a bug fix in 'net' overlapping with code movement
in 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
Make use of the EXTABLE_FAULT exception table entries to write
a kernel copy routine that doesn't crash the system if it
encounters a machine check. Prime use case for this is to copy
from large arrays of non-volatile memory used as storage.
We have to use an unrolled copy loop for now because current
hardware implementations treat a machine check in "rep mov"
as fatal. When that is fixed we can simplify.
Return type is a "bool". True means that we copied OK, false means
that it didn't.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@gmail.com>
Link: http://lkml.kernel.org/r/a44e1055efc2d2a9473307b22c91caa437aa3f8b.1456439214.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Drop the quirk() function pointer in favor of a simple boolean which
says whether the quirk should be applied or not. Update comment while at
it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-tip-commits@vger.kernel.org
Link: http://lkml.kernel.org/r/20160308164041.GF16568@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It no longer has any users.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: david.vrabel@citrix.com
Cc: konrad.wilk@oracle.com
Cc: lguest@lists.ozlabs.org
Cc: xen-devel@lists.xensource.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86_64 has very clean espfix handling on paravirt: espfix64 is set
up in native_iret, so paravirt systems that override iret bypass
espfix64 automatically. This is robust and straightforward.
x86_32 is messier. espfix is set up before the IRET paravirt patch
point, so it can't be directly conditionalized on whether we use
native_iret. We also can't easily move it into native_iret without
regressing performance due to a bizarre consideration. Specifically,
on 64-bit kernels, the logic is:
if (regs->ss & 0x4)
setup_espfix;
On 32-bit kernels, the logic is:
if ((regs->ss & 0x4) && (regs->cs & 0x3) == 3 &&
(regs->flags & X86_EFLAGS_VM) == 0)
setup_espfix;
The performance of setup_espfix itself is essentially irrelevant, but
the comparison happens on every IRET so its performance matters. On
x86_64, there's no need for any registers except flags to implement
the comparison, so we fold the whole thing into native_iret. On
x86_32, we don't do that because we need a free register to
implement the comparison efficiently. We therefore do espfix setup
before restoring registers on x86_32.
This patch gets rid of the explicit paravirt_enabled check by
introducing X86_BUG_ESPFIX on 32-bit systems and using an ALTERNATIVE
to skip espfix on paravirt systems where iret != native_iret. This is
also messy, but it's at least in line with other things we do.
This improves espfix performance by removing a branch, but no one
cares. More importantly, it removes a paravirt_enabled user, which is
good because paravirt_enabled is ill-defined and is going away.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: david.vrabel@citrix.com
Cc: konrad.wilk@oracle.com
Cc: lguest@lists.ozlabs.org
Cc: xen-devel@lists.xensource.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ignore_nmis is used in two distinct places:
1. modified through {stop,restart}_nmi by alternative_instructions
2. read by do_nmi to determine if default_do_nmi should be called or not
thus the access pattern conforms to __read_mostly and do_nmi() is a fastpath.
Signed-off-by: Kostenzer Felix <fkostenzer@live.at>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Linux guests on Haswell (and also SandyBridge and Broadwell, at least)
would crash if you decided to run a host command that uses PEBS, like
perf record -e 'cpu/mem-stores/pp' -a
This happens because KVM is using VMX MSR switching to disable PEBS, but
SDM [2015-12] 18.4.4.4 Re-configuring PEBS Facilities explains why it
isn't safe:
When software needs to reconfigure PEBS facilities, it should allow a
quiescent period between stopping the prior event counting and setting
up a new PEBS event. The quiescent period is to allow any latent
residual PEBS records to complete its capture at their previously
specified buffer address (provided by IA32_DS_AREA).
There might not be a quiescent period after the MSR switch, so a CPU
ends up using host's MSR_IA32_DS_AREA to access an area in guest's
memory. (Or MSR switching is just buggy on some models.)
The guest can learn something about the host this way:
If the guest doesn't map address pointed by MSR_IA32_DS_AREA, it results
in #PF where we leak host's MSR_IA32_DS_AREA through CR2.
After that, a malicious guest can map and configure memory where
MSR_IA32_DS_AREA is pointing and can therefore get an output from
host's tracing.
This is not a critical leak as the host must initiate with PEBS tracing
and I have not been able to get a record from more than one instruction
before vmentry in vmx_vcpu_run() (that place has most registers already
overwritten with guest's).
We could disable PEBS just few instructions before vmentry, but
disabling it earlier shouldn't affect host tracing too much.
We also don't need to switch MSR_IA32_PEBS_ENABLE on VMENTRY, but that
optimization isn't worth its code, IMO.
(If you are implementing PEBS for guests, be sure to handle the case
where both host and guest enable PEBS, because this patch doesn't.)
Fixes: 26a4f3c08d ("perf/x86: disable PEBS on a guest entry.")
Cc: <stable@vger.kernel.org>
Reported-by: Jiří Olša <jolsa@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Branch-free code is fun and everybody knows how much Avi loves it,
but last_pte_bitmap takes it a bit to the extreme. Since the code
is simply doing a range check, like
(level == 1 ||
((gpte & PT_PAGE_SIZE_MASK) && level < N)
we can make it branch-free without storing the entire truth table;
it is enough to cache N.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mmu_sync_children can only process up to 16 pages at a time. Check
if we need to reschedule, and do not bother zapping the pages until
that happens.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_mmu_get_page is the only caller of kvm_sync_page_transient
and kvm_sync_pages. Moving the handling of the invalid_list there
removes the need for the underdocumented kvm_sync_page_transient
function.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return true if the page was synced (and the TLB must be flushed)
and false if the page was zapped.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calling kvm_unlink_unsync_page in the middle of __kvm_sync_page makes
things unnecessarily tricky. If kvm_mmu_prepare_zap_page is called,
it will call kvm_unlink_unsync_page too. So kvm_unlink_unsync_page can
be called just as well at the beginning or the end of __kvm_sync_page...
which means that we might do it in kvm_sync_page too and remove the
parameter.
kvm_sync_page ends up being the same code that kvm_sync_pages used
to have before the previous patch.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the last argument is true, kvm_unlink_unsync_page is called anyway in
__kvm_sync_page (either by kvm_mmu_prepare_zap_page or by __kvm_sync_page
itself). Therefore, kvm_sync_pages can just call kvm_sync_page, instead
of going through kvm_unlink_unsync_page+__kvm_sync_page.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
By doing this, kvm_sync_pages can use __kvm_sync_page instead of
reinventing it. Because of kvm_mmu_flush_or_zap, the code does not
end up being more complex than before, and more cleanups to kvm_sync_pages
will come in the next patches.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is a generalization of mmu_pte_write_flush_tlb, that also
takes care of calling kvm_mmu_commit_zap_page. The next
patches will introduce more uses.
Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Jiri reported some time ago that some entries in the PEBS data source table
in perf do not agree with the SDM. We investigated and the bits
changed for Sandy Bridge, but the SDM was not updated.
perf already implements the bits correctly for Sandy Bridge
and later. This patch patches it up for Nehalem and Westmere.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/1456871124-15985-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds a Broadwell specific PEBS event constraint table.
Broadwell has a fix for the HT corruption bug erratum HSD29 on
Haswell. Therefore, there is no need to mark events 0xd0, 0xd1, 0xd2,
0xd3 has requiring the exclusive mode across both sibling HT threads.
This holds true for regular counting and sampling (see core.c) and
PEBS (ds.c) which we fix in this patch.
In doing so, we relax evnt scheduling for these events, they can now
be programmed on any 4 counters without impacting what is measured on
the sibling thread.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@redhat.com
Cc: adrian.hunter@intel.com
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Cc: namhyung@kernel.org
Link: http://lkml.kernel.org/r/1457034642-21837-4-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch fixes an issue with the GLOBAL_OVERFLOW_STATUS bits on
Haswell, Broadwell and Skylake processors when using PEBS.
The SDM stipulates that when the PEBS iterrupt threshold is crossed,
an interrupt is posted and the kernel is interrupted. The kernel will
find GLOBAL_OVF_SATUS bit 62 set indicating there are PEBS records to
drain. But the bits corresponding to the actual counters should NOT be
set. The kernel follows the SDM and assumes that all PEBS events are
processed in the drain_pebs() callback. The kernel then checks for
remaining overflows on any other (non-PEBS) events and processes these
in the for_each_bit_set(&status) loop.
As it turns out, under certain conditions on HSW and later processors,
on PEBS buffer interrupt, bit 62 is set but the counter bits may be
set as well. In that case, the kernel drains PEBS and generates
SAMPLES with the EXACT tag, then it processes the counter bits, and
generates normal (non-EXACT) SAMPLES.
I ran into this problem by trying to understand why on HSW sampling on
a PEBS event was sometimes returning SAMPLES without the EXACT tag.
This should not happen on user level code because HSW has the
eventing_ip which always point to the instruction that caused the
event.
The workaround in this patch simply ensures that the bits for the
counters used for PEBS events are cleared after the PEBS buffer has
been drained. With this fix 100% of the PEBS samples on my user code
report the EXACT tag.
Before:
$ perf record -e cpu/event=0xd0,umask=0x81/upp ./multichase
$ perf report -D | fgrep SAMPLES
PERF_RECORD_SAMPLE(IP, 0x2): 11775/11775: 0x406de5 period: 73469 addr: 0 exact=Y
\--- EXACT tag is missing
After:
$ perf record -e cpu/event=0xd0,umask=0x81/upp ./multichase
$ perf report -D | fgrep SAMPLES
PERF_RECORD_SAMPLE(IP, 0x4002): 11775/11775: 0x406de5 period: 73469 addr: 0 exact=Y
\--- EXACT tag is set
The problem tends to appear more often when multiple PEBS events are used.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Cc: kan.liang@intel.com
Cc: namhyung@kernel.org
Link: http://lkml.kernel.org/r/1457034642-21837-3-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds a definition for GLOBAL_OVFL_STATUS bit 55
which is used with the Processor Trace (PT) feature.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Cc: kan.liang@intel.com
Cc: namhyung@kernel.org
Link: http://lkml.kernel.org/r/1457034642-21837-2-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch tries to fix a PEBS warning found in my stress test. The
following perf command can easily trigger the pebs warning or spurious
NMI error on Skylake/Broadwell/Haswell platforms:
sudo perf record -e 'cpu/umask=0x04,event=0xc4/pp,cycles,branches,ref-cycles,cache-misses,cache-references' --call-graph fp -b -c1000 -a
Also the NMI watchdog must be enabled.
For this case, the events number is larger than counter number. So
perf has to do multiplexing.
In perf_mux_hrtimer_handler, it does perf_pmu_disable(), schedule out
old events, rotate_ctx, schedule in new events and finally
perf_pmu_enable().
If the old events include precise event, the MSR_IA32_PEBS_ENABLE
should be cleared when perf_pmu_disable(). The MSR_IA32_PEBS_ENABLE
should keep 0 until the perf_pmu_enable() is called and the new event is
precise event.
However, there is a corner case which could restore PEBS_ENABLE to
stale value during the above period. In perf_pmu_disable(), GLOBAL_CTRL
will be set to 0 to stop overflow and followed PMI. But there may be
pending PMI from an earlier overflow, which cannot be stopped. So even
GLOBAL_CTRL is cleared, the kernel still be possible to get PMI. At
the end of the PMI handler, __intel_pmu_enable_all() will be called,
which will restore the stale values if old events haven't scheduled
out.
Once the stale pebs value is set, it's impossible to be corrected if
the new events are non-precise. Because the pebs_enabled will be set
to 0. x86_pmu.enable_all() will ignore the MSR_IA32_PEBS_ENABLE
setting. As a result, the following NMI with stale PEBS_ENABLE
trigger pebs warning.
The pending PMI after enabled=0 will become harmless if the NMI handler
does not change the state. This patch checks cpuc->enabled in pmi and
only restore the state when PMU is active.
Here is the dump:
Call Trace:
<NMI> [<ffffffff813c3a2e>] dump_stack+0x63/0x85
[<ffffffff810a46f2>] warn_slowpath_common+0x82/0xc0
[<ffffffff810a483a>] warn_slowpath_null+0x1a/0x20
[<ffffffff8100fe2e>] intel_pmu_drain_pebs_nhm+0x2be/0x320
[<ffffffff8100caa9>] intel_pmu_handle_irq+0x279/0x460
[<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40
[<ffffffff811f290d>] ? vunmap_page_range+0x20d/0x330
[<ffffffff811f2f11>] ? unmap_kernel_range_noflush+0x11/0x20
[<ffffffff8148379f>] ? ghes_copy_tofrom_phys+0x10f/0x2a0
[<ffffffff814839c8>] ? ghes_read_estatus+0x98/0x170
[<ffffffff81005a7d>] perf_event_nmi_handler+0x2d/0x50
[<ffffffff810310b9>] nmi_handle+0x69/0x120
[<ffffffff810316f6>] default_do_nmi+0xe6/0x100
[<ffffffff810317f2>] do_nmi+0xe2/0x130
[<ffffffff817aea71>] end_repeat_nmi+0x1a/0x1e
[<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40
[<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40
[<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40
<<EOE>> <IRQ> [<ffffffff81006df8>] ? x86_perf_event_set_period+0xd8/0x180
[<ffffffff81006eec>] x86_pmu_start+0x4c/0x100
[<ffffffff8100722d>] x86_pmu_enable+0x28d/0x300
[<ffffffff811994d7>] perf_pmu_enable.part.81+0x7/0x10
[<ffffffff8119cb70>] perf_mux_hrtimer_handler+0x200/0x280
[<ffffffff8119c970>] ? __perf_install_in_context+0xc0/0xc0
[<ffffffff8110f92d>] __hrtimer_run_queues+0xfd/0x280
[<ffffffff811100d8>] hrtimer_interrupt+0xa8/0x190
[<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0
[<ffffffff81051bd8>] local_apic_timer_interrupt+0x38/0x60
[<ffffffff817af01d>] smp_apic_timer_interrupt+0x3d/0x50
[<ffffffff817ad15c>] apic_timer_interrupt+0x8c/0xa0
<EOI> [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0
[<ffffffff81123de5>] ? smp_call_function_single+0xd5/0x130
[<ffffffff81123ddb>] ? smp_call_function_single+0xcb/0x130
[<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0
[<ffffffff8119765a>] event_function_call+0x10a/0x120
[<ffffffff8119c660>] ? ctx_resched+0x90/0x90
[<ffffffff811971e0>] ? cpu_clock_event_read+0x30/0x30
[<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60
[<ffffffff8119772b>] _perf_event_enable+0x5b/0x70
[<ffffffff81197388>] perf_event_for_each_child+0x38/0xa0
[<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60
[<ffffffff811a0ffd>] perf_ioctl+0x12d/0x3c0
[<ffffffff8134d855>] ? selinux_file_ioctl+0x95/0x1e0
[<ffffffff8124a3a1>] do_vfs_ioctl+0xa1/0x5a0
[<ffffffff81036d29>] ? sched_clock+0x9/0x10
[<ffffffff8124a919>] SyS_ioctl+0x79/0x90
[<ffffffff817ac4b2>] entry_SYSCALL_64_fastpath+0x1a/0xa4
---[ end trace aef202839fe9a71d ]---
Uhhuh. NMI received for unknown reason 2d on CPU 2.
Do you have a strange power saving mode enabled?
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1457046448-6184-1-git-send-email-kan.liang@intel.com
[ Fixed various typos and other small details. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using PAGE_SIZE buffers makes the WRMSR to PERF_GLOBAL_CTRL in
intel_pmu_enable_all() mysteriously hang on Core2. As a workaround, we
don't do this.
The hard lockup is easily triggered by running 'perf test attr'
repeatedly. Most of the time it gets stuck on sample session with
small periods.
# perf test attr -vv
14: struct perf_event_attr setup :
--- start ---
...
'PERF_TEST_ATTR=/tmp/tmpuEKz3B /usr/bin/perf record -o /tmp/tmpuEKz3B/perf.data -c 123 kill >/dev/null 2>&1' ret 1
Reported-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/r/20160301190352.GA8355@krava.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In an attempt to aid in understanding of what the threshold_block
structure holds, provide comments to describe the members here. Also,
trim comments around threshold_restart_bank() and update copyright info.
No functional change is introduced.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
[ Shorten comments. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1457021458-2522-6-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Deferred errors indicate errors that hardware could not fix. But it
still does not cause any interruption to program flow. So it does not
generate any #MC and UC bit in MCx_STATUS is not set.
Correct comment.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1457021458-2522-5-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In upcoming processors, the BLKPTR field is no longer used to indicate
the MSR number of the additional register. Insted, it simply indicates
the prescence of additional MSRs.
Fix the logic here to gather MSR address from MSR_AMD64_SMCA_MCx_MISC()
for newer processors and fall back to existing logic for older
processors.
[ Drop nextaddr_out label; style cleanups. ]
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1457021458-2522-4-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For Scalable MCA enabled processors, errors are listed per IP block. And
since it is not required for an IP to map to a particular bank, we need
to use HWID and McaType values from the MCx_IPID register to figure out
which IP a given bank represents.
We also have a new bit (TCC) in the MCx_STATUS register to indicate Task
context is corrupt.
Add logic here to decode errors from all known IP blocks for Fam17h
Model 00-0fh and to print TCC errors.
[ Minor fixups. ]
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1457021458-2522-3-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Those MSRs are used only by the MCE code so move them there.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1456785179-14378-2-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Microcode checksum verification should be done using unsigned 32-bit
values otherwise the calculation overflow results in undefined
behaviour.
This is also nicely documented in the SDM, section "Microcode Update
Checksum":
"To check for a corrupt microcode update, software must perform a
unsigned DWORD (32-bit) checksum of the microcode update. Even though
some fields are signed, the checksum procedure treats all DWORDs as
unsigned. Microcode updates with a header version equal to 00000001H
must sum all DWORDs that comprise the microcode update. A valid
checksum check will yield a value of 00000000H."
but for some reason the code has been using ints from the very
beginning.
In practice, this bug possibly manifested itself only when doing the
microcode data checksum - apparently, currently shipped Intel microcode
doesn't have an extended signature table for which we do checksum
verification too.
UBSAN: Undefined behaviour in arch/x86/kernel/cpu/microcode/intel_lib.c:105:12
signed integer overflow:
-1500151068 + -2125470173 cannot be represented in type 'int'
CPU: 0 PID: 0 Comm: swapper Not tainted 4.5.0-rc5+ #495
...
Call Trace:
dump_stack
? inotify_ioctl
ubsan_epilogue
handle_overflow
__ubsan_handle_add_overflow
microcode_sanity_check
get_matching_model_microcode.isra.2.constprop.8
? early_idt_handler_common
? strlcpy
? find_cpio_data
load_ucode_intel_bsp
load_ucode_bsp
? load_ucode_bsp
x86_64_start_kernel
[ Expand and massage commit message. ]
Signed-off-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: hmh@hmh.eng.br
Link: http://lkml.kernel.org/r/1456834359-5132-1-git-send-email-chris.bainbridge@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For a long time all architectures implement the pci_dma_* functions using
the generic DMA API, and they all use the same header to do so.
Move this header, pci-dma-compat.h, to include/linux and include it from
the generic pci.h instead of having each arch duplicate this include.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
There is no need for livepatch.h (generic and arch-specific) to depend
on CONFIG_LIVEPATCH. Remove that superfluous dependency.
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
There is an #error in asm/livepatch.h for both x86 and s390 in
!CONFIG_LIVEPATCH cases. It does not make much sense as pointed out by
Michael Ellerman. One can happily include asm/livepatch.h with
CONFIG_LIVEPATCH. Remove it as useless.
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Pull UML fixes from Richard Weinberger:
"This contains three bug/build fixes"
* 'for-linus-4.5-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml:
um: use %lx format specifiers for unsigned longs
um: Export pm_power_off
Revert "um: Fix get_signal() usage"
static analysis from cppcheck detected %x being used for
unsigned longs:
[arch/x86/um/os-Linux/task_size.c:112]: (warning) %x in format
string (no. 1) requires 'unsigned int' but the argument type
is 'unsigned long'.
Use %lx instead of %x
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Because Linux might use bigger pages than the 4K pages to handle those mmio
ioremaps, the kmmio code shouldn't rely on the pade id as it currently does.
Using the memory address instead of the page id lets us look up how big the
page is and what its base address is, so that we won't get a page fault
within the same page twice anymore.
Tested-by: Pierre Moreau <pierre.morrow@free.fr>
Signed-off-by: Karol Herbst <nouveau@karolherbst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: linux-mm@kvack.org
Cc: linux-x86_64@vger.kernel.org
Cc: nouveau@lists.freedesktop.org
Cc: pq@iki.fi
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/1456966991-6861-1-git-send-email-nouveau@karolherbst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Prevent the graph tracer from crashing when used over
suspend-to-RAM on x86 by pausing it before invoking
do_suspend_lowlevel() and un-pausing it when that function
has returned (Todd Brandt).
- Fix build issues in the qoriq and mediatek cpufreq drivers
related to broken dependencies on THERMAL (Arnd Bergmann).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJW2gpWAAoJEILEb/54YlRx+rQQAKK1IZeuiigv2NxxiX/reSaG
YXhgXGpn+aKl/wayLlauq1ZcL9UFH7Hz0c5iy8VqtOs7uRNtqiQ/9UwSkjsHQcYG
nzKUjEF3Bk5ntn8L4Ou1XBeP+GeSoZqAArNFH03mVB+uCx22J5HbSAIE+cAqqtwn
SjK5rdQT5H3DDaNKbGhu3oRBx1OyVY5lltn6H9cfEBG+LuPsjKCT4RWsVpXuh/f0
p6/Bz2Uz88crY0UXfUlFnCKVd0HlLk3QR7Z5nYzUqGVQMBjj2ARhBCcTAQqtC8U1
kDdBoTKT8TQZzit4K5H2cGwTBtVznHgOM/KCs6PP9dLe4j69vO+Ozf0l9WE17ooX
vKHz2MgQTXU93+2wjcwCTVjFrbtE/l7/mcY7Ed97i0p9B2i/R90jIvezo14w4+0U
r9msKR4apUeq53uLLCWtBN6/+B3uiajvzzJUxmEL2hdT3mdnAfX/P8ydbqIKZSL3
Z1L7pC1zVsr3hcmR345tDU2RS8fuliDI6YK9O3t5MAxHW8nupbRK3BafuRBebH/S
2g+36nc08FMcf2ciImCejMQhXVN5QdfMvYvwrE59Uyktj/Yp3AG4xzu242PAgBvd
K2X/pt1RBdBqOa6OOovciA0paqg2CRGGYXoSHiyXVzrCb2QM4gaNRihaJZdk+vDn
lfdXgv9wmDKafVvR/EzJ
=iTIP
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.5-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI fixes from Rafael Wysocki:
"Two build fixes for cpufreq drivers (including one for breakage
introduced recently) and a fix for a graph tracer crash when used over
suspend-to-RAM on x86.
Specifics:
- Prevent the graph tracer from crashing when used over suspend-to-
RAM on x86 by pausing it before invoking do_suspend_lowlevel() and
un-pausing it when that function has returned (Todd Brandt).
- Fix build issues in the qoriq and mediatek cpufreq drivers related
to broken dependencies on THERMAL (Arnd Bergmann)"
* tag 'pm+acpi-4.5-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM / sleep / x86: Fix crash on graph trace through x86 suspend
cpufreq: mediatek: allow building as a module
cpufreq: qoriq: allow building as module with THERMAL=m
A function that does the same as i8254.c's muldiv64 has been added
(for KVM's own use, in fact!) in include/linux/math64.h. Use it
instead of muldiv64.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Milosz Tanski <milosz@adfin.com>
[hch: rebased due to newly added syscalls]
Reviewed-by: Stephen Bates <stephen.bates@pmcs.com>
Tested-by: Stephen Bates <stephen.bates@pmcs.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Give a special invalid index to the root of the walk, so that we
can check the consistency of kvm_mmu_pages and mmu_page_path.
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
[Extracted from a bigger patch proposed by Guangrong. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_mmu_pages_init is doing some really yucky stuff. It is setting
up a sentinel for mmu_page_clear_parents; however, because of a) the
way levels are numbered starting from 1 and b) the way mmu_page_path
sizes its arrays with PT64_ROOT_LEVEL-1 elements, the access can be
out of bounds. This is harmless because the code overwrites up to the
first two elements of parents->idx and these are initialized, and
because the sentinel is not needed in this case---mmu_page_clear_parents
exits anyway when it gets to the end of the array. However ubsan
complains, and everyone else should too.
This fix does three things. First it makes the mmu_page_path arrays
PT64_ROOT_LEVEL elements in size, so that we can write to them without
checking the level in advance. Second it disintegrates kvm_mmu_pages_init
between mmu_unsync_walk (to reset the struct kvm_mmu_pages) and
for_each_sp (to place the NULL sentinel at the end of the current path).
This is okay because the mmu_page_path is only used in
mmu_pages_clear_parents; mmu_pages_clear_parents itself is called within
a for_each_sp iterator, and hence always after a call to mmu_pages_next.
Third it changes mmu_pages_clear_parents to just use the sentinel to
stop iteration, without checking the bounds on level.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Mike Krinkin <krinkin.m.u@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document possible races between readers and concurrent update to the
ioctl.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can do it just once.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
channels has offset 0 and correct size now, but that can change.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
PIT is known at that point.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm isn't ever used and pit can be accessed with container_of.
If you *really* need kvm, pit_state_to_pit(ps)->kvm.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Could be easier to read, but git history will become deeper.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Locks are gone, so we don't need to duplicate error paths.
Use goto everywhere.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Discard policy doesn't rely on information from notifiers, so we don't
need to register notifiers unconditionally. We kept correct counts in
case userspace switched between policies during runtime, but that can be
avoided by reseting the state.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- kvm_create_pit had to lock only because it exposed kvm->arch.vpit very
early, but initialization doesn't use kvm->arch.vpit since the last
patch, so we can drop locking.
- kvm_free_pit is only run after there are no users of KVM and therefore
is the sole actor.
- Locking in kvm_vm_ioctl_reinject doesn't do anything, because reinject
is only protected at that place.
- kvm_pit_reset isn't used anywhere and its locking can be dropped if we
hide it.
Removing useless locking allows to see what actually is being protected
by PIT state lock (values accessible from the guest).
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch passes struct kvm_pit into internal PIT functions.
Those functions used to get PIT through kvm->arch.vpit, even though most
of them never used *kvm for other purposes. Another benefit is that we
don't need to set kvm->arch.vpit during initialization.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the guest could hit this, it would hang the host kernel, bacause of
sheer number of those reports. Internal callers have to be sensible
anyway, so we now only check for it in an API function.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The lock was an overkill, the same can be done with atomics.
A mb() was added in kvm_pit_ack_irq, to pair with implicit barrier
between pit_timer_fn and pit_do_work. The mb() prevents a race that
could happen if pending == 0 and irq_ack == 0:
kvm_pit_ack_irq: | pit_timer_fn:
p = atomic_read(&ps->pending); |
| atomic_inc(&ps->pending);
| queue_work(pit_do_work);
| pit_do_work:
| atomic_xchg(&ps->irq_ack, 0);
| return;
atomic_set(&ps->irq_ack, 1); |
if (p == 0) return; |
where the interrupt would not be delivered in this tick of pit_timer_fn.
PIT would have eventually delivered the interrupt, but we sacrifice
perofmance to make sure that interrupts are not needlessly delayed.
sfence isn't enough: atomic_dec_if_positive does atomic_read first and
x86 can reorder loads before stores. lfence isn't enough: store can
pass lfence, turning it into a nop. A compiler barrier would be more
than enough as CPU needs to stall for unbelievably long to use fences.
This patch doesn't do anything in kvm_pit_reset_reinject, because any
order of resets can race, but the result differs by at most one
interrupt, which is ok, because it's the same result as if the reset
happened at a slightly different time. (Original code didn't protect
the reset path with a proper lock, so users have to be robust.)
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
pit_state.pending and pit_state.irq_ack are always reset at the same
time. Create a function for them.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Discard policy uses ack_notifiers to prevent injection of PIT interrupts
before EOI from the last one.
This patch changes the policy to always try to deliver the interrupt,
which makes a difference when its vector is in ISR.
Old implementation would drop the interrupt, but proposed one injects to
IRR, like real hardware would.
The old policy breaks legacy NMI watchdogs, where PIT is used through
virtual wire (LVT0): PIT never sends an interrupt before receiving EOI,
thus a guest deadlock with disabled interrupts will stop NMIs.
Note that NMI doesn't do EOI, so PIT also had to send a normal interrupt
through IOAPIC. (KVM's PIT is deeply rotten and luckily not used much
in modern systems.)
Even though there is a chance of regressions, I think we can fix the
LVT0 NMI bug without introducing a new tick policy.
Cc: <stable@vger.kernel.org>
Reported-by: Yuki Shibuya <shibuya.yk@ncos.nec.co.jp>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On modern Intel systems TSC is derived from the new Always Running Timer
(ART). ART can be captured simultaneous to the capture of
audio and network device clocks, allowing a correlation between timebases
to be constructed. Upon capture, the driver converts the captured ART
value to the appropriate system clock using the correlated clocksource
mechanism.
On systems that support ART a new CPUID leaf (0x15) returns parameters
“m” and “n” such that:
TSC_value = (ART_value * m) / n + k [n >= 1]
[k is an offset that can adjusted by a privileged agent. The
IA32_TSC_ADJUST MSR is an example of an interface to adjust k.
See 17.14.4 of the Intel SDM for more details]
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: kevin.b.stanton@intel.com
Cc: kevin.j.clarke@intel.com
Cc: hpa@zytor.com
Cc: jeffrey.t.kirsher@intel.com
Cc: netdev@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com>
[jstultz: Tweaked to fix build issue, also reworked math for
64bit division on 32bit systems, as well as !CONFIG_CPU_FREQ build
fixes]
Signed-off-by: John Stultz <john.stultz@linaro.org>
ELF spec is unclear about whether .bss must me cleared by the loader.
Currently the domain builder does it when loading the guest but because
it is not (or rather may not be) guaranteed we should zero it out
explicitly.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Andrey Wagin reported that a simple test case was broken by:
2b5f7d013fc ("mm/core, x86/mm/pkeys: Add execute-only protection keys support")
This test case creates an unreadable VMA and my patch assumed
that all writes must be to readable VMAs.
The simplest fix for this is to remove the pkey-related bits
in access_error(). For execute-only support, I believe the
existing version is sufficient because the permissions we
are trying to enforce are entirely expressed in vma->vm_flags.
We just depend on pkeys to get *an* exception, it does not
matter that PF_PK was set, or even what state PKRU is in.
I will re-add the necessary bits with the full pkeys
implementation that includes the new syscalls.
The three cases that matter are:
1. If a write to an execute-only VMA occurs, we will see PF_WRITE
set, but !VM_WRITE on the VMA, and return 1. All execute-only
VMAs have VM_WRITE clear by definition.
2. If a read occurs on a present PTE, we will fall in to the "read,
present" case and return 1.
3. If a read occurs to a non-present PTE, we will miss the "read,
not present" case, because the execute-only VMA will have
VM_EXEC set, and we will properly return 0 allowing the PTE to
be populated.
Test program:
int main()
{
int *p;
p = mmap(NULL, 4096, PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
p[0] = 1;
return 0;
}
Reported-by: Andrey Wagin <avagin@gmail.com>,
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: linux-next@vger.kernel.org
Fixes: 62b5f7d013 ("mm/core, x86/mm/pkeys: Add execute-only protection keys support")
Link: http://lkml.kernel.org/r/20160301194133.65D0110C@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When running objtool on a ppc64le host to analyze x86 binaries, it
reports a lot of false warnings like:
ipc/compat_mq.o: warning: objtool: compat_SyS_mq_open()+0x91: can't find jump dest instruction at .text+0x3a5
The warnings are caused by the x86 instruction decoder setting the wrong
value for the jump instruction's immediate field because it assumes that
"char == signed char", which isn't true for all architectures. When
converting char to int, gcc sign-extends on x86 but doesn't sign-extend
on ppc64le.
According to the gcc man page, that's a feature, not a bug:
> Each kind of machine has a default for what "char" should be. It is
> either like "unsigned char" by default or like "signed char" by
> default.
>
> Ideally, a portable program should always use "signed char" or
> "unsigned char" when it depends on the signedness of an object.
Conform to the "standards" by changing the "char" casts to "signed
char". This results in no actual changes to the object code on x86.
Note: the x86 decoder now lives in three different locations in the
kernel tree, which are all kept in sync via makefile checks and
warnings: in-kernel, perf, and objtool. This fixes all three locations.
Eventually we should probably try to at least converge the two separate
"tools" locations into a single shared location.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/9dd4161719b20e6def9564646d68bfbe498c549f.1456962210.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Register the notifier to receive write track event so that we can update
our shadow page table
It makes kvm_mmu_pte_write() be the callback of the notifier, no function
is changed
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now, all non-leaf shadow page are page tracked, if gfn is not tracked
there is no non-leaf shadow page of gfn is existed, we can directly
make the shadow page of gfn to unsync
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
non-leaf shadow pages are always write protected, it can be the user
of page track
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Notifier list is introduced so that any node wants to receive the track
event can register to the list
Two APIs are introduced here:
- kvm_page_track_register_notifier(): register the notifier to receive
track event
- kvm_page_track_unregister_notifier(): stop receiving track event by
unregister the notifier
The callback, node->track_write() is called when a write access on the
write tracked page happens
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the page fault is caused by write access on write tracked page, the
real shadow page walking is skipped, we lost the chance to clear write
flooding for the page structure current vcpu is using
Fix it by locklessly waking shadow page table to clear write flooding
on the shadow page structure out of mmu-lock. So that we change the
count to atomic_t
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The page fault caused by write access on the write tracked page can not
be fixed, it always need to be emulated. page_fault_handle_page_track()
is the fast path we introduce here to skip holding mmu-lock and shadow
page table walking
However, if the page table is not present, it is worth making the page
table entry present and readonly to make the read access happy
mmu_need_write_protect() need to be cooked to avoid page becoming writable
when making page table present or sync/prefetch shadow page table entries
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These two functions are the user APIs:
- kvm_slot_page_track_add_page(): add the page to the tracking pool
after that later specified access on that page will be tracked
- kvm_slot_page_track_remove_page(): remove the page from the tracking
pool, the specified access on the page is not tracked after the last
user is gone
Both of these are called under the protection both of mmu-lock and
kvm->srcu or kvm->slots_lock
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The array, gfn_track[mode][gfn], is introduced in memory slot for every
guest page, this is the tracking count for the gust page on different
modes. If the page is tracked then the count is increased, the page is
not tracked after the count reaches zero
We use 'unsigned short' as the tracking count which should be enough as
shadow page table only can use 2^14 (2^3 for level, 2^1 for cr4_pae, 2^2
for quadrant, 2^3 for access, 2^1 for nxe, 2^1 for cr0_wp, 2^1 for
smep_andnot_wp, 2^1 for smap_andnot_wp, and 2^1 for smm) at most, there
is enough room for other trackers
Two callbacks, kvm_page_track_create_memslot() and
kvm_page_track_free_memslot() are implemented in this patch, they are
internally used to initialize and reclaim the memory of the array
Currently, only write track mode is supported
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split rmap_write_protect() and introduce the function to abstract the write
protection based on the slot
This function will be used in the later patch
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Abstract the common operations from account_shadowed() and
unaccount_shadowed(), then introduce kvm_mmu_gfn_disallow_lpage()
and kvm_mmu_gfn_allow_lpage()
These two functions will be used by page tracking in the later patch
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_lpage_info->write_count is used to detect if the large page mapping
for the gfn on the specified level is allowed, rename it to disallow_lpage
to reflect its purpose, also we rename has_wrprotected_page() to
mmu_gfn_lpage_is_disallowed() to make the code more clearer
Later we will extend this mechanism for page tracking: if the gfn is
tracked then large mapping for that gfn on any level is not allowed.
The new name is more straightforward
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using the vector stored at interrupt delivery makes the eoi
matching safe agains irq migration in the ioapic.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows backtracking later in case the rtc irq has been
moved to another vcpu/vector.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently this is a bitmap which tracks which CPUs we expect
an EOI from. Move this bitmap to a struct so that we can
track additional information there.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit:
cf6d445f68 ("perf/x86/uncore: Track packages, not per CPU data")
reorganized the uncore code to track packages, and introduced a dependency
on MAX_APIC_ID. This constant is not available on UP-IOAPIC builds:
arch/x86/events/intel/uncore.c:1350:44: error: 'MAX_LOCAL_APIC' undeclared here (not in a function)
Include asm/apicdef.h explicitly to pick it up.
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pause/unpause graph tracing around do_suspend_lowlevel as it has
inconsistent call/return info after it jumps to the wakeup vector.
The graph trace buffer will otherwise become misaligned and
may eventually crash and hang on suspend.
To reproduce the issue and test the fix:
Run a function_graph trace over suspend/resume and set the graph
function to suspend_devices_and_enter. This consistently hangs the
system without this fix.
Signed-off-by: Todd Brandt <todd.e.brandt@linux.intel.com>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
vmx.c writes the TSC_MULTIPLIER field in vmx_vcpu_load, but only when a
vcpu has migrated physical cpus. Record the last value written and
update in vmx_vcpu_load on any change, otherwise a cpu migration must
occur for TSC frequency scaling to take effect.
Cc: stable@vger.kernel.org
Fixes: ff2c3a1803
Signed-off-by: Owen Hofmann <osh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let the non boot cpus call into idle with the corresponding hotplug state, so
the hotplug core can handle the further bringup. That's a first step to
convert the boot side of the hotplugged cpus to do all the synchronization
with the other side through the state machine. For now it'll only start the
hotplug thread and kick the full bringup of the cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.614102639@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
RAPL is a per package facility and we already have a mechanism for a dedicated
per package reader. So there is no point to have multiple CPUs doing the
same. The current implementation actually starts two timers on two CPUs if one
does:
perf stat -C1,2 -e -e power/energy-pkg ....
which makes the whole concept of 1 reader per package moot.
What's worse is that the above returns the double of the actual energy
consumption, but that's a different problem to address and cannot be solved by
removing the pointless per cpuness of that mechanism.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160222221012.845369524@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Store the PMU pointer in event->pmu_private and use it instead of the per CPU
data. Preparatory step to get rid of the per CPU allocations. The usage sites
are the perf fast path, so we keep that even after the conversion to per
package storage as a CPU to package lookup involves 3 loads versus 1 with the
pmu_private pointer.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160222221012.748151799@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This lock is taken in hard interrupt context even on Preempt-RT. Make it raw
so RT does not have to patch it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160222221012.669411833@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Split out code from init into seperate functions. Tidy up the code and get rid
of pointless comments. I wish there would be comments for code which is not
obvious....
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160222221012.588544679@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>