Right now the xfs_btree_magic() define takes only a cursor;
change this to take crc and btnum args to make it more generically
useful, and move to a function.
This will allow xfs_btree_init_block_int callers which don't
have a cursor to make use of the xfs_magics array, which will
happen in the next patch.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_btree_init_block_int() can determine whether crcs are
in effect without the passed-in XFS_BTREE_CRC_BLOCKS flag;
the mp argument allows us to determine this from the
superblock. Remove the flag from callers, and use
xfs_sb_version_hascrc(&mp->m_sb) internally instead.
This removes one difference between the if & else cases
in the callers.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
With COW files they are the hotpath, just like for files with the
extent size hint attribute. We really shouldn't micro-manage anything
but failure cases with unlikely.
Additionally Arnd Bergmann recently reported that one of these two
unlikely annotations causes link failures together with an upcoming
kernel instrumentation patch, so let's get rid of it ASAP.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_attr_[get|remove]() have unlocked attribute fork checks to optimize
away a lock cycle in cases where the fork does not exist or is otherwise
empty. This check is not safe, however, because an attribute fork short
form to extent format conversion includes a transient state that causes
the xfs_inode_hasattr() check to fail. Specifically,
xfs_attr_shortform_to_leaf() creates an empty extent format attribute
fork and then adds the existing shortform attributes to it.
This means that lookup of an existing xattr can spuriously return
-ENOATTR when racing against a setxattr that causes the associated
format conversion. This was originally reproduced by an untar on a
particularly configured glusterfs volume, but can also be reproduced on
demand with properly crafted xattr requests.
The format conversion occurs under the exclusive ilock. xfs_attr_get()
and xfs_attr_remove() already have the proper locking and checks further
down in the functions to handle this situation correctly. Drop the
unlocked checks to avoid the spurious failure and rely on the existing
logic.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently we try to rely on the global reserved block pool for block
allocations for the free inode btree, but I have customer reports
(fairly complex workload, need to find an easier reproducer) where that
is not enough as the AG where we free an inode that requires a new
finobt block is entirely full. This causes us to cancel a dirty
transaction and thus a file system shutdown.
I think the right way to guard against this is to treat the finot the same
way as the refcount btree and have a per-AG reservations for the possible
worst case size of it, and the patch below implements that.
Note that this could increase mount times with large finobt trees. In
an ideal world we would have added a field for the number of finobt
fields to the AGI, similar to what we did for the refcount blocks.
We should do add it next time we rev the AGI or AGF format by adding
new fields.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Try to reserve the blocks first and only then update the fields in
or hanging off the mount structure. This way we can call __xfs_ag_resv_init
again after a previous failure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
sb_dirblklog is added to sb_blocklog to compute the directory block size
in bytes. Therefore, we must compare the sum of both those values
against XFS_MAX_BLOCKSIZE_LOG, not just dirblklog.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Due to the way how xfs_iomap_write_allocate tries to convert the whole
found extents from delalloc to real space we can run into a race
condition with multiple threads doing writes to this same extent.
For the non-COW case that is harmless as the only thing that can happen
is that we call xfs_bmapi_write on an extent that has already been
converted to a real allocation. For COW writes where we move the extent
from the COW to the data fork after I/O completion the race is, however,
not quite as harmless. In the worst case we are now calling
xfs_bmapi_write on a region that contains hole in the COW work, which
will trip up an assert in debug builds or lead to file system corruption
in non-debug builds. This seems to be reproducible with workloads of
small O_DSYNC write, although so far I've not managed to come up with
a with an isolated reproducer.
The fix for the issue is relatively simple: tell xfs_bmapi_write
that we are only asked to convert delayed allocations and skip holes
in that case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A harmless warning just got introduced:
fs/xfs/libxfs/xfs_dir2.h:40:8: error: type qualifiers ignored on function return type [-Werror=ignored-qualifiers]
Removing the 'const' modifier avoids the warning and has no
other effect.
Fixes: 1fc4d33fed ("xfs: replace xfs_mode_to_ftype table with switch statement")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Check for invalid file type in xfs_dinode_verify()
and fail to load the inode structure from disk.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The size of the xfs_mode_to_ftype[] conversion table
was too small to handle an invalid value of mode=S_IFMT.
Instead of fixing the table size, replace the conversion table
with a conversion helper that uses a switch statement.
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_dir2.h dereferences some data types in inline functions
and fails to include those type definitions, e.g.:
xfs_dir2_data_aoff_t, struct xfs_da_geometry.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This changes fixes an assertion hit when fuzzing on-disk
i_mode values.
The easy case to fix is when changing an empty file
i_mode to S_IFDIR. In this case, xfs_dinode_verify()
detects an illegal zero size for directory and fails
to load the inode structure from disk.
For the case of non empty file whose i_mode is changed
to S_IFDIR, the ASSERT() statement in xfs_dir2_isblock()
is replaced with return -EFSCORRUPTED, to avoid interacting
with corrupted jusk also when XFS_DEBUG is disabled.
Suggested-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
->total is a bit of an odd parameter passed down to the low-level
allocator all the way from the high-level callers. It's supposed to
contain the maximum number of blocks to be allocated for the whole
transaction [1].
But in xfs_iomap_write_allocate we only convert existing delayed
allocations and thus only have a minimal block reservation for the
current transaction, so xfs_alloc_space_available can't use it for
the allocation decisions. Use the maximum of args->total and the
calculated block requirement to make a decision. We probably should
get rid of args->total eventually and instead apply ->minleft more
broadly, but that will require some extensive changes all over.
[1] which creates lots of confusion as most callers don't decrement it
once doing a first allocation. But that's for a separate series.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We must decide in xfs_alloc_fix_freelist if we can perform an
allocation from a given AG is possible or not based on the available
space, and should not fail the allocation past that point on a
healthy file system.
But currently we have two additional places that second-guess
xfs_alloc_fix_freelist: xfs_alloc_ag_vextent tries to adjust the
maxlen parameter to remove the reservation before doing the
allocation (but ignores the various minium freespace requirements),
and xfs_alloc_fix_minleft tries to fix up the allocated length
after we've found an extent, but ignores the reservations and also
doesn't take the AGFL into account (and thus fails allocations
for not matching minlen in some cases).
Remove all these later fixups and just correct the maxlen argument
inside xfs_alloc_fix_freelist once we have the AGF buffer locked.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We can't just set minleft to 0 when we're low on space - that's exactly
what we need minleft for: to protect space in the AG for btree block
allocations when we are low on free space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Setting aside 4 blocks globally for bmbt splits isn't all that useful,
as different threads can allocate space in parallel. Bump it to 4
blocks per AG to allow each thread that is currently doing an
allocation to dip into it separately. Without that we may no have
enough reserved blocks if there are enough parallel transactions
in an almost out space file system that all run into bmap btree
splits.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We need to use the actual AG length when making per-AG reservations,
since we could otherwise end up reserving more blocks out of the last
AG than there are actual blocks.
Complained-about-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Use NOFS for allocating btree cursors, since they can be called
under the ilock.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we create a new attribute, we first create a shortform
attribute, and try to fit the new attribute into it.
If that fails, we copy the (empty) attribute into a leaf attribute,
and do the copy again. Thus there can be a transient state where
we have an empty leaf attribute.
If we encounter this during log replay, the verifier will fail.
So add a test to ignore this part of the leaf attr verification
during log replay.
Thanks as usual to dchinner for spotting the problem.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Nick Piggin reported that the CRC overhead in an fsync heavy
workload was higher than expected on a Power8 machine. Part of this
was to do with the fact that the power8 CRC implementation is not
efficient for CRC lengths of less than 512 bytes, and so the way we
split the CRCs over the CRC field means a lot of the CRCs are
reduced to being less than than optimal size.
To optimise this, change the CRC update mechanism to zero the CRC
field first, and then compute the CRC in one pass over the buffer
and write the result back into the buffer. We can do this safely
because anything writing a CRC has exclusive access to the buffer
the CRC is being calculated over.
We leave the CRC verify code the same - it still splits the CRC
calculation - because we do not want read-only operations modifying
the underlying buffer. This is because read-only operations may not
have an exclusive access to the buffer guaranteed, and so temporary
modifications could leak out to to other processes accessing the
buffer concurrently.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Embedding a switch statement in every btree stats inc/add adds a lot
of code overhead to the core btree infrastructure paths. Stats are
supposed to be small and lightweight, but the btree stats have
become big and bloated as we've added more btrees. It needs fixing
because the reflink code will just add more overhead again.
Convert the v2 btree stats to arrays instead of independent
variables, and instead use the type to index the specific btree
array via an enum. This allows us to use array based indexing
to update the stats, rather than having to derefence variables
specific to the btree type.
If we then wrap the xfsstats structure in a union and place uint32_t
array beside it, and calculate the correct btree stats array base
array index when creating a btree cursor, we can easily access
entries in the stats structure without having to switch names based
on the btree type.
We then replace with the switch statement with a simple set of stats
wrapper macros, resulting in a significant simplification of the
btree stats code, and:
text data bss dec hex filename
48905 144 8 49057 bfa1 fs/xfs/libxfs/xfs_btree.o.old
36793 144 8 36945 9051 fs/xfs/libxfs/xfs_btree.o
it reduces the core btree infrastructure code size by close to 25%!
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The on-disk field di_size is used to set i_size, which is a signed
integer of loff_t. If the high bit of di_size is set, we'll end up with
a negative i_size, which will cause all sorts of problems. Since the
VFS won't let us create a file with such length, we should catch them
here in the verifier too.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We shouldn't assert if somehow we end up trying to add an attr fork to
an inode that apparently already has attr extents because this is an
indication of on-disk corruption. Instead, return an error code to
userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In xfs_dir3_data_read, we can encounter the situation where err == 0 and
*bpp == NULL if the given bno offset happens to be a hole; this leads to
a crash if we try to set the buffer type after the _da_read_buf call.
Holes can happen due to corrupt or malicious entries in the bmbt data,
so be a little more careful when we're handling buffers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When reading into memory all extents of a btree-format inode fork,
complain if the number of extents we find is not the same as the number
of extents reported in the inode core. This is needed to stop an IO
action from accessing the garbage areas of the in-core fork.
[dchinner: removed redundant assert]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're reading a btree block, make sure that what we retrieved
matches the owner and level; and has a plausible number of records.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There is no such thing as a zero-level AG btree since even a single-node
zero-records btree has one level. Btree cursor constructors read
cur_nlevels straight from disk and then access things like
cur_bufs[cur_nlevels - 1] which is /really/ bad if cur_nlevels is zero!
Therefore, strengthen the verifiers to prevent this possibility.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There are a handful of xattr functions which now return
nothing but zero. They can be made void, chased through calling
functions, and error handling etc can be removed.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
By inspection, xfs_bmap_trace_exlist isn't handling cow forks,
and will trace the data fork instead.
Fix this by setting state appropriately if whichfork
== XFS_COW_FORK.
()___()
< @ @ >
| |
{o_o}
(|)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When xfs_bmap_trace_exlist called trace_xfs_extlist,
it sent in the "whichfork" var instead of the bmap "state"
as expected (even though state was already set up for this
purpose).
As a result, the xfs_bmap_class in tracing code used
"whichfork" not state in xfs_iext_state_to_fork(), and got
the wrong ifork pointer. It all goes downhill from
there, including an ASSERT when ifp_bytes is empty
by the time it reaches xfs_iext_get_ext():
XFS: Assertion failed: idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We've missed properly setting the buffer type for
an AGI transaction in 3 spots now, so just move it
into xfs_read_agi() and set it if we are in a transaction
to avoid the problem in the future.
This is similar to how it is done in i.e. the dir3
and attr3 read functions.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Speculative preallocation is currently processed entirely by the callers
of xfs_bmapi_reserve_delalloc(). The caller determines how much
preallocation to include, adjusts the extent length and passes down the
resulting request.
While this works fine for post-eof speculative preallocation, it is not
as reliable for COW fork preallocation. COW fork preallocation is
implemented via the cowextszhint, which aligns the start offset as well
as the length of the extent. Further, it is difficult for the caller to
accurately identify when preallocation occurs because the returned
extent could have been merged with neighboring extents in the fork.
To simplify this situation and facilitate further COW fork preallocation
enhancements, update xfs_bmapi_reserve_delalloc() to take a separate
preallocation parameter to incorporate into the allocation request. The
preallocation blocks value is tacked onto the end of the request and
adjusted to accommodate neighboring extents and extent size limits.
Since xfs_bmapi_reserve_delalloc() now knows precisely how much
preallocation was included in the allocation, it can also tag the inodes
appropriately to support preallocation reclaim.
Note that xfs_bmapi_reserve_delalloc() callers are not yet updated to
use the preallocation mechanism. This patch should not change behavior
outside of correctly tagging reflink inodes when start offset
preallocation occurs (which the caller does not handle correctly).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Declare the structure xfs_nameops as const as it is only stored in the
m_dirnameops field of a xfs_mount structure. This field is of type
const struct xfs_nameops *, so xfs_nameops structures having this
property can be declared as const.
Done using Coccinelle:
@r1 disable optional_qualifier @
identifier i;
position p;
@@
static struct xfs_nameops i@p = {...};
@ok1@
identifier r1.i;
position p;
struct xfs_mount mp;
@@
mp.m_dirnameops=&i@p
@bad@
position p!={r1.p,ok1.p};
identifier r1.i;
@@
i@p
@depends on !bad disable optional_qualifier@
identifier r1.i;
@@
static
+const
struct xfs_nameops i={...};
@depends on !bad disable optional_qualifier@
identifier r1.i;
@@
+const
struct xfs_nameops i;
File size before:
text data bss dec hex filename
5302 85 0 5387 150b fs/xfs/libxfs/xfs_dir2.o
File size after:
text data bss dec hex filename
5318 69 0 5387 150b fs/xfs/libxfs/xfs_dir2.o
Signed-off-by: Bhumika Goyal <bhumirks@gmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're estimating the amount of space it's going to take to satisfy
a delalloc reservation, we need to include the space that we might need
to grow the rmapbt. This helps us to avoid running out of space later
when _iomap_write_allocate needs more space than we reserved. Eryu Guan
observed this happening on generic/224 when sunit/swidth were set.
Reported-by: Eryu Guan <eguan@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We only ever set a field to this constant for an impossible to reach
error case in xfs_bmap_search_extents. That functions has been removed,
so we can remove the constant as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that all users are gone.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We can easily lookup the previous extent for the cases where we need it,
which saves the callers from looking it up for us later in the series.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Rewrite the function using xfs_iext_lookup_extent and xfs_iext_get_extent,
and massage the flow into something easily understandable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_iext_lookup_extent looks up a single extent at the passed in offset,
and returns the extent covering the area, or the one behind it in case
of a hole, as well as the index of the returned extent in arguments,
as well as a simple bool as return value that is set to false if no
extent could be found because the offset is behind EOF. It is a simpler
replacement for xfs_bmap_search_extent that leaves looking up the rarely
needed previous extent to the caller and has a nicer calling convention.
xfs_iext_get_extent is a helper for iterating over the extent list,
it takes an extent index as input, and returns the extent at that index
in it's expanded form in an argument if it exists. The actual return
value is a bool whether the index is valid or not.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Check the minimum block size on v5 filesystems.
[dchinner: cleaned up XFS_MIN_CRC_BLOCKSIZE check]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The open-coded pattern:
ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)
is all over the xfs code; provide a new helper
xfs_iext_count(ifp) to count the number of inline extents
in an inode fork.
[dchinner: pick up several missed conversions]
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>