We have a couple of initialization funcntionsn left which have "_scan" suffic -
rename them:
ubi_eba_init_scan() -> ubi_eba_init()
ubi_wl_init_scan() -> ubi_wl_init()
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
After re-naming the 'struct ubi_scan_info' we should adjust all variables
named 'si' to something else, because 'si' stands for "scanning info".
Let's rename it to 'ai' which stands for "attaching info" which is
a bit more consistent and has the same length, which makes re-naming easy.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
Rename 'struct ubi_scan_info' to 'struct ubi_attach_info'. This is part
of the code re-structuring I am trying to do in order to add fastmap
in a more logical way. Fastmap can share a lot with scanning, including
the attach-time data structures, which all now have "scan" word in the
name. Let's get rid of this word.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
We do not need this feature and to our shame it even was not working
and there was a bug found very recently.
-- Artem Bityutskiy
Without the data type hint UBI2 (fastmap) will be easier to implement.
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
UBI (and UBIFS) are a bit over-engineered WRT debugging. The idea was to
link as few as possible when debugging is disabled, but the downside is
that most people produce bug reports which are difficult to understand.
This patch weeds out the 'ubi_dbg_dump_stack()' function and turns it
into 'dump_stack()' - it is always useful to have stack dump in case of
an error.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
While looking at a problem reported by UBI around the PEB moving area I
noticed that the 'MOVE_CANCEL_BITFLIPS' is a bit inconsistent name and
'MOVE_TARGET_BITFLIPS' better - let's rename it.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Remove the pre-allocated 'peb_buf2' buffer because we do not really need it.
The only reason UBI has it is to check that the data were written correctly.
But we do not have to have 2 buffers for this and waste RAM - we can just
compare CRC checksums instead. This reduces UBI memory consumption.
Artem bityutskiy: massaged the patch and commit message
Signed-off-by: Josselin Costanzi <josselin.costanzi@mobile-devices.fr>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Under some cases, when scrubbing the PEB if we did not get the lock on
the PEB it fails to scrub. Add that PEB again to the scrub list
Artem: minor amendments.
Cc: stable@kernel.org [2.6.31+]
Signed-off-by: Bhavesh Parekh <bparekh@nvidia.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
If we have debugging enabled and switching to R/O mode because of an error -
dump the stack to improve UBI error reporting and make the further diagnostics
easier to do.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Current layout does not allow us to add inline functions to debug.h which use
the 'struct ubi_device' object, because it is undefined there. Move
'#include "debug.h"' in "ubi.h" down so to make 'struct ubi_device" be defined.
Additionally, this makes it possible to remove a bunch of forward declarations
in "debug.h". This is a preparation to the next patch.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This patch introduces debugfs support to UBI. All the UBI stuff is kept in the
"ubi" debugfs directory, which contains per-UBI device "ubi/ubiX"
sub-directories, containing debugging files. This file also creates
"ubi/ubiX/chk_gen" and "ubi/ubiX/chk_io" knobs for switching general and I/O
extra checks on and off. And it removes the 'debug_chks' UBI module parameters.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Fix checkpatch.pl errors and warnings:
* space before tab
* line over 80 characters
* include linux/ioctl.h instead of asm/ioctl.h
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
* 'linux-next' of git://git.infradead.org/ubifs-2.6: (25 commits)
UBIFS: clean-up commentaries
UBIFS: save 128KiB or more RAM
UBIFS: allocate orphans scan buffer on demand
UBIFS: allocate lpt dump buffer on demand
UBIFS: allocate ltab checking buffer on demand
UBIFS: allocate scanning buffer on demand
UBIFS: allocate dump buffer on demand
UBIFS: do not check data crc by default
UBIFS: simplify UBIFS Kconfig menu
UBIFS: print max. index node size
UBIFS: handle allocation failures in UBIFS write path
UBIFS: use max_write_size during recovery
UBIFS: use max_write_size for write-buffers
UBIFS: introduce write-buffer size field
UBI: incorporate LEB offset information
UBIFS: incorporate maximum write size
UBI: provide LEB offset information
UBI: incorporate maximum write size
UBIFS: fix LEB number in printk
UBIFS: restrict world-writable debugfs files
...
This patch kills the 'ubi->dbg_peb_buf' debugging buffer and the
associated mutex, because all users of this buffer are now gone.
We are killing this buffer because we are going to switch to
dynamic debugging control, just like in UBIFS, which means that
CONFIG_MTD_UBI_DEBUG_PARANOID will be removed. In this case we'd
end up always allocating 'ubi->dbg_peb_buf', which is rather large
(128KiB or more), and this would be wasteful. Thus, we are just
killing it.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Instead of using pre-allocated 'ubi->dbg_peb_buf' buffer in
'ubi_dbg_check_write()', dynamically allocate it when needed. The
intend is to get rid of the pre-allocated 'ubi->dbg_peb_buf' buffer
completely. And the need for this arises because we want to change
to dynamic debugging control instead of compile-time control, i.e.,
we are going to kill the CONFIG_MTD_UBI_DEBUG_PARANOID Kconfig
option, which would mean that 'ubi->dbg_peb_buf' is always allocated,
which would be wasteful.
Thus, we are getting rid of 'ubi->dbg_peb_buf', and this is a
preparation for that.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Incorporate MTD write buffer size into UBI device information
because UBIFS needs this field. UBI does not use it ATM, just
provides to upper layers in 'struct ubi_device_info'.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Currently UBI erases all corrupted eraseblocks, irrespectively of the nature
of corruption: corruption due to power cuts and non-power cut corruption.
The former case is OK, but the latter is not, because UBI may destroy
potentially important data.
With this patch, during scanning, when UBI hits a PEB with corrupted VID
header, it checks whether this PEB contains only 0xFF data. If yes, it is
safe to erase this PEB and it is put to the 'erase' list. If not, this may
be important data and it is better to avoid erasing this PEB. Instead,
UBI puts it to the corr list and moves out of the pool of available PEB.
IOW, UBI preserves this PEB.
Such corrupted PEB lessen the amount of available PEBs. So the more of them
we accumulate, the less PEBs are available. The maximum amount of non-power
cut corrupted PEBs is 8.
This patch is a response to UBIFS problem where reporter
(Matthew L. Creech <mlcreech@gmail.com>) observes that UBIFS index points
to an unmapped LEB. The theory is that corresponding PEB somehow got
corrupted and UBI wiped it. This patch (actually a series of patches)
tries to make sure such PEBs are preserved - this would make it is easier
to analyze the corruption.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This patch turns static function 'check_pattern()' into a non-static
'ubi_check_pattern()'. This is just a preparation for the chages which
are coming in the next patches.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Currently UBI has one small flaw - when we read EC or VID header, but find only
0xFF bytes, we return UBI_IO_FF and do not report whether we had bit-flips or
not. In case of the VID header, the scanning code adds this PEB to the free list,
even though there were bit-flips.
Imagine the following situation: we start writing VID header to a PEB and have a
power cut, so the PEB becomes unstable. When we scan and read the PEB, we get
a bit-flip. Currently, UBI would just ignore this and treat the PEB as free. This
patch changes UBI behavior and now UBI will schedule this PEB for erasure.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
The 'UBI_IO_PEB_EMPTY' and 'UBI_IO_PEB_FREE' are essentially the same
and mean that there are only 0xFF bytes instead of headers. Simplify
UBI a little by turning them into a single 'UBI_IO_FF' error code.
Also, stop maintaining commentaries in 'ubi_io_read_vid_hdr()' which are
almost identical to commentaries in 'ubi_io_read_ec_hdr()'.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Rename UBI_IO_BAD_HDR_READ into UBI_IO_BAD_HDR_EBADMSG which is presumably more
self-documenting and readable. Indeed, the '_READ' suffix does not tell much and
even confuses, while '_EBADMSG' tells about uncorrectable ECC error, because we
use -EBADMSG all over the place to represent ECC errors.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This patch introduces the %UBI_IO_BAD_HDR_READ return code for
the I/O level function. We will use this code in order to distinguish
between "corrupted header possibly because this is non-ubi data" and
"corrupted header possibly because of real data corruption and ECC error".
So far this patch does not introduce any functional change, just a
preparation.
This patch is pased on a patch from
Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Tested-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
We do not really need 2 separate error codes for indicating bad VID
and bad EC headers (UBI_IO_BAD_EC_HDR, UBI_IO_BAD_VID_HDR), it is
enough to have only one UBI_IO_BAD_HDR return code.
This patch does not introduce any functional change, only some
code simplification.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Reviewed-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Tested-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
The UBI reboot notifier causes problems with hibernation. Move this
functionality into the low-level MTD driver instead.
Signed-off-by: Kevin Cernekee <cernekee@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (34 commits)
trivial: fix typo in aic7xxx comment
trivial: fix comment typo in drivers/ata/pata_hpt37x.c
trivial: typo in kernel-parameters.txt
trivial: fix typo in tracing documentation
trivial: add __init/__exit macros in drivers/gpio/bt8xxgpio.c
trivial: add __init macro/ fix of __exit macro location in ipmi_poweroff.c
trivial: remove unnecessary semicolons
trivial: Fix duplicated word "options" in comment
trivial: kbuild: remove extraneous blank line after declaration of usage()
trivial: improve help text for mm debug config options
trivial: doc: hpfall: accept disk device to unload as argument
trivial: doc: hpfall: reduce risk that hpfall can do harm
trivial: SubmittingPatches: Fix reference to renumbered step
trivial: fix typos "man[ae]g?ment" -> "management"
trivial: media/video/cx88: add __init/__exit macros to cx88 drivers
trivial: fix typo in CONFIG_DEBUG_FS in gcov doc
trivial: fix missing printk space in amd_k7_smp_check
trivial: fix typo s/ketymap/keymap/ in comment
trivial: fix typo "to to" in multiple files
trivial: fix typos in comments s/DGBU/DBGU/
...
The assignment to pos when rb is finally NULL is undefined behaviour.
Upon seeing that assignment, GCC may assume that rb is not NULL, and
the loop condition ``rb'' may be optimised away.
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This commit fixes NOR flash recovery issues observed with Spansion
S29GL512N NOR.
When NOR erases, it first fills PEBs with zeroes, then sets all bytes
to 0xFF. Filling with zeroes starts from the end of the PEB. And when
power is cut, this results in PEBs containing correct EC and VID headers
but corrupted with zeros at the end. This confuses UBI and it mistakinly
accepts these PEBs and associate them with LEBs.
Fis this issue by zeroing EC and VID magics before erasing PEBs, to
make UBI later refuse zem.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Move the image seq. number handling from I/O level to the scanning
lever, where it really belongs to. Move the @image_seq_set variable
to the @struct ubi_scan_info structure, which exists only during
scanning.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
An image sequence number is added to the UBI erase-counter header
to be able determine if the root file system contains a mixture
of old and new images (because the flashing failed to complete).
A change to nolo is also needed for this to take effect.
Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Terminate the UBI background thread prior to restarting the system.
[Artem: amended comments a little]
Signed-off-by: Kevin Cernekee <kpc.mtd@gmail.com>
Tested-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Remove built-in gluebi support. This is a preparation for a
standalone glubi module support
Signed-off-by: Dmitry Pervushin <dpervushin@embeddedalley.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
UBI volume notifications are intended to create the API to get clients
notified about volume creation/deletion, renaming and re-sizing. A
client can subscribe to these notifications using 'ubi_volume_register()'
and cancel the subscription using 'ubi_volume_unregister()'. When UBI
volumes change, a blocking notifier is called. Clients also can request
"added" events on all volumes that existed before client subscribed
to the notifications.
If we use notifications instead of calling functions like 'ubi_gluebi_xxx()',
we can make the MTD emulation layer to be more flexible: build it as a
separate module and load/unload it on demand.
[Artem: many cleanups, rework locking, add "updated" event, provide
device/volume info in notifiers]
Signed-off-by: Dmitry Pervushin <dpervushin@embeddedalley.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This patch improves UBI errors handling. ATM UBI switches to
R/O mode when the WL worker fails to read the source PEB.
This means that the upper layers (e.g., UBIFS) has no
chances to unmap the erroneous PEB and fix the error.
This patch changes this behaviour and makes UBI put PEBs
like this into a separate RB-tree, thus preventing the
WL worker from hitting the same read errors again and
again.
But there is a 10% limit on a maximum amount of PEBs like this.
If there are too much of them, UBI switches to R/O mode.
Additionally, this patch teaches UBI not to panic and
switch to R/O mode if after a PEB has been copied, the
target LEB cannot be read back. Instead, now UBI cancels
the operation and schedules the target PEB for torturing.
The error paths has been tested by ingecting errors
into 'ubi_eba_copy_leb()'.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This patch is a clean-up and a preparation for the following
patches. It introduece constants for the return values of the
'ubi_eba_copy_leb()' function.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
The @ubi->dbg_peb_buf is needed only when paranoid checks are
enabled, not when debugging in general is enabled.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
The mutex essencially protects the entire UBI device, so the
old @volumes_mutex name is a little misleading.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
The @mult_mutex does not serve any purpose. We already have
@volumes_mutex and it is enough. The @volume mutex is pushed
down to the 'ubi_rename_volumes()', because we want first
to open all volumes in the exclusive mode, and then lock the
mutex, just like all other ioctl's (remove, re-size, etc) do.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Introduce a new ioctl UBI_IOCSETPROP to set properties
on a volume. Also add the first property:
UBI_PROP_DIRECT_WRITE, this property is used to set the
ability to use direct writes in userspace
Signed-off-by: Sidney Amani <seed@uffs.org>
Signed-off-by: Corentin Chary <corentincj@iksaif.net>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
UBI has 2 RB-trees to implement PEB protection, which is too
much for simply prevent PEB from being moved for some time.
This patch implements this using lists. The benefits:
1. No need to allocate protection entry on each PEB get.
2. No need to maintain balanced trees and walk them.
Signed-off-by: Xiaochuan-Xu <xiaochuan-xu@cqu.edu.cn>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This patch modifies @struct ubi_wl_entry and adds union which
contains only one element so far. This is just a preparation
for further changes which will kill the protection tree and
make UBI use a list instead.
Signed-off-by: Xiaochuan-Xu <xiaochuan-xu@cqu.edu.cn>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
No functional changes, just tweak comments to make kernel-doc
work fine and stop complaining.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Just out or curiousity ran checkpatch.pl for whole UBI,
and discovered there are quite a few of stylistic issues.
Fix them.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Quite useful ioctl which allows to make atomic system upgrades.
The idea belongs to Richard Titmuss <richard_titmuss@logitech.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Hch asked not to use "unit" for sub-systems, let it be so.
Also some other commentaries modifications.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
ubi_free_volume() function sets ubi->volumes[] to NULL, so
ubi_eba_close() is useless, it does not free what has to be freed.
So zap it and free vol->eba_tbl at the volume release function.
Pointed-out-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
__FUNCTION__ is gcc-specific, use __func__
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
The new trend in linux is not to store headers which define
on-media format in the include/ directory, but instead, store
them locally. This is because these headers "do not define any
kernel<->userspace interface".
Do so for UBI as well.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
In C, signed 1-bit bitfields can only take the values 0 and -1, only 0 and 1
are ever assigned in current code. Make them unsigned bitfields.
Fixes the (repeated) sparse errors:
drivers/mtd/ubi/ubi.h:220:15: error: dubious one-bit signed bitfield
drivers/mtd/ubi/ubi.h:221:17: error: dubious one-bit signed bitfield
drivers/mtd/ubi/ubi.h:222:18: error: dubious one-bit signed bitfield
drivers/mtd/ubi/ubi.h:223:16: error: dubious one-bit signed bitfield
drivers/mtd/ubi/ubi.h:224:20: error: dubious one-bit signed bitfield
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Cc: Artem Bityutskiy <dedekind@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Instead of passing vol_id to all functions and then find
struct ubi_volume, pass struct ubi_volume pointer.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
The problem: NAND flashes have different amount of initial bad physical
eraseblocks (marked as bad by the manufacturer). For example, for 256MiB
Samsung OneNAND flash there might be from 0 to 40 bad initial eraseblocks,
which is about 2%. When UBI is used as the base system, one needs to know
the exact amount of good physical eraseblocks, because this number is
needed to create the UBI image which is put to the devices during
production. But this number is not know, which forces us to use the
minimum number of good physical eraseblocks. And UBI additionally
reserves some percentage of physical eraseblocks for bad block handling
(default is 1%), so we have 1-3% of PEBs reserved at the end, depending
on the amount of initial bad PEBs. But it is desired to always have
1% (or more, depending on the configuration).
Solution: this patch adds an "auto-resize" flag to the volume table.
The volume which has the "auto-resize" flag will automatically be re-sized
(enlarged) on the first UBI initialization. UBI clears the flag when
the volume is re-sized. Only one volume may have the "auto-resize" flag.
So, the production UBI image may have one volume with "auto-resize"
flag set, and its size is automatically adjusted on the first boot
of the device.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This slab cache is not really needed since the number of objects
is low and the constructor does not make much sense because we
allocate oblects when doint I/O, which is way slower then allocation.
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Introduce a separate mutex which serializes volumes checking,
because we cammot really use volumes_mutex - it cases reverse
locking problems with mtd_tbl_mutex when gluebi is used -
thanks to lockdep.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Prepare the attach and detach functions to by used outside of
module initialization:
* detach function checks reference count before detaching
* it kills the background thread as well
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This is one more step on the way to "removable" UBI devices. It
adds reference counting for UBI devices. Every time a volume on
this device is opened - the device's refcount is increased. It
is also increased if someone is reading any sysfs file of this
UBI device or of one of its volumes.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
This patch is a preparation to make UBI devices dynamic. It
adds an UBI control device which has dynamically allocated
major number and registers itself as "ubi_ctrl". It does not
do anything so far. The idea is that this device will allow
to attach/detach MTD devices from userspace.
This is symilar to what the Linux device mapper has.
The next things to do are:
* Fix UBI, because it now assumes UBI devices cannot go away
* Implement control device ioctls which will attach/detach MTD
devices
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
The flush function should finish all the pending jobs. But if
somebody else is doing a work, this function should wait and let
it finish.
This patche uses rw semaphore for synchronization purpose - it
just looks quite convinient.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
When the WL worker is moving an LEB, the volume might go away
occasionally. UBI does not handle these situations correctly.
This patch introduces a new mutex which serializes wear-levelling
worker and the the 'ubi_wl_put_peb()' function. Now, if one puts
an LEB, and its PEB is being moved, it will wait on the mutex.
And because we unmap all LEBs when removing volumes, this will make
the volume remove function to wait while the LEB movement
finishes.
Below is an example of an oops which should be fixed by this patch:
Pid: 9167, comm: io_paral Not tainted (2.6.24-rc5-ubi-2.6.git #2)
EIP: 0060:[<f884a379>] EFLAGS: 00010246 CPU: 0
EIP is at prot_tree_del+0x2a/0x63 [ubi]
EAX: f39a90e0 EBX: 00000000 ECX: 00000000 EDX: 00000134
ESI: f39a90e0 EDI: f39a90e0 EBP: f2d55ddc ESP: f2d55dd4
DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
Process io_paral (pid: 9167, ti=f2d54000 task=f72a8030 task.ti=f2d54000)
Stack: f39a95f8 ef6aae50 f2d55e08 f884a511 f88538e1 f884ecea 00000134 00000000
f39a9604 f39a95f0 efea8280 00000000 f39a90e0 f2d55e40 f8847261 f8850c3c
f884eaad 00000001 000000b9 00000134 00000172 000000b9 00000134 00000001
Call Trace:
[<c0105227>] show_trace_log_lvl+0x1a/0x30
[<c01052e2>] show_stack_log_lvl+0xa5/0xca
[<c01053d6>] show_registers+0xcf/0x21b
[<c0105648>] die+0x126/0x224
[<c0119a62>] do_page_fault+0x27f/0x60d
[<c037dd62>] error_code+0x72/0x78
[<f884a511>] ubi_wl_put_peb+0xf0/0x191 [ubi]
[<f8847261>] ubi_eba_unmap_leb+0xaf/0xcc [ubi]
[<f8843c21>] ubi_remove_volume+0x102/0x1e8 [ubi]
[<f8846077>] ubi_cdev_ioctl+0x22a/0x383 [ubi]
[<c017d768>] do_ioctl+0x68/0x71
[<c017d7c6>] vfs_ioctl+0x55/0x271
[<c017da15>] sys_ioctl+0x33/0x52
[<c0104152>] sysenter_past_esp+0x5f/0xa5
=======================
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Add ref_count field to UBI volumes and remove weired "vol->removed"
field. This way things are better understandable and we do not have
to do whold show_attr operation under spinlock.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Pass volume description object to the EBA function which makes
more sense, and EBA function do not have to find the volume
description object by volume ID.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Similarly to ltree_entry_slab, it makes more sense to create
and destroy ubi_wl_entry slab on module initialization/exit.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Since the ltree_entry slab cache is a global entity, which is
used by all UBI devices, it is more logical to create it on
module initialization time and destro on module exit time.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
When the UBI device is nearly full, i.e. all LEBs are mapped, we have
only one spare LEB left - the one we reserved for WL purposes. Well,
I do not count the LEBs which were reserved for bad PEB handling -
suppose NOR flash for simplicity. If an "atomic LEB change operation"
is run, and the WL unit is moving a LEB, we have no spare LEBs to
finish the operation and fail, which is not good. Moreover, if there
are 2 or more simultanious "atomic LEB change" requests, only one of
them has chances to succeed, the other will fail with -ENOSPC. Not
good either.
This patch does 2 things:
1. Reserves one PEB for the "atomic LEB change" operation.
2. Serealize the operations so that only on of them may run
at a time (by means of a mutex).
Pointed-to-by: Brijesh Singh <brijesh.s.singh@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Similar reason as in case of the previous patch: it causes
deadlocks if a filesystem with writeback support works on top
of UBI. So pre-allocate needed buffers when attaching MTD device.
We also need mutexes to protect the buffers, but they do not
cause much contantion because they are used in recovery, torture,
and WL copy routines, which are called seldom.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Use GFP_NOFS flag when allocating memory on I/O path, because otherwise
we may deadlock the filesystem which works on top of us. We observed
the deadlocks with UBIFS. Example:
VFS->FS lock a lock->UBI->kmalloc()->VFS writeback->FS locks the same
lock again.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
UBI allocates temporary buffers of PEB size, which may be 256KiB.
Use vmalloc instead of kmalloc for such big temporary buffers.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
In case of static volumes, make emulated MTD device size to
be equivalent to data size, rather then volume size.
Reported-by: John Smith <john@arrows.demon.co.uk>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.
In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.
More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html
Partitioning/Re-partitioning
An UBI volume occupies a certain number of erase blocks. This is
limited by a configured maximum volume size, which could also be
viewed as the partition size. Each individual UBI volume's size can
be changed independently of the other UBI volumes, provided that the
sum of all volume sizes doesn't exceed a certain limit.
UBI supports dynamic volumes and static volumes. Static volumes are
read-only and their contents are protected by CRC check sums.
Bad eraseblocks handling
UBI transparently handles bad eraseblocks. When a physical
eraseblock becomes bad, it is substituted by a good physical
eraseblock, and the user does not even notice this.
Scrubbing
On a NAND flash bit flips can occur on any write operation,
sometimes also on read. If bit flips persist on the device, at first
they can still be corrected by ECC, but once they accumulate,
correction will become impossible. Thus it is best to actively scrub
the affected eraseblock, by first copying it to a free eraseblock
and then erasing the original. The UBI layer performs this type of
scrubbing under the covers, transparently to the UBI volume users.
Erase Counts
UBI maintains an erase count header per eraseblock. This frees
higher-level layers (like file systems) from doing this and allows
for centralized erase count management instead. The erase counts are
used by the wear-levelling algorithm in the UBI layer. The algorithm
itself is exchangeable.
Booting from NAND
For booting directly from NAND flash the hardware must at least be
capable of fetching and executing a small portion of the NAND
flash. Some NAND flash controllers have this kind of support. They
usually limit the window to a few kilobytes in erase block 0. This
"initial program loader" (IPL) must then contain sufficient logic to
load and execute the next boot phase.
Due to bad eraseblocks, which may be randomly scattered over the
flash device, it is problematic to store the "secondary program
loader" (SPL) statically. Also, due to bit-flips it may become
corrupted over time. UBI allows to solve this problem gracefully by
storing the SPL in a small static UBI volume.
UBI volumes vs. static partitions
UBI volumes are still very similar to static MTD partitions:
* both consist of eraseblocks (logical eraseblocks in case of UBI
volumes, and physical eraseblocks in case of static partitions;
* both support three basic operations - read, write, erase.
But UBI volumes have the following advantages over traditional
static MTD partitions:
* there are no eraseblock wear-leveling constraints in case of UBI
volumes, so the user should not care about this;
* there are no bit-flips and bad eraseblocks in case of UBI volumes.
So, UBI volumes may be considered as flash devices with relaxed
restrictions.
Where can it be found?
Documentation, kernel code and applications can be found in the MTD
gits.
What are the applications for?
The applications help to create binary flash images for two purposes: pfi
files (partial flash images) for in-system update of UBI volumes, and plain
binary images, with or without OOB data in case of NAND, for a manufacturing
step. Furthermore some tools are/and will be created that allow flash content
analysis after a system has crashed..
Who did UBI?
The original ideas, where UBI is based on, were developed by Andreas
Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
were involved too. The implementation of the kernel layer was done by Artem
B. Bityutskiy. The user-space applications and tools were written by Oliver
Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
Schmidt made some testing work as well as core functionality improvements.
Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>