... by not hitting rename_retry for reasons other than rename having
happened. In other words, do _not_ restart when finding that
between unlocking the child and locking the parent the former got
into __dentry_kill(). Skip the killed siblings instead...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
d_splice_alias() callers expect it to either stash the inode reference
into a new alias, or drop the inode reference. That makes it possible
to just return d_splice_alias() result from ->lookup() instance, without
any extra housekeeping required.
Unfortunately, that should include the failure exits. If d_splice_alias()
returns an error, it leaves the dentry it has been given negative and
thus it *must* drop the inode reference. Easily fixed, but it goes way
back and will need backporting.
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
the only in-tree instance checks d_unhashed() anyway,
out-of-tree code can preserve the current behaviour by
adding such check if they want it and we get an ability
to use it in cases where we *want* to be notified of
killing being inevitable before ->d_lock is dropped,
whether it's unhashed or not. In particular, autofs
would benefit from that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only reason for games with ->d_prune() was __d_drop(), which
was needed only to force dput() into killing the sucker off.
Note that lock_parent() can be called under ->i_lock and won't
drop it, so dentry is safe from somebody managing to kill it
under us - it won't happen while we are holding ->i_lock.
__dentry_kill() is called only with ->d_lockref.count being 0
(here and when picked from shrink list) or 1 (dput() and dropping
the ancestors in shrink_dentry_list()), so it will never be called
twice - the first thing it's doing is making ->d_lockref.count
negative and once that happens, nothing will increment it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that d_invalidate can no longer fail, stop returning a useless
return code. For the few callers that checked the return code update
remove the handling of d_invalidate failure.
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that d_invalidate is the only caller of check_submounts_and_drop,
expand check_submounts_and_drop inline in d_invalidate.
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
With the introduction of mount namespaces and bind mounts it became
possible to access files and directories that on some paths are mount
points but are not mount points on other paths. It is very confusing
when rm -rf somedir returns -EBUSY simply because somedir is mounted
somewhere else. With the addition of user namespaces allowing
unprivileged mounts this condition has gone from annoying to allowing
a DOS attack on other users in the system.
The possibility for mischief is removed by updating the vfs to support
rename, unlink and rmdir on a dentry that is a mountpoint and by
lazily unmounting mountpoints on deleted dentries.
In particular this change allows rename, unlink and rmdir system calls
on a dentry without a mountpoint in the current mount namespace to
succeed, and it allows rename, unlink, and rmdir performed on a
distributed filesystem to update the vfs cache even if when there is a
mount in some namespace on the original dentry.
There are two common patterns of maintaining mounts: Mounts on trusted
paths with the parent directory of the mount point and all ancestory
directories up to / owned by root and modifiable only by root
(i.e. /media/xxx, /dev, /dev/pts, /proc, /sys, /sys/fs/cgroup/{cpu,
cpuacct, ...}, /usr, /usr/local). Mounts on unprivileged directories
maintained by fusermount.
In the case of mounts in trusted directories owned by root and
modifiable only by root the current parent directory permissions are
sufficient to ensure a mount point on a trusted path is not removed
or renamed by anyone other than root, even if there is a context
where the there are no mount points to prevent this.
In the case of mounts in directories owned by less privileged users
races with users modifying the path of a mount point are already a
danger. fusermount already uses a combination of chdir,
/proc/<pid>/fd/NNN, and UMOUNT_NOFOLLOW to prevent these races. The
removable of global rename, unlink, and rmdir protection really adds
nothing new to consider only a widening of the attack window, and
fusermount is already safe against unprivileged users modifying the
directory simultaneously.
In principle for perfect userspace programs returning -EBUSY for
unlink, rmdir, and rename of dentires that have mounts in the local
namespace is actually unnecessary. Unfortunately not all userspace
programs are perfect so retaining -EBUSY for unlink, rmdir and rename
of dentries that have mounts in the current mount namespace plays an
important role of maintaining consistency with historical behavior and
making imperfect userspace applications hard to exploit.
v2: Remove spurious old_dentry.
v3: Optimized shrink_submounts_and_drop
Removed unsued afs label
v4: Simplified the changes to check_submounts_and_drop
Do not rename check_submounts_and_drop shrink_submounts_and_drop
Document what why we need atomicity in check_submounts_and_drop
Rely on the parent inode mutex to make d_revalidate and d_invalidate
an atomic unit.
v5: Refcount the mountpoint to detach in case of simultaneous
renames.
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The current comments in d_invalidate about what and why it is doing
what it is doing are wildly off-base. Which is not surprising as
the comments date back to last minute bug fix of the 2.2 kernel.
The big fat lie of a comment said: If it's a directory, we can't drop
it for fear of somebody re-populating it with children (even though
dropping it would make it unreachable from that root, we still might
repopulate it if it was a working directory or similar).
[AV] What we really need to avoid is multiple dentry aliases of the
same directory inode; on all filesystems that have ->d_revalidate()
we either declare all positive dentries always valid (and thus never
fed to d_invalidate()) or use d_materialise_unique() and/or d_splice_alias(),
which take care of alias prevention.
The current rules are:
- To prevent mount point leaks dentries that are mount points or that
have childrent that are mount points may not be be unhashed.
- All dentries may be unhashed.
- Directories may be rehashed with d_materialise_unique
check_submounts_and_drop implements this already for well maintained
remote filesystems so implement the current rules in d_invalidate
by just calling check_submounts_and_drop.
The one difference between d_invalidate and check_submounts_and_drop
is that d_invalidate must respect it when a d_revalidate method has
earlier called d_drop so preserve the d_unhashed check in
d_invalidate.
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
d_drop or check_submounts_and_drop called from d_revalidate can result
in renamed directories with child dentries being unhashed. These
renamed and drop directory dentries can be rehashed after
d_materialise_unique uses d_find_alias to find them.
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* external dentry names get a small structure prepended to them
(struct external_name).
* it contains an atomic refcount, matching the number of struct dentry
instances that have ->d_name.name pointing to that external name. The
first thing free_dentry() does is decrementing refcount of external name,
so the instances that are between the call of free_dentry() and
RCU-delayed actual freeing do not contribute.
* __d_move(x, y, false) makes the name of x equal to the name of y,
external or not. If y has an external name, extra reference is grabbed
and put into x->d_name.name. If x used to have an external name, the
reference to the old name is dropped and, should it reach zero, freeing
is scheduled via kfree_rcu().
* free_dentry() in dentry with external name decrements the refcount of
that name and, should it reach zero, does RCU-delayed call that will
free both the dentry and external name. Otherwise it does what it
used to do, except that __d_free() doesn't even look at ->d_name.name;
it simply frees the dentry.
All non-RCU accesses to dentry external name are safe wrt freeing since they
all should happen before free_dentry() is called. RCU accesses might run
into a dentry seen by free_dentry() or into an old name that got already
dropped by __d_move(); however, in both cases dentry must have been
alive and refer to that name at some point after we'd done rcu_read_lock(),
which means that any freeing must be still pending.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
AFAICS, prepend_name() is broken on SMP alpha. Disclaimer: I don't have
SMP alpha boxen to reproduce it on. However, it really looks like the race
is real.
CPU1: d_path() on /mnt/ramfs/<255-character>/foo
CPU2: mv /mnt/ramfs/<255-character> /mnt/ramfs/<63-character>
CPU2 does d_alloc(), which allocates an external name, stores the name there
including terminating NUL, does smp_wmb() and stores its address in
dentry->d_name.name. It proceeds to d_add(dentry, NULL) and d_move()
old dentry over to that. ->d_name.name value ends up in that dentry.
In the meanwhile, CPU1 gets to prepend_name() for that dentry. It fetches
->d_name.name and ->d_name.len; the former ends up pointing to new name
(64-byte kmalloc'ed array), the latter - 255 (length of the old name).
Nothing to force the ordering there, and normally that would be OK, since we'd
run into the terminating NUL and stop. Except that it's alpha, and we'd need
a data dependency barrier to guarantee that we see that store of NUL
__d_alloc() has done. In a similar situation dentry_cmp() would survive; it
does explicit smp_read_barrier_depends() after fetching ->d_name.name.
prepend_name() doesn't and it risks walking past the end of kmalloc'ed object
and possibly oops due to taking a page fault in kernel mode.
Cc: stable@vger.kernel.org # 3.12+
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Only exchange source and destination filenames
if flags contain RENAME_EXCHANGE.
In case if executable file was running and replaced by
other file /proc/PID/exe should still show correct file name,
not the old name of the file by which it was replaced.
The scenario when this bug manifests itself was like this:
* ALT Linux uses rpm and start-stop-daemon;
* during a package upgrade rpm creates a temporary file
for an executable to rename it upon successful unpacking;
* start-stop-daemon is run subsequently and it obtains
the (nonexistant) temporary filename via /proc/PID/exe
thus failing to identify the running process.
Note that "long" filenames (> DNAiME_INLINE_LEN) are still
exchanged without RENAME_EXCHANGE and this behaviour exists
long enough (should be fixed too apparently).
So this patch is just an interim workaround that restores
behavior for "short" names as it was before changes
introduced by commit da1ce0670c ("vfs: add cross-rename").
See https://lkml.org/lkml/2014/9/7/6 for details.
AV: the comments about being more careful with ->d_name.hash
than with ->d_name.name are from back in 2.3.40s; they
became obsolete by 2.3.60s, when we started to unhash the
target instead of swapping hash chain positions followed
by d_delete() as we used to do when dcache was first
introduced.
Acked-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: da1ce0670c "vfs: add cross-rename"
Signed-off-by: Mikhail Efremov <sem@altlinux.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... renaming it into dentry_unlock_for_move() and making it more
symmetric with dentry_lock_for_move().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... thus making it much closer to (now unreachable, BTW) IS_ROOT(dentry)
case in __d_move(). A bit more and it'll fold in.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
list_del() + list_add() is a slightly pessimised list_move()
list_del() + INIT_LIST_HEAD() is a slightly pessimised list_del_init()
Interleaving those makes the resulting code even worse. And harder to follow...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs fixes from Al Viro:
"double iput() on failure exit in lustre, racy removal of spliced
dentries from ->s_anon in __d_materialise_dentry() plus a bunch of
assorted RCU pathwalk fixes"
The RCU pathwalk fixes end up fixing a couple of cases where we
incorrectly dropped out of RCU walking, due to incorrect initialization
and testing of the sequence locks in some corner cases. Since dropping
out of RCU walk mode forces the slow locked accesses, those corner cases
slowed down quite dramatically.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
be careful with nd->inode in path_init() and follow_dotdot_rcu()
don't bugger nd->seq on set_root_rcu() from follow_dotdot_rcu()
fix bogus read_seqretry() checks introduced in b37199e
move the call of __d_drop(anon) into __d_materialise_unique(dentry, anon)
[fix] lustre: d_make_root() does iput() on dentry allocation failure
Josef Bacik found a performance regression between 3.2 and 3.10 and
narrowed it down to commit bfcfaa77bd ("vfs: use 'unsigned long'
accesses for dcache name comparison and hashing"). He reports:
"The test case is essentially
for (i = 0; i < 1000000; i++)
mkdir("a$i");
On xfs on a fio card this goes at about 20k dir/sec with 3.2, and 12k
dir/sec with 3.10. This is because we spend waaaaay more time in
__d_lookup on 3.10 than in 3.2.
The new hashing function for strings is suboptimal for <
sizeof(unsigned long) string names (and hell even > sizeof(unsigned
long) string names that I've tested). I broke out the old hashing
function and the new one into a userspace helper to get real numbers
and this is what I'm getting:
Old hash table had 1000000 entries, 0 dupes, 0 max dupes
New hash table had 12628 entries, 987372 dupes, 900 max dupes
We had 11400 buckets with a p50 of 30 dupes, p90 of 240 dupes, p99 of 567 dupes for the new hash
My test does the hash, and then does the d_hash into a integer pointer
array the same size as the dentry hash table on my system, and then
just increments the value at the address we got to see how many
entries we overlap with.
As you can see the old hash function ended up with all 1 million
entries in their own bucket, whereas the new one they are only
distributed among ~12.5k buckets, which is why we're using so much
more CPU in __d_lookup".
The reason for this hash regression is two-fold:
- On 64-bit architectures the down-mixing of the original 64-bit
word-at-a-time hash into the final 32-bit hash value is very
simplistic and suboptimal, and just adds the two 32-bit parts
together.
In particular, because there is no bit shuffling and the mixing
boundary is also a byte boundary, similar character patterns in the
low and high word easily end up just canceling each other out.
- the old byte-at-a-time hash mixed each byte into the final hash as it
hashed the path component name, resulting in the low bits of the hash
generally being a good source of hash data. That is not true for the
word-at-a-time case, and the hash data is distributed among all the
bits.
The fix is the same in both cases: do a better job of mixing the bits up
and using as much of the hash data as possible. We already have the
"hash_32|64()" functions to do that.
Reported-by: Josef Bacik <jbacik@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I believe this can only happen in the case of a corrupted filesystem.
So -EIO looks like the appropriate error.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If we get to this point and discover the dentry is not a root dentry, or
not DCACHE_DISCONNECTED--great, we always prefer that anyway.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There are a few d_obtain_alias callers that are using it to get the
root of a filesystem which may already have an alias somewhere else.
This is not the same as the filehandle-lookup case, and none of them
actually need DCACHE_DISCONNECTED set.
It isn't really a serious problem, but it would really be clearer if we
reserved DCACHE_DISCONNECTED for those cases where it's actually needed.
In the btrfs case this was causing a spurious printk from
nfsd/nfsfh.c:fh_verify when it found an unexpected DCACHE_DISCONNECTED
dentry. Josef worked around this by unsetting DCACHE_DISCONNECTED
manually in 3a0dfa6a12 "Btrfs: unset DCACHE_DISCONNECTED when mounting
default subvol", and this replaces that workaround.
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Any IS_ROOT() alias should be safe to use; there's nothing special about
DCACHE_DISCONNECTED dentries.
Note that this is in fact useful for filesystems such as btrfs which can
legimately encounter a directory with a preexisting IS_ROOT alias on a
lookup that crosses into a subvolume. (Those aliases are currently
marked DCACHE_DISCONNECTED--but not really for any good reason, and
we'll change that soon.)
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently if d_splice_alias finds a directory with an alias that is not
IS_ROOT or not DCACHE_DISCONNECTED, it creates a duplicate directory.
Duplicate directory dentries are unacceptable; it is better just to
error out.
(In the case of a local filesystem the most likely case is filesystem
corruption: for example, perhaps two directories point to the same child
directory, and the other parent has already been found and cached.)
Note that distributed filesystems may encounter this case in normal
operation if a remote host moves a directory to a location different
from the one we last cached in the dcache. For that reason, such
filesystems should instead use d_materialise_unique, which tries to move
the old directory alias to the right place instead of erroring out.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
d_splice_alias will d_move an IS_ROOT() directory dentry into place if
one exists. This should be safe as long as the dentry remains IS_ROOT,
but I can't see what guarantees that: once we drop the i_lock all we
hold here is the i_mutex on an unrelated parent directory.
Instead copy the logic of d_materialise_unique.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Just a trivial move to locate it near (similar) d_materialise_unique
code and save some forward references in a following patch.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs updates from Al Viro:
"This the bunch that sat in -next + lock_parent() fix. This is the
minimal set; there's more pending stuff.
In particular, I really hope to get acct.c fixes merged this cycle -
we need that to deal sanely with delayed-mntput stuff. In the next
pile, hopefully - that series is fairly short and localized
(kernel/acct.c, fs/super.c and fs/namespace.c). In this pile: more
iov_iter work. Most of prereqs for ->splice_write with sane locking
order are there and Kent's dio rewrite would also fit nicely on top of
this pile"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (70 commits)
lock_parent: don't step on stale ->d_parent of all-but-freed one
kill generic_file_splice_write()
ceph: switch to iter_file_splice_write()
shmem: switch to iter_file_splice_write()
nfs: switch to iter_splice_write_file()
fs/splice.c: remove unneeded exports
ocfs2: switch to iter_file_splice_write()
->splice_write() via ->write_iter()
bio_vec-backed iov_iter
optimize copy_page_{to,from}_iter()
bury generic_file_aio_{read,write}
lustre: get rid of messing with iovecs
ceph: switch to ->write_iter()
ceph_sync_direct_write: stop poking into iov_iter guts
ceph_sync_read: stop poking into iov_iter guts
new helper: copy_page_from_iter()
fuse: switch to ->write_iter()
btrfs: switch to ->write_iter()
ocfs2: switch to ->write_iter()
xfs: switch to ->write_iter()
...
Dentry that had been through (or into) __dentry_kill() might be seen
by shrink_dentry_list(); that's normal, it'll be taken off the shrink
list and freed if __dentry_kill() has already finished. The problem
is, its ->d_parent might be pointing to already freed dentry, so
lock_parent() needs to be careful.
We need to check that dentry hasn't already gone into __dentry_kill()
*and* grab rcu_read_lock() before dropping ->d_lock - the latter makes
sure that whatever we see in ->d_parent after dropping ->d_lock it
won't be freed until we drop rcu_read_lock().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This typedef is unnecessary and should just be removed.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lock_parent() very much on purpose does nested locking of dentries, and
is careful to maintain the right order (lock parent first). But because
it didn't annotate the nested locking order, lockdep thought it might be
a deadlock on d_lock, and complained.
Add the proper annotation for the inner locking of the child dentry to
make lockdep happy.
Introduced by commit 046b961b45 ("shrink_dentry_list(): take parent's
->d_lock earlier").
Reported-and-tested-by: Josh Boyer <jwboyer@fedoraproject.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have the same problem with ->d_lock order in the inner loop, where
we are dropping references to ancestors. Same solution, basically -
instead of using dentry_kill() we use lock_parent() (introduced in the
previous commit) to get that lock in a safe way, recheck ->d_count
(in case if lock_parent() has ended up dropping and retaking ->d_lock
and somebody managed to grab a reference during that window), trylock
the inode->i_lock and use __dentry_kill() to do the rest.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The cause of livelocks there is that we are taking ->d_lock on
dentry and its parent in the wrong order, forcing us to use
trylock on the parent's one. d_walk() takes them in the right
order, and unfortunately it's not hard to create a situation
when shrink_dentry_list() can't make progress since trylock
keeps failing, and shrink_dcache_parent() or check_submounts_and_drop()
keeps calling d_walk() disrupting the very shrink_dentry_list() it's
waiting for.
Solution is straightforward - if that trylock fails, let's unlock
the dentry itself and take locks in the right order. We need to
stabilize ->d_parent without holding ->d_lock, but that's doable
using RCU. And we'd better do that in the very beginning of the
loop in shrink_dentry_list(), since the checks on refcount, etc.
would need to be redone anyway.
That deals with a half of the problem - killing dentries on the
shrink list itself. Another one (dropping their parents) is
in the next commit.
locking parent is interesting - it would be easy to do rcu_read_lock(),
lock whatever we think is a parent, lock dentry itself and check
if the parent is still the right one. Except that we need to check
that *before* locking the dentry, or we are risking taking ->d_lock
out of order. Fortunately, once the D1 is locked, we can check if
D2->d_parent is equal to D1 without the need to lock D2; D2->d_parent
can start or stop pointing to D1 only under D1->d_lock, so taking
D1->d_lock is enough. In other words, the right solution is
rcu_read_lock/lock what looks like parent right now/check if it's
still our parent/rcu_read_unlock/lock the child.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Result will be massaged to saner shape in the next commits. It is
ugly, no questions - the point of that one is to be a provably
equivalent transformation (and it might be worth splitting a bit
more).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It can happen only when dentry_kill() is called with unlock_on_failure
equal to 0 - other callers had dentry pinned until the moment they've
got ->d_lock and DCACHE_DENTRY_KILLED is set only after lockref_mark_dead().
IOW, only one of three call sites of dentry_kill() might end up reaching
that code. Just move it there.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Since now the shrink list is private and nobody can free the dentry while
it is on the shrink list, we can remove RCU protection from this.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Start with shrink_dcache_parent(), then scan what remains.
First of all, BUG() is very much an overkill here; we are holding
->s_umount, and hitting BUG() means that a lot of interesting stuff
will be hanging after that point (sync(2), for example). Moreover,
in cases when there had been more than one leak, we'll be better
off reporting all of them. And more than just the last component
of pathname - %pd is there for just such uses...
That was the last user of dentry_lru_del(), so kill it off...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If we find something already on a shrink list, just increment
data->found and do nothing else. Loops in shrink_dcache_parent() and
check_submounts_and_drop() will do the right thing - everything we
did put into our list will be evicted and if there had been nothing,
but data->found got non-zero, well, we have somebody else shrinking
those guys; just try again.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If the victim in on the shrink list, don't remove it from there.
If shrink_dentry_list() manages to remove it from the list before
we are done - fine, we'll just free it as usual. If not - mark
it with new flag (DCACHE_MAY_FREE) and leave it there.
Eventually, shrink_dentry_list() will get to it, remove the sucker
from shrink list and call dentry_kill(dentry, 0). Which is where
we'll deal with freeing.
Since now dentry_kill(dentry, 0) may happen after or during
dentry_kill(dentry, 1), we need to recognize that (by seeing
DCACHE_DENTRY_KILLED already set), unlock everything
and either free the sucker (in case DCACHE_MAY_FREE has been
set) or leave it for ongoing dentry_kill(dentry, 1) to deal with.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The part of old d_free() that dealt with actual freeing of dentry.
Taken out of dentry_kill() into a separate function.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
in non-lazy walk we need to be careful about dentry switching from
negative to positive - both ->d_flags and ->d_inode are updated,
and in some places we might see only one store. The cases where
dentry has been obtained by dcache lookup with ->i_mutex held on
parent are safe - ->d_lock and ->i_mutex provide all the barriers
we need. However, there are several places where we run into
trouble:
* do_last() fetches ->d_inode, then checks ->d_flags and
assumes that inode won't be NULL unless d_is_negative() is true.
Race with e.g. creat() - we might have fetched the old value of
->d_inode (still NULL) and new value of ->d_flags (already not
DCACHE_MISS_TYPE). Lin Ming has observed and reported the resulting
oops.
* a bunch of places checks ->d_inode for being non-NULL,
then checks ->d_flags for "is it a symlink". Race with symlink(2)
in case if our CPU sees ->d_inode update first - we see non-NULL
there, but ->d_flags still contains DCACHE_MISS_TYPE instead of
DCACHE_SYMLINK_TYPE. Result: false negative on "should we follow
link here?", with subsequent unpleasantness.
Cc: stable@vger.kernel.org # 3.13 and 3.14 need that one
Reported-and-tested-by: Lin Ming <minggr@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If flags contain RENAME_EXCHANGE then exchange source and destination files.
There's no restriction on the type of the files; e.g. a directory can be
exchanged with a symlink.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: J. Bruce Fields <bfields@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJTOOOnAAoJEHm+PkMAQRiGsBAH/2PAOL3TbOG6tEedxQrTwsr2
muRIRTVWawjT8/npbHupxGnAyAVdmdffBHpmCmcftKdKNryT3YZW8/JWoYc+WSlo
3vTDJHDOYAe6yCBjjhYwcu150THBQdOymOi5mbbclo0XWYG18jd3+abYprRH6SiD
XqNSzYqoiv91JHBAWKBIpo1cyRDuwoM7+jZ7gX41r2800EL7loY3e08cPDDNU6HA
CKaLXMwLwYTefE+Wnr+4UUr08NbNBbBUKLUSXVqKKIpd+MtbyhV1SnWzz8VQSkag
K/uzsnGnE7nrqoepMSx3nXxzOWxUSY2EMbwhEjaKK4xBq9C9pzv3sG/o2/IyopU=
=Nuom
-----END PGP SIGNATURE-----
Merge tag 'v3.14' into drm-intel-next-queued
Linux 3.14
The vt-d w/a merged late in 3.14-rc needs a bit of fine-tuning, hence
backmerge.
Conflicts:
drivers/gpu/drm/i915/i915_gem_gtt.c
drivers/gpu/drm/i915/intel_ddi.c
drivers/gpu/drm/i915/intel_dp.c
All trivial adjacent lines changed type conflicts, so trivial git
doesn't even show them in the merg commit.
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
In all callchains leading to prepend_name(), the value left in *buflen
is eventually discarded unused if prepend_name() has returned a negative.
So we are free to do what prepend() does, and subtract from *buflen
*before* checking for underflow (which turns into checking the sign
of subtraction result, of course).
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Our current DRM design uses a single address_space for all users of the
same DRM device. However, there is no way to create an anonymous
address_space without an underlying inode. Therefore, we wait for the
first ->open() callback on a registered char-dev and take-over the inode
of the char-dev. This worked well so far, but has several drawbacks:
- We screw with FS internals and rely on some non-obvious invariants like
inode->i_mapping being the same as inode->i_data for char-devs.
- We don't have any address_space prior to the first ->open() from
user-space. This leads to ugly fallback code and we cannot allocate
global objects early.
As pointed out by Al-Viro, fs/anon_inode.c is *not* supposed to be used by
drivers for anonymous inode-allocation. Therefore, this patch follows the
proposed alternative solution and adds a pseudo filesystem mount-point to
DRM. We can then allocate private inodes including a private address_space
for each DRM device at initialization time.
Note that we could use:
sysfs_get_inode(sysfs_mnt->mnt_sb, drm_device->dev->kobj.sd);
to get access to the underlying sysfs-inode of a "struct device" object.
However, most of this information is currently hidden and it's not clear
whether this address_space is suitable for driver access. Thus, unless
linux allows anonymous address_space objects or driver-core provides a
public inode per device, we're left with our own private internal mount
point.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
* we need to save the starting point for restarts
* reject pathologically short buffers outright
Spotted-by: Denys Vlasenko <dvlasenk@redhat.com>
Spotted-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In commit 232d2d60aa
Author: Waiman Long <Waiman.Long@hp.com>
Date: Mon Sep 9 12:18:13 2013 -0400
dcache: Translating dentry into pathname without taking rename_lock
The __dentry_path locking was changed and the variable error was
intended to be moved outside of the loop. Unfortunately the inner
declaration of error was not removed. Resulting in a version of
__dentry_path that will never return an error.
Remove the problematic inner declaration of error and allow
__dentry_path to return errors once again.
Cc: stable@vger.kernel.org
Cc: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull namespace fixes from Eric Biederman:
"This is a set of 3 regression fixes.
This fixes /proc/mounts when using "ip netns add <netns>" to display
the actual mount point.
This fixes a regression in clone that broke lxc-attach.
This fixes a regression in the permission checks for mounting /proc
that made proc unmountable if binfmt_misc was in use. Oops.
My apologies for sending this pull request so late. Al Viro gave
interesting review comments about the d_path fix that I wanted to
address in detail before I sent this pull request. Unfortunately a
bad round of colds kept from addressing that in detail until today.
The executive summary of the review was:
Al: Is patching d_path really sufficient?
The prepend_path, d_path, d_absolute_path, and __d_path family of
functions is a really mess.
Me: Yes, patching d_path is really sufficient. Yes, the code is mess.
No it is not appropriate to rewrite all of d_path for a regression
that has existed for entirely too long already, when a two line
change will do"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
vfs: Fix a regression in mounting proc
fork: Allow CLONE_PARENT after setns(CLONE_NEWPID)
vfs: In d_path don't call d_dname on a mount point
When explicitly hashing the end of a string with the word-at-a-time
interface, we have to be careful which end of the word we pick up.
On big-endian CPUs, the upper-bits will contain the data we're after, so
ensure we generate our masks accordingly (and avoid hashing whatever
random junk may have been sitting after the string).
This patch adds a new dcache helper, bytemask_from_count, which creates
a mask appropriate for the CPU endianness.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Aditya Kali (adityakali@google.com) wrote:
> Commit bf056bfa80:
> "proc: Fix the namespace inode permission checks." converted
> the namespace files into symlinks. The same commit changed
> the way namespace bind mounts appear in /proc/mounts:
> $ mount --bind /proc/self/ns/ipc /mnt/ipc
> Originally:
> $ cat /proc/mounts | grep ipc
> proc /mnt/ipc proc rw,nosuid,nodev,noexec 0 0
>
> After commit bf056bfa80:
> $ cat /proc/mounts | grep ipc
> proc ipc:[4026531839] proc rw,nosuid,nodev,noexec 0 0
>
> This breaks userspace which expects the 2nd field in
> /proc/mounts to be a valid path.
The symlink /proc/<pid>/ns/{ipc,mnt,net,pid,user,uts} point to
dentries allocated with d_alloc_pseudo that we can mount, and
that have interesting names printed out with d_dname.
When these files are bind mounted /proc/mounts is not currently
displaying the mount point correctly because d_dname is called instead
of just displaying the path where the file is mounted.
Solve this by adding an explicit check to distinguish mounted pseudo
inodes and unmounted pseudo inodes. Unmounted pseudo inodes always
use mount of their filesstem as the mnt_root in their path making
these two cases easy to distinguish.
CC: stable@vger.kernel.org
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Reported-by: Aditya Kali <adityakali@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
There used to be a bunch of tree-walkers in dcache.c, all alike.
try_to_ascend() had been introduced to abstract a piece of logics
duplicated in all of them. These days all these tree-walkers are
implemented via the same iterator (d_walk()), which is the only
remaining caller of try_to_ascend(), so let's fold it back...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
D_HASH{MASK,BITS} are used once each, both in the same function (d_hash()).
At this point they are actively misguiding - they imply that values are
compiler constants, which is no longer true.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull core locking changes from Ingo Molnar:
"The biggest changes:
- add lockdep support for seqcount/seqlocks structures, this
unearthed both bugs and required extra annotation.
- move the various kernel locking primitives to the new
kernel/locking/ directory"
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
block: Use u64_stats_init() to initialize seqcounts
locking/lockdep: Mark __lockdep_count_forward_deps() as static
lockdep/proc: Fix lock-time avg computation
locking/doc: Update references to kernel/mutex.c
ipv6: Fix possible ipv6 seqlock deadlock
cpuset: Fix potential deadlock w/ set_mems_allowed
seqcount: Add lockdep functionality to seqcount/seqlock structures
net: Explicitly initialize u64_stats_sync structures for lockdep
locking: Move the percpu-rwsem code to kernel/locking/
locking: Move the lglocks code to kernel/locking/
locking: Move the rwsem code to kernel/locking/
locking: Move the rtmutex code to kernel/locking/
locking: Move the semaphore core to kernel/locking/
locking: Move the spinlock code to kernel/locking/
locking: Move the lockdep code to kernel/locking/
locking: Move the mutex code to kernel/locking/
hung_task debugging: Add tracepoint to report the hang
x86/locking/kconfig: Update paravirt spinlock Kconfig description
lockstat: Report avg wait and hold times
lockdep, x86/alternatives: Drop ancient lockdep fixup message
...
Pull vfs updates from Al Viro:
"All kinds of stuff this time around; some more notable parts:
- RCU'd vfsmounts handling
- new primitives for coredump handling
- files_lock is gone
- Bruce's delegations handling series
- exportfs fixes
plus misc stuff all over the place"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (101 commits)
ecryptfs: ->f_op is never NULL
locks: break delegations on any attribute modification
locks: break delegations on link
locks: break delegations on rename
locks: helper functions for delegation breaking
locks: break delegations on unlink
namei: minor vfs_unlink cleanup
locks: implement delegations
locks: introduce new FL_DELEG lock flag
vfs: take i_mutex on renamed file
vfs: rename I_MUTEX_QUOTA now that it's not used for quotas
vfs: don't use PARENT/CHILD lock classes for non-directories
vfs: pull ext4's double-i_mutex-locking into common code
exportfs: fix quadratic behavior in filehandle lookup
exportfs: better variable name
exportfs: move most of reconnect_path to helper function
exportfs: eliminate unused "noprogress" counter
exportfs: stop retrying once we race with rename/remove
exportfs: clear DISCONNECTED on all parents sooner
exportfs: more detailed comment for path_reconnect
...
DCACHE_DISCONNECTED should not be cleared until we're sure the dentry is
connected all the way up to the root of the filesystem. It *shouldn't*
be cleared as soon as the dentry is connected to a parent. That will
cause bugs at least on exportable filesystems.
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
I can't for the life of me see any reason why anyone should care whether
a dentry that is never hooked into the dentry cache would need
DCACHE_DISCONNECTED set.
This originates from 4b936885ab "fs:
improve scalability of pseudo filesystems", which probably just made the
false assumption the DCACHE_DISCONNECTED was meant to be set on anything
not connected to a parent somehow.
So this is just confusing. Ideally the only uses of DCACHE_DISCONNECTED
would be in the filehandle-lookup code, which needs it to ensure
dentries are connected into the dentry tree before use.
I left d_alloc_pseudo there even though it's now equivalent to
__d_alloc(), just on the theory the name is better documentation of its
intended use outside dcache.c.
Cc: Nick Piggin <npiggin@kernel.dk>
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Every hashed dentry is either hashed in the dentry_hashtable, or a
superblock's s_anon list.
__d_drop() assumes it can determine which is the case by checking
DCACHE_DISCONNECTED; this is not true.
It is true that when DCACHE_DISCONNECTED is cleared, the dentry is not
only hashed on dentry_hashtable, but is fully connected to its parents
back to the root.
But the converse is *not* true: fs/exportfs/expfs.c:reconnect_path()
attempts to connect a directory (found by filehandle lookup) back to
root by ascending to parents and performing lookups one at a time. It
does not clear DCACHE_DISCONNECTED until it's done, and that is not at
all an atomic process.
In particular, it is possible for DCACHE_DISCONNECTED to be set on a
dentry which is hashed on the dentry_hashtable.
Instead, use IS_ROOT() to check which hash chain a dentry is on. This
*does* work:
Dentries are hashed only by:
- d_obtain_alias, which adds an IS_ROOT() dentry to sb_anon.
- __d_rehash, called by _d_rehash: hashes to the dentry's
parent, and all callers of _d_rehash appear to have d_parent
set to a "real" parent.
- __d_rehash, called by __d_move: rehashes the moved dentry to
hash chain determined by target, and assigns target's d_parent
to its d_parent, before dropping the dentry's d_lock.
Therefore I believe it's safe for a holder of a dentry's d_lock to
assume that it is hashed on sb_anon if and only if IS_ROOT(dentry) is
true.
I believe the incorrect assumption about DCACHE_DISCONNECTED was
originally introduced by ceb5bdc2d2 "fs: dcache per-bucket dcache hash
locking".
Also add a comment while we're here.
Cc: Nick Piggin <npiggin@kernel.dk>
Acked-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: NeilBrown <neilb@suse.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Put a type field into struct dentry::d_flags to indicate if the dentry is one
of the following types that relate particularly to pathwalk:
Miss (negative dentry)
Directory
"Automount" directory (defective - no i_op->lookup())
Symlink
Other (regular, socket, fifo, device)
The type field is set to one of the first five types on a dentry by calls to
__d_instantiate() and d_obtain_alias() from information in the inode (if one is
given).
The type is cleared by dentry_unlink_inode() when it reconstitutes an existing
dentry as a negative dentry.
Accessors provided are:
d_set_type(dentry, type)
d_is_directory(dentry)
d_is_autodir(dentry)
d_is_symlink(dentry)
d_is_file(dentry)
d_is_negative(dentry)
d_is_positive(dentry)
A bunch of checks in pathname resolution switched to those.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* RCU-delayed freeing of vfsmounts
* vfsmount_lock replaced with a seqlock (mount_lock)
* sequence number from mount_lock is stored in nameidata->m_seq and
used when we exit RCU mode
* new vfsmount flag - MNT_SYNC_UMOUNT. Set by umount_tree() when its
caller knows that vfsmount will have no surviving references.
* synchronize_rcu() done between unlocking namespace_sem in namespace_unlock()
and doing pending mntput().
* new helper: legitimize_mnt(mnt, seq). Checks the mount_lock sequence
number against seq, then grabs reference to mnt. Then it rechecks mount_lock
again to close the race and either returns success or drops the reference it
has acquired. The subtle point is that in case of MNT_SYNC_UMOUNT we can
simply decrement the refcount and sod off - aforementioned synchronize_rcu()
makes sure that final mntput() won't come until we leave RCU mode. We need
that, since we don't want to end up with some lazy pathwalk racing with
umount() and stealing the final mntput() from it - caller of umount() may
expect it to return only once the fs is shut down and we don't want to break
that. In other cases (i.e. with MNT_SYNC_UMOUNT absent) we have to do
full-blown mntput() in case of mount_lock sequence number mismatch happening
just as we'd grabbed the reference, but in those cases we won't be stealing
the final mntput() from anything that would care.
* mntput_no_expire() doesn't lock anything on the fast path now. Incidentally,
SMP and UP cases are handled the same way - no ifdefs there.
* normal pathname resolution does *not* do any writes to mount_lock. It does,
of course, bump the refcounts of vfsmount and dentry in the very end, but that's
it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently seqlocks and seqcounts don't support lockdep.
After running across a seqcount related deadlock in the timekeeping
code, I used a less-refined and more focused variant of this patch
to narrow down the cause of the issue.
This is a first-pass attempt to properly enable lockdep functionality
on seqlocks and seqcounts.
Since seqcounts are used in the vdso gettimeofday code, I've provided
non-lockdep accessors for those needs.
I've also handled one case where there were nested seqlock writers
and there may be more edge cases.
Comments and feedback would be appreciated!
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: netdev@vger.kernel.org
Link: http://lkml.kernel.org/r/1381186321-4906-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We do not want to dirty the dentry->d_flags cacheline in dput() just to
set the DCACHE_REFERENCED flag when it is already set in the common case
anyway. This way the first cacheline of the dentry (which contains the
RCU lookup information etc) can stay shared among multiple CPU's.
This finishes off some of the details of all the scalability patches
merged during the merge window.
Also don't mark dentry_kill() for inlining, since it's the uncommon path
and inlining it just makes the common path slower due to extra function
entry/exit overhead.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
...which just returns -EBUSY if a directory alias would be created.
This is to be used by fuse mkdir to make sure that a buggy or malicious
userspace filesystem doesn't do anything nasty. Previously fuse used a
private mutex for this purpose, which can now go away.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Move kernel-doc notation to immediately before its function to eliminate
kernel-doc warnings introduced by commit db14fc3abc ("vfs: add
d_walk()")
Warning(fs/dcache.c:1343): No description found for parameter 'data'
Warning(fs/dcache.c:1343): No description found for parameter 'dentry'
Warning(fs/dcache.c:1343): Excess function parameter 'parent' description in 'check_mount'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sedat points out that I transposed some letters in "LRU" and wrote "RLU"
instead in one of the new comments explaining the flow. Let's just fix
it.
Reported-by: Sedat Dilek <sedat.dilek@jpberlin.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The LRU list changes interacted badly with our nr_dentry_unused
accounting, and even worse with the new DCACHE_LRU_LIST bit logic.
This introduces helper functions to make sure everything follows the
proper dcache d_lru list rules: the dentry cache is complicated by the
fact that some of the hotpaths don't even want to look at the LRU list
at all, and the fact that we use the same list entry in the dentry for
both the LRU list and for our temporary shrinking lists when removing
things from the LRU.
The helper functions temporarily have some extra sanity checking for the
flag bits that have to match the current LRU state of the dentry. We'll
remove that before the final 3.12 release, but considering how easy it
is to get wrong, this first cleanup version has some very particular
sanity checking.
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs pile 4 from Al Viro:
"list_lru pile, mostly"
This came out of Andrew's pile, Al ended up doing the merge work so that
Andrew didn't have to.
Additionally, a few fixes.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (42 commits)
super: fix for destroy lrus
list_lru: dynamically adjust node arrays
shrinker: Kill old ->shrink API.
shrinker: convert remaining shrinkers to count/scan API
staging/lustre/libcfs: cleanup linux-mem.h
staging/lustre/ptlrpc: convert to new shrinker API
staging/lustre/obdclass: convert lu_object shrinker to count/scan API
staging/lustre/ldlm: convert to shrinkers to count/scan API
hugepage: convert huge zero page shrinker to new shrinker API
i915: bail out earlier when shrinker cannot acquire mutex
drivers: convert shrinkers to new count/scan API
fs: convert fs shrinkers to new scan/count API
xfs: fix dquot isolation hang
xfs-convert-dquot-cache-lru-to-list_lru-fix
xfs: convert dquot cache lru to list_lru
xfs: rework buffer dispose list tracking
xfs-convert-buftarg-lru-to-generic-code-fix
xfs: convert buftarg LRU to generic code
fs: convert inode and dentry shrinking to be node aware
vmscan: per-node deferred work
...
This avoids the spinlocks and refcounts in the d_path() sequence too
(used by /proc and various other entities). See commit 8b19e34188 for
the equivalent getcwd() system call path.
And unlike getcwd(), d_path() doesn't copy the result to user space, so
I don't need to fear _that_ particular bug happening again.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's a pathname. It should use the pathname allocators and
deallocators, and PATH_MAX instead of PAGE_SIZE. Never mind that the
two are commonly the same.
With this, the allocations scale up nicely too, and I can do getcwd()
system calls at a rate of about 300M/s, with no lock contention
anywhere.
Of course, nobody sane does that, especially since getcwd() is
traditionally a very slow operation in Unix. But this was also the
simplest way to benchmark the prepend_path() improvements by Waiman, and
once I saw the profiles I couldn't leave it well enough alone.
But apart from being an performance improvement (from using per-cpu slab
allocators instead of the raw page allocator), it's actually a valid and
real cleanup.
Signed-off-by: Linus "OCD" Torvalds <torvalds@linux-foundation.org>
Oops. That wasn't very smart. We don't actually need the RCU lock any
more by the time we copy the cwd string to user space, but I had
stupidly surrounded the whole thing with it.
Introduced by commit 8b19e34188 ("vfs: make getcwd() get the root and
pwd path under rcu")
Is-a-big-hairy-idiot: Linus Torvalds <torvalds@linux-foundation.org>
This allows us to skip all the crazy spinlocks and reference count
updates, and instead use the fs sequence read-lock to get an atomic
snapshot of the root and cwd information.
We might want to make the rule that "prepend_path()" is always called
with the RCU lock held, but the RCU lock nests fine and this is the
minimal fix.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's not pollute the include files with inline functions that are only
used in a single place. Especially not if we decide we might want to
change the semantics of said function to make it more efficient..
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch modifies read_seqbegin_or_lock() and need_seqretry() to use
newly introduced read_seqlock_excl() and read_sequnlock_excl()
primitives so that they won't change the sequence number even if they
fall back to take the lock. This is OK as no change to the protected
data structure is being made.
It will prevent one fallback to lock taking from cascading into a series
of lock taking reducing performance because of the sequence number
change. It will also allow other sequence readers to go forward while
an exclusive reader lock is taken.
This patch also updates some of the inaccurate comments in the code.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
To: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the shrinker is passing a node in the scan control structure, we
can pass this to the the generic LRU list code to isolate reclaim to the
lists on matching nodes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The list_lru implementation has one function, list_lru_dispose_all, with
only one user (the dentry code). At first, such function appears to make
sense because we are really not interested in the result of isolating each
dentry separately - all of them are going away anyway. However, it's
implementation is buggy in the following way:
When we call list_lru_dispose_all in fs/dcache.c, we scan all dentries
marking them with DCACHE_SHRINK_LIST. However, this is done without the
nlru->lock taken. The imediate result of that is that someone else may
add or remove the dentry from the LRU at the same time. When list_lru_del
happens in that scenario we will see an element that is not yet marked
with DCACHE_SHRINK_LIST (even though it will be in the future) and
obviously remove it from an lru where the element no longer is. Since
list_lru_dispose_all will in effect count down nlru's nr_items and
list_lru_del will do the same, this will lead to an imbalance.
The solution for this would not be so simple: we can obviously just keep
the lru_lock taken, but then we have no guarantees that we will be able to
acquire the dentry lock (dentry->d_lock). To properly solve this, we need
a communication mechanism between the lru and dentry code, so they can
coordinate this with each other.
Such mechanism already exists in the form of the list_lru_walk_cb
callback. So it is possible to construct a dcache-side prune function
that does the right thing only by calling list_lru_walk in a loop until no
more dentries are available.
With only one user, plus the fact that a sane solution for the problem
would involve boucing between dcache and list_lru anyway, I see little
justification to keep the special case list_lru_dispose_all in tree.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Convert superblock shrinker to use the new count/scan API, and propagate
the API changes through to the filesystem callouts. The filesystem
callouts already use a count/scan API, so it's just changing counters to
longs to match the VM API.
This requires the dentry and inode shrinker callouts to be converted to
the count/scan API. This is mainly a mechanical change.
[glommer@openvz.org: use mult_frac for fractional proportions, build fixes]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
One of the big problems with modifying the way the dcache shrinker and LRU
implementation works is that the LRU is abused in several ways. One of
these is shrink_dentry_list().
Basically, we can move a dentry off the LRU onto a different list without
doing any accounting changes, and then use dentry_lru_prune() to remove it
from what-ever list it is now on to do the LRU accounting at that point.
This makes it -really hard- to change the LRU implementation. The use of
the per-sb LRU lock serialises movement of the dentries between the
different lists and the removal of them, and this is the only reason that
it works. If we want to break up the dentry LRU lock and lists into, say,
per-node lists, we remove the only serialisation that allows this lru
list/dispose list abuse to work.
To make this work effectively, the dispose list has to be isolated from
the LRU list - dentries have to be removed from the LRU *before* being
placed on the dispose list. This means that the LRU accounting and
isolation is completed before disposal is started, and that means we can
change the LRU implementation freely in future.
This means that dentries *must* be marked with DCACHE_SHRINK_LIST when
they are placed on the dispose list so that we don't think that parent
dentries found in try_prune_one_dentry() are on the LRU when the are
actually on the dispose list. This would result in accounting the dentry
to the LRU a second time. Hence dentry_lru_del() has to handle the
DCACHE_SHRINK_LIST case
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
With the dentry LRUs being per-sb structures, there is no real need for
a global dentry_lru_lock. The locking can be made more fine-grained by
moving to a per-sb LRU lock, isolating the LRU operations of different
filesytsems completely from each other. The need for this is independent
of any performance consideration that may arise: in the interest of
abstracting the lru operations away, it is mandatory that each lru works
around its own lock instead of a global lock for all of them.
[glommer@openvz.org: updated changelog ]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Before we split up the dcache_lru_lock, the unused dentry counter needs to
be made independent of the global dcache_lru_lock. Convert it to per-cpu
counters to do this.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>