Commit Graph

47 Commits

Author SHA1 Message Date
David Sterba
675d276b32 Merge branch 'foreign/liubo/replace-lockup' into for-chris-4.6 2016-02-26 15:38:32 +01:00
David Sterba
ff7db6e05a Merge branch 'foreign/zhaolei/reada' into for-chris-4.6 2016-02-26 15:38:30 +01:00
Liu Bo
73beece9ca Btrfs: fix lockdep deadlock warning due to dev_replace
Xfstests btrfs/011 complains about a deadlock warning,

[ 1226.649039] =========================================================
[ 1226.649039] [ INFO: possible irq lock inversion dependency detected ]
[ 1226.649039] 4.1.0+ #270 Not tainted
[ 1226.649039] ---------------------------------------------------------
[ 1226.652955] kswapd0/46 just changed the state of lock:
[ 1226.652955]  (&delayed_node->mutex){+.+.-.}, at: [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0
[ 1226.652955] but this lock took another, RECLAIM_FS-unsafe lock in the past:
[ 1226.652955]  (&fs_info->dev_replace.lock){+.+.+.}

and interrupts could create inverse lock ordering between them.

[ 1226.652955]
other info that might help us debug this:
[ 1226.652955] Chain exists of:
  &delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock

[ 1226.652955]  Possible interrupt unsafe locking scenario:

[ 1226.652955]        CPU0                    CPU1
[ 1226.652955]        ----                    ----
[ 1226.652955]   lock(&fs_info->dev_replace.lock);
[ 1226.652955]                                local_irq_disable();
[ 1226.652955]                                lock(&delayed_node->mutex);
[ 1226.652955]                                lock(&found->groups_sem);
[ 1226.652955]   <Interrupt>
[ 1226.652955]     lock(&delayed_node->mutex);
[ 1226.652955]
 *** DEADLOCK ***

Commit 084b6e7c76 ("btrfs: Fix a lockdep warning when running xfstest.") tried
to fix a similar one that has the exactly same warning, but with that, we still
run to this.

The above lock chain comes from
btrfs_commit_transaction
  ->btrfs_run_delayed_items
    ...
    ->__btrfs_update_delayed_inode
      ...
      ->__btrfs_cow_block
         ...
         ->find_free_extent
            ->cache_block_group
              ->load_free_space_cache
                ->btrfs_readpages
                  ->submit_one_bio
                    ...
                    ->__btrfs_map_block
                      ->btrfs_dev_replace_lock

However, with high memory pressure, tasks which hold dev_replace.lock can
be interrupted by kswapd and then kswapd is intended to release memory occupied
by superblock, inodes and dentries, where we may call evict_inode, and it comes
to

[ 1226.652955]  [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0
[ 1226.652955]  [<ffffffff81459e74>] btrfs_remove_delayed_node+0x24/0x30
[ 1226.652955]  [<ffffffff8140c5fe>] btrfs_evict_inode+0x34e/0x700

delayed_node->mutex may be acquired in __btrfs_release_delayed_node(), and it leads
to a ABBA deadlock.

To fix this, we can use "blocking rwlock" used in the case of extent_buffer, but
things are simpler here since we only needs read's spinlock to blocking lock.

With this, btrfs/011 no more produces warnings in dmesg.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-23 13:10:10 +01:00
Zhao Lei
7aff8cf4a6 btrfs: reada: ignore creating reada_extent for a non-existent device
For a non-existent device, old code bypasses adding it in dev's reada
queue.

And to solve problem of unfinished waitting in raid5/6,
commit 5fbc7c59fd ("Btrfs: fix unfinished readahead thread for
raid5/6 degraded mounting")
adding an exception for the first stripe, in short, the first
stripe will always be processed whether the device exists or not.

Actually we have a better way for the above request: just bypass
creation of the reada_extent for non-existent device, it will make
code simple and effective.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:27:23 +01:00
Zhao Lei
4fe7a0e138 btrfs: reada: avoid undone reada extents in btrfs_reada_wait
Reada background works is not designed to finish all jobs
completely, it will break in following case:
1: When a device reaches workload limit (MAX_IN_FLIGHT)
2: Total reads reach max limit (10000)
3: All devices don't have queued more jobs, often happened in DUP case

And if all background works exit with remaining jobs,
btrfs_reada_wait() will wait indefinetelly.

Above problem is rarely happened in old code, because:
1: Every work queues 2x new works
   So many works reduced chances of undone jobs.
2: One work will continue 10000 times loop in case of no-jobs
   It reduced no-thread window time.

But after we fixed above case, the "undone reada extents" frequently
happened.

Fix:
 Check to ensure we have at least one thread if there are undone jobs
 in btrfs_reada_wait().

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:27:23 +01:00
Zhao Lei
2fefd5583f btrfs: reada: limit max works count
Reada creates 2 works for each level of tree recursively.

In case of a tree having many levels, the number of created works
is 2^level_of_tree.
Actually we don't need so many works in parallel, this patch limits
max works to BTRFS_MAX_MIRRORS * 2.

The per-fs works_counter will be also used for btrfs_reada_wait() to
check is there are background workers.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:27:23 +01:00
Zhao Lei
895a11b868 btrfs: reada: simplify dev->reada_in_flight processing
No need to decrease dev->reada_in_flight in __readahead_hook()'s
internal and reada_extent_put().
reada_extent_put() have no chance to decrease dev->reada_in_flight
in free operation, because reada_extent have additional refcnt when
scheduled to a dev.

We can put inc and dec operation for dev->reada_in_flight to one
place instead to make logic simple and safe, and move useless
reada_extent->scheduled_for to a bool flag instead.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:27:23 +01:00
Zhao Lei
8afd6841e1 btrfs: reada: Fix a debug code typo
Remove one copy of loop to fix the typo of iterate zones.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:26:12 +01:00
Zhao Lei
57f16e0826 btrfs: reada: Jump into cleanup in direct way for __readahead_hook()
Current code set nritems to 0 to make for_loop useless to bypass it,
and set generation's value which is not necessary.
Jump into cleanup directly is better choise.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:26:12 +01:00
Zhao Lei
02873e4325 btrfs: reada: Use fs_info instead of root in __readahead_hook's argument
What __readahead_hook() need exactly is fs_info, no need to convert
fs_info to root in caller and convert back in __readahead_hook()

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:26:12 +01:00
Zhao Lei
6e39dbe8b9 btrfs: reada: Pass reada_extent into __readahead_hook directly
reada_start_machine_dev() already have reada_extent pointer, pass
it into __readahead_hook() directly instead of search radix_tree
will make code run faster.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:26:12 +01:00
Zhao Lei
b257cf5006 btrfs: reada: move reada_extent_put to place after __readahead_hook()
We can't release reada_extent earlier than __readahead_hook(), because
__readahead_hook() still need to use it, it is necessary to hode a refcnt
to avoid it be freed.

Actually it is not a problem after my patch named:
  Avoid many times of empty loop
It make reada_extent in above line include at least one reada_extctl,
which keeps additional one refcnt for reada_extent.

But we still need this patch to make the code in pretty logic.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:26:12 +01:00
Zhao Lei
1e7970c0f3 btrfs: reada: Remove level argument in severial functions
level is not used in severial functions, remove them from arguments,
and remove relative code for get its value.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:26:12 +01:00
Zhao Lei
3194502118 btrfs: reada: bypass adding extent when all zone failed
When failed adding all dev_zones for a reada_extent, the extent
will have no chance to be selected to run, and keep in memory
for ever.

We should bypass this extent to avoid above case.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:26:12 +01:00
Zhao Lei
6a159d2ae4 btrfs: reada: add all reachable mirrors into reada device list
If some device is not reachable, we should bypass and continus addingb
next, instead of break on bad device.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:26:12 +01:00
Zhao Lei
a3f7fde243 btrfs: reada: Move is_need_to_readahead contition earlier
Move is_need_to_readahead contition earlier to avoid useless loop
to get relative data for readahead.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 10:26:10 +01:00
Zhao Lei
97d5f0e63d btrfs: reada: Avoid many times of empty loop
We can see following loop(10000 times) in trace_log:
 [   75.416137] ZL_DEBUG: reada_start_machine_dev:730: pid=771 comm=kworker/u2:3 re->ref_cnt ffff88003741e0c0 1 -> 2
 [   75.417413] ZL_DEBUG: reada_extent_put:524: pid=771 comm=kworker/u2:3 re = ffff88003741e0c0, refcnt = 2 -> 1
 [   75.418611] ZL_DEBUG: __readahead_hook:129: pid=771 comm=kworker/u2:3 re->ref_cnt ffff88003741e0c0 1 -> 2
 [   75.419793] ZL_DEBUG: reada_extent_put:524: pid=771 comm=kworker/u2:3 re = ffff88003741e0c0, refcnt = 2 -> 1

 [   75.421016] ZL_DEBUG: reada_start_machine_dev:730: pid=771 comm=kworker/u2:3 re->ref_cnt ffff88003741e0c0 1 -> 2
 [   75.422324] ZL_DEBUG: reada_extent_put:524: pid=771 comm=kworker/u2:3 re = ffff88003741e0c0, refcnt = 2 -> 1
 [   75.423661] ZL_DEBUG: __readahead_hook:129: pid=771 comm=kworker/u2:3 re->ref_cnt ffff88003741e0c0 1 -> 2
 [   75.424882] ZL_DEBUG: reada_extent_put:524: pid=771 comm=kworker/u2:3 re = ffff88003741e0c0, refcnt = 2 -> 1

 ...(10000 times)

 [  124.101672] ZL_DEBUG: reada_start_machine_dev:730: pid=771 comm=kworker/u2:3 re->ref_cnt ffff88003741e0c0 1 -> 2
 [  124.102850] ZL_DEBUG: reada_extent_put:524: pid=771 comm=kworker/u2:3 re = ffff88003741e0c0, refcnt = 2 -> 1
 [  124.104008] ZL_DEBUG: __readahead_hook:129: pid=771 comm=kworker/u2:3 re->ref_cnt ffff88003741e0c0 1 -> 2
 [  124.105121] ZL_DEBUG: reada_extent_put:524: pid=771 comm=kworker/u2:3 re = ffff88003741e0c0, refcnt = 2 -> 1

Reason:
 If more than one user trigger reada in same extent, the first task
 finished setting of reada data struct and call reada_start_machine()
 to start, and the second task only add a ref_count but have not
 add reada_extctl struct completely, the reada_extent can not finished
 all jobs, and will be selected in __reada_start_machine() for 10000
 times(total times in __reada_start_machine()).

Fix:
 For a reada_extent without job, we don't need to run it, just return
 0 to let caller break.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-16 13:21:45 +01:00
Zhao Lei
8e9aa51f54 btrfs: reada: Add missed segment checking in reada_find_zone
In rechecking zone-in-tree, we still need to check zone include
our logical address.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-16 13:21:45 +01:00
Zhao Lei
c37f49c7ef btrfs: reada: reduce additional fs_info->reada_lock in reada_find_zone
We can avoid additional locking-acquirment and one pair of
kref_get/put by combine two condition.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-16 13:21:45 +01:00
Zhao Lei
503785306d btrfs: reada: Fix in-segment calculation for reada
reada_zone->end is end pos of segment:
 end = start + cache->key.offset - 1;

So we need to use "<=" in condition to judge is a pos in the
segment.

The problem happened rearly, because logical pos rarely pointed
to last 4k of a blockgroup, but we need to fix it to make code
right in logic.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-16 13:21:45 +01:00
David Sterba
ed0244faf5 btrfs: reada: use GFP_KERNEL everywhere
The readahead framework is not on the critical writeback path we don't
need to use GFP_NOFS for allocations. All error paths are handled and
the readahead failures are not fatal. The actual users (scrub,
dev-replace) will trigger reads if the blocks are not found in cache.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-11 15:19:39 +01:00
Luis de Bethencourt
ddd664f447 btrfs: reada: Fix returned errno code
reada is using -1 instead of the -ENOMEM defined macro to specify that
a buffer allocation failed. Since the error number is propagated, the
caller will get a -EPERM which is the wrong error condition.

Also, updating the caller to return the exact value from
reada_add_block.

Smatch tool warning:
reada_add_block() warn: returning -1 instead of -ENOMEM is sloppy

Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Luis de Bethencourt <luisbg@osg.samsung.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-21 18:29:50 +02:00
Omar Sandoval
7cb2c4202e Btrfs: count devices correctly in readahead during RAID 5/6 replace
Commit 5fbc7c59fd ("Btrfs: fix unfinished readahead thread for raid5/6
degraded mounting") fixed a problem where we would skip a missing device
when we shouldn't have because there are no other mirrors to read from
in RAID 5/6. After commit 2c8cdd6ee4 ("Btrfs, replace: write dirty
pages into the replace target device"), the fix doesn't work when we're
doing a missing device replace on RAID 5/6 because the replace device is
counted as a mirror so we're tricked into thinking we can safely skip
the missing device. The fix is to count only the real stripes and decide
based on that.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 07:34:26 -07:00
Zhao Lei
6e9606d2a2 Btrfs: add ref_count and free function for btrfs_bio
1: ref_count is simple than current RBIO_HOLD_BBIO_MAP_BIT flag
   to keep btrfs_bio's memory in raid56 recovery implement.
2: free function for bbio will make code clean and flexible, plus
   forced data type checking in compile.

Changelog v1->v2:
 Rename following by David Sterba's suggestion:
 put_btrfs_bio() -> btrfs_put_bio()
 get_btrfs_bio() -> btrfs_get_bio()
 bbio->ref_count -> bbio->refs

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:48 -08:00
David Sterba
c0dcaa4d7b btrfs: sink blocksize parameter to reada_tree_block_flagged
Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:20 +01:00
David Sterba
b6ae40ec76 btrfs: remove blocksize from reada_extent
Replace with global nodesize instead.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:19 +01:00
David Sterba
707e8a0715 btrfs: use nodesize everywhere, kill leafsize
The nodesize and leafsize were never of different values. Unify the
usage and make nodesize the one. Cleanup the redundant checks and
helpers.

Shaves a few bytes from .text:

  text    data     bss     dec     hex filename
852418   24560   23112  900090   dbbfa btrfs.ko.before
851074   24584   23112  898770   db6d2 btrfs.ko.after

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-17 13:37:14 -07:00
Liu Bo
9e0af23764 Btrfs: fix task hang under heavy compressed write
This has been reported and discussed for a long time, and this hang occurs in
both 3.15 and 3.16.

Btrfs now migrates to use kernel workqueue, but it introduces this hang problem.

Btrfs has a kind of work queued as an ordered way, which means that its
ordered_func() must be processed in the way of FIFO, so it usually looks like --

normal_work_helper(arg)
    work = container_of(arg, struct btrfs_work, normal_work);

    work->func() <---- (we name it work X)
    for ordered_work in wq->ordered_list
            ordered_work->ordered_func()
            ordered_work->ordered_free()

The hang is a rare case, first when we find free space, we get an uncached block
group, then we go to read its free space cache inode for free space information,
so it will

file a readahead request
    btrfs_readpages()
         for page that is not in page cache
                __do_readpage()
                     submit_extent_page()
                           btrfs_submit_bio_hook()
                                 btrfs_bio_wq_end_io()
                                 submit_bio()
                                 end_workqueue_bio() <--(ret by the 1st endio)
                                      queue a work(named work Y) for the 2nd
                                      also the real endio()

So the hang occurs when work Y's work_struct and work X's work_struct happens
to share the same address.

A bit more explanation,

A,B,C -- struct btrfs_work
arg   -- struct work_struct

kthread:
worker_thread()
    pick up a work_struct from @worklist
    process_one_work(arg)
	worker->current_work = arg;  <-- arg is A->normal_work
	worker->current_func(arg)
		normal_work_helper(arg)
		     A = container_of(arg, struct btrfs_work, normal_work);

		     A->func()
		     A->ordered_func()
		     A->ordered_free()  <-- A gets freed

		     B->ordered_func()
			  submit_compressed_extents()
			      find_free_extent()
				  load_free_space_inode()
				      ...   <-- (the above readhead stack)
				      end_workqueue_bio()
					   btrfs_queue_work(work C)
		     B->ordered_free()

As if work A has a high priority in wq->ordered_list and there are more ordered
works queued after it, such as B->ordered_func(), its memory could have been
freed before normal_work_helper() returns, which means that kernel workqueue
code worker_thread() still has worker->current_work pointer to be work
A->normal_work's, ie. arg's address.

Meanwhile, work C is allocated after work A is freed, work C->normal_work
and work A->normal_work are likely to share the same address(I confirmed this
with ftrace output, so I'm not just guessing, it's rare though).

When another kthread picks up work C->normal_work to process, and finds our
kthread is processing it(see find_worker_executing_work()), it'll think
work C as a collision and skip then, which ends up nobody processing work C.

So the situation is that our kthread is waiting forever on work C.

Besides, there're other cases that can lead to deadlock, but the real problem
is that all btrfs workqueue shares one work->func, -- normal_work_helper,
so this makes each workqueue to have its own helper function, but only a
wraper pf normal_work_helper.

With this patch, I no long hit the above hang.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-08-24 07:17:02 -07:00
Wang Shilong
5fbc7c59fd Btrfs: fix unfinished readahead thread for raid5/6 degraded mounting
Steps to reproduce:

 # mkfs.btrfs -f /dev/sd[b-f] -m raid5 -d raid5
 # mkfs.ext4 /dev/sdc --->corrupt one of btrfs device
 # mount /dev/sdb /mnt -o degraded
 # btrfs scrub start -BRd /mnt

This is because readahead would skip missing device, this is not true
for RAID5/6, because REQ_GET_READ_MIRRORS return 1 for RAID5/6 block
mapping. If expected data locates in missing device, readahead thread
would not call __readahead_hook() which makes event @rc->elems=0
wait forever.

Fix this problem by checking return value of btrfs_map_block(),we
can only skip missing device safely if there are several mirrors.

Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-13 09:52:21 -07:00
Qu Wenruo
d458b0540e btrfs: Cleanup the "_struct" suffix in btrfs_workequeue
Since the "_struct" suffix is mainly used for distinguish the differnt
btrfs_work between the original and the newly created one,
there is no need using the suffix since all btrfs_workers are changed
into btrfs_workqueue.

Also this patch fixed some codes whose code style is changed due to the
too long "_struct" suffix.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-03-10 15:17:16 -04:00
Qu Wenruo
736cfa15e8 btrfs: Replace fs_info->readahead_workers workqueue with btrfs_workqueue.
Replace the fs_info->readahead_workers with the newly created
btrfs_workqueue.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-03-10 15:17:11 -04:00
Frank Holton
efe120a067 Btrfs: convert printk to btrfs_ and fix BTRFS prefix
Convert all applicable cases of printk and pr_* to the btrfs_* macros.

Fix all uses of the BTRFS prefix.

Signed-off-by: Frank Holton <fholton@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-01-28 13:20:05 -08:00
Vincent
3c59ccd32a Btrfs: fix reada debug code compilation
This fixes the following errors:

  fs/btrfs/reada.c: In function ‘btrfs_reada_wait’:
  fs/btrfs/reada.c:958:42: error: invalid operands to binary < (have ‘atomic_t’ and ‘int’)
  fs/btrfs/reada.c:961:41: error: invalid operands to binary < (have ‘atomic_t’ and ‘int’)

Signed-off-by: Vincent Stehlé <vincent.stehle@laposte.net>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: linux-btrfs@vger.kernel.org
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-06 15:54:55 -04:00
Stefan Behrens
29a8d9a0bc Btrfs: introduce GET_READ_MIRRORS functionality for btrfs_map_block()
Before this commit, btrfs_map_block() was called with REQ_WRITE
in order to retrieve the list of mirrors for a disk block.
This needs to be changed for the device replace procedure since
it makes a difference whether you are asking for read mirrors
or for locations to write to.
GET_READ_MIRRORS is introduced as a new interface to call
btrfs_map_block().
In the current commit, the functionality is not yet changed,
only the interface for GET_READ_MIRRORS is introduced and all
the places that should use this new interface are adapted.

The reason that REQ_WRITE cannot be abused anymore to retrieve
a list of read mirrors is that during a running dev replace
operation all write requests to the live filesystem are
duplicated to also write to the target drive.
Keep in mind that the target disk is only partially a valid
copy of the source disk while the operation is ongoing. All
writes go to the target disk, but not all reads would return
valid data on the target disk. Therefore it is not possible
anymore to abuse a REQ_WRITE interface to find valid mirrors
for a REQ_READ.

Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-12 17:15:43 -05:00
Stefan Behrens
8dabb7420f Btrfs: change core code of btrfs to support the device replace operations
This commit contains all the essential changes to the core code
of Btrfs for support of the device replace procedure.

Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-12 17:15:42 -05:00
Stefan Behrens
ff023aac31 Btrfs: add code to scrub to copy read data to another disk
The device replace procedure makes use of the scrub code. The scrub
code is the most efficient code to read the allocated data of a disk,
i.e. it reads sequentially in order to avoid disk head movements, it
skips unallocated blocks, it uses read ahead mechanisms, and it
contains all the code to detect and repair defects.
This commit adds code to scrub to allow the scrub code to copy read
data to another disk.
One goal is to be able to perform as fast as possible. Therefore the
write requests are collected until huge bios are built, and the
write process is decoupled from the read process with some kind of
flow control, of course, in order to limit the allocated memory.
The best performance on spinning disks could by reached when the
head movements are avoided as much as possible. Therefore a single
worker is used to interface the read process with the write process.
The regular scrub operation works as fast as before, it is not
negatively influenced and actually it is more or less unchanged.

Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-12 17:15:41 -05:00
Stefan Behrens
3ec706c831 Btrfs: pass fs_info to btrfs_map_block() instead of mapping_tree
This is required for the device replace procedure in a later step.
Two calling functions also had to be changed to have the fs_info
pointer: repair_io_failure() and scrub_setup_recheck_block().

Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-12-12 17:15:34 -05:00
Al Viro
99621b44aa btrfs: reada_extent doesn't need kref for refcount
All increments and decrements are under the same spinlock - have to be,
since they need to protect the radix_tree it's found in.  Just use
int, no need to wank with kref...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-10-02 21:35:55 -04:00
Stefan Behrens
3d136a1131 Btrfs: set ioprio of scrub readahead to idle
Reduce ioprio class of scrub readahead threads to idle priority.
This setting is fixed. This priority has shown the best performance
during all measurements.

Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
2012-05-30 10:23:43 -04:00
Arne Jansen
207a232cca btrfs: don't add both copies of DUP to reada extent tree
Normally when there are 2 copies of a block, we add both to the
reada extent tree and prefetch only the one that is easier to reach.
This way we can better utilize multiple devices.
In case of DUP this makes no sense as both copies reside on the
same device.

Signed-off-by: Arne Jansen <sensille@gmx.net>
2012-04-18 19:12:44 +02:00
Arne Jansen
8c9c2bf7a3 btrfs: fix race in reada
When inserting into the radix tree returns EEXIST, get the existing
entry without giving up the spinlock in between.
There was a race for both the zones trees and the extent tree.

Signed-off-by: Arne Jansen <sensille@gmx.net>
2012-04-18 19:12:44 +02:00
Stefan Behrens
94598ba8d8 Btrfs: introduce common define for max number of mirrors
Readahead already has a define for the max number of mirrors. Scrub
needs such a define now, the rest of the code will need something
like this soon. Therefore the define was added to ctree.h and removed
from the readahead code.

Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2012-03-27 14:21:26 -04:00
Chris Mason
a175423c83 Btrfs: fix casting error in scrub reada code
The reada code from scrub was casting down a u64 to
an unsigned long so it could insert it into a radix tree.

What it really wanted to do was cast down the result of a shift, instead
of casting down the u64.  The bug resulted in trying to insert our
reada struct into the wrong place, which caused soft lockups and other
problems.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2012-03-03 07:42:35 -05:00
Ilya Dryomov
21ca543efc Btrfs: rename btrfs_bio multi -> bbio for consistency
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-11-06 03:11:21 -05:00
Ilya Dryomov
9510dc4c62 Btrfs: stop leaking btrfs_bios on readahead
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-11-06 03:11:08 -05:00
Chris Mason
806468f8bf Merge git://git.jan-o-sch.net/btrfs-unstable into integration
Conflicts:
	fs/btrfs/Makefile
	fs/btrfs/extent_io.c
	fs/btrfs/extent_io.h
	fs/btrfs/scrub.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-11-06 03:07:10 -05:00
Arne Jansen
7414a03fbf btrfs: initial readahead code and prototypes
This is the implementation for the generic read ahead framework.

To trigger a readahead, btrfs_reada_add must be called. It will start
a read ahead for the given range [start, end) on tree root. The returned
handle can either be used to wait on the readahead to finish
(btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).

The read ahead works as follows:
On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
reada_start_machine will then search for extents to prefetch and trigger
some reads. When a read finishes for a node, all contained node/leaf
pointers that lie in the given range will also be enqueued. The reads will
be triggered in sequential order, thus giving a big win over a naive
enumeration. It will also make use of multi-device layouts. Each disk
will have its on read pointer and all disks will by utilized in parallel.
Also will no two disks read both sides of a mirror simultaneously, as this
would waste seeking capacity. Instead both disks will read different parts
of the filesystem.
Any number of readaheads can be started in parallel. The read order will be
determined globally, i.e. 2 parallel readaheads will normally finish faster
than the 2 started one after another.

Changes v2:
 - protect root->node by transaction instead of node_lock
 - fix missed branches:
    The readahead had a too simple check to determine if a branch from
    a node should be checked or not. It now also records the upper bound
    of each node to see if the requested RA range lies within.
 - use KERN_CONT to debug output, to avoid line breaks
 - defer reada_start_machine to worker to avoid deadlock

Changes v3:
 - protect root->node by rcu

Changes v5:
 - changed EIO-semantics of reada_tree_block_flagged
 - remove spin_lock from reada_control and make elems an atomic_t
 - remove unused read_total from reada_control
 - kill reada_key_cmp, use btrfs_comp_cpu_keys instead
 - use kref-style release functions where possible
 - return struct reada_control * instead of void * from btrfs_reada_add

Signed-off-by: Arne Jansen <sensille@gmx.net>
2011-10-02 08:48:44 +02:00