Commit Graph

50 Commits

Author SHA1 Message Date
Sami Tolvanen
f48f01a92c syscalls/x86: Use the correct function type for sys_ni_syscall
Use the correct function type for sys_ni_syscall() in system
call tables to fix indirect call mismatches with Control-Flow
Integrity (CFI) checking.

Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H . Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191008224049.115427-5-samitolvanen@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-11 12:49:18 +02:00
Sami Tolvanen
00198a6eaf syscalls/x86: Use COMPAT_SYSCALL_DEFINE0 for IA32 (rt_)sigreturn
Use COMPAT_SYSCALL_DEFINE0 to define (rt_)sigreturn() syscalls to
replace sys32_sigreturn() and sys32_rt_sigreturn(). This fixes indirect
call mismatches with Control-Flow Integrity (CFI) checking.

Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H . Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191008224049.115427-4-samitolvanen@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-11 12:49:18 +02:00
Andy Lutomirski
a8d03c3f30 x86/syscalls: Use the compat versions of rt_sigsuspend() and rt_sigprocmask()
I'm working on some code that detects at build time if there's a
COMPAT_SYSCALL_DEFINE() that is not referenced in the x86 syscall tables.
It catches three offenders: rt_sigsuspend(), rt_sigprocmask(), and
sendfile64().

For rt_sigsuspend() and rt_sigprocmask(), the only potential difference
between the native and compat versions is that the compat version converts
the sigset_t, but, on little endian architectures, the conversion is a
no-op.  This is why they both currently work on x86.

To make the code more consistent, and to make the upcoming patches work,
rewire x86 to use the compat vesions.

sendfile64() is more complicated, and will be addressed separately.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/51643ac3157b5921eae0e172a8a0b1d953e68ebb.1562185330.git.luto@kernel.org
2019-07-22 10:31:22 +02:00
Linus Torvalds
8f6ccf6159 clone3-v5.3
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXSMhhgAKCRCRxhvAZXjc
 or7kAP9VzDcQaK/WoDd2ezh2C7Wh5hNy9z/qJVCa6Tb+N+g1UgEAxbhFUg55uGOA
 JNf7fGar5JF5hBMIXR+NqOi1/sb4swg=
 =ELWo
 -----END PGP SIGNATURE-----

Merge tag 'clone3-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull clone3 system call from Christian Brauner:
 "This adds the clone3 syscall which is an extensible successor to clone
  after we snagged the last flag with CLONE_PIDFD during the 5.2 merge
  window for clone(). It cleanly supports all of the flags from clone()
  and thus all legacy workloads.

  There are few user visible differences between clone3 and clone.
  First, CLONE_DETACHED will cause EINVAL with clone3 so we can reuse
  this flag. Second, the CSIGNAL flag is deprecated and will cause
  EINVAL to be reported. It is superseeded by a dedicated "exit_signal"
  argument in struct clone_args thus freeing up even more flags. And
  third, clone3 gives CLONE_PIDFD a dedicated return argument in struct
  clone_args instead of abusing CLONE_PARENT_SETTID's parent_tidptr
  argument.

  The clone3 uapi is designed to be easy to handle on 32- and 64 bit:

    /* uapi */
    struct clone_args {
            __aligned_u64 flags;
            __aligned_u64 pidfd;
            __aligned_u64 child_tid;
            __aligned_u64 parent_tid;
            __aligned_u64 exit_signal;
            __aligned_u64 stack;
            __aligned_u64 stack_size;
            __aligned_u64 tls;
    };

  and a separate kernel struct is used that uses proper kernel typing:

    /* kernel internal */
    struct kernel_clone_args {
            u64 flags;
            int __user *pidfd;
            int __user *child_tid;
            int __user *parent_tid;
            int exit_signal;
            unsigned long stack;
            unsigned long stack_size;
            unsigned long tls;
    };

  The system call comes with a size argument which enables the kernel to
  detect what version of clone_args userspace is passing in. clone3
  validates that any additional bytes a given kernel does not know about
  are set to zero and that the size never exceeds a page.

  A nice feature is that this patchset allowed us to cleanup and
  simplify various core kernel codepaths in kernel/fork.c by making the
  internal _do_fork() function take struct kernel_clone_args even for
  legacy clone().

  This patch also unblocks the time namespace patchset which wants to
  introduce a new CLONE_TIMENS flag.

  Note, that clone3 has only been wired up for x86{_32,64}, arm{64}, and
  xtensa. These were the architectures that did not require special
  massaging.

  Other architectures treat fork-like system calls individually and
  after some back and forth neither Arnd nor I felt confident that we
  dared to add clone3 unconditionally to all architectures. We agreed to
  leave this up to individual architecture maintainers. This is why
  there's an additional patch that introduces __ARCH_WANT_SYS_CLONE3
  which any architecture can set once it has implemented support for
  clone3. The patch also adds a cond_syscall(clone3) for architectures
  such as nios2 or h8300 that generate their syscall table by simply
  including asm-generic/unistd.h. The hope is to get rid of
  __ARCH_WANT_SYS_CLONE3 and cond_syscall() rather soon"

* tag 'clone3-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
  arch: handle arches who do not yet define clone3
  arch: wire-up clone3() syscall
  fork: add clone3
2019-07-11 10:09:44 -07:00
Christian Brauner
7615d9e178
arch: wire-up pidfd_open()
This wires up the pidfd_open() syscall into all arches at once.

Signed-off-by: Christian Brauner <christian@brauner.io>
Reviewed-by: David Howells <dhowells@redhat.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jannh@google.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-api@vger.kernel.org
Cc: linux-alpha@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-mips@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linux-arch@vger.kernel.org
Cc: x86@kernel.org
2019-06-28 12:17:55 +02:00
Christian Brauner
8f3220a806
arch: wire-up clone3() syscall
Wire up the clone3() call on all arches that don't require hand-rolled
assembly.

Some of the arches look like they need special assembly massaging and it is
probably smarter if the appropriate arch maintainers would do the actual
wiring. Arches that are wired-up are:
- x86{_32,64}
- arm{64}
- xtensa

Signed-off-by: Christian Brauner <christian@brauner.io>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Adrian Reber <adrian@lisas.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: x86@kernel.org
2019-06-09 09:29:46 +02:00
David Howells
9c8ad7a2ff uapi, x86: Fix the syscall numbering of the mount API syscalls [ver #2]
Fix the syscall numbering of the mount API syscalls so that the numbers
match between i386 and x86_64 and that they're in the common numbering
scheme space.

Fixes: a07b200047 ("vfs: syscall: Add open_tree(2) to reference or clone a mount")
Fixes: 2db154b3ea ("vfs: syscall: Add move_mount(2) to move mounts around")
Fixes: 24dcb3d90a ("vfs: syscall: Add fsopen() to prepare for superblock creation")
Fixes: ecdab150fd ("vfs: syscall: Add fsconfig() for configuring and managing a context")
Fixes: 93766fbd26 ("vfs: syscall: Add fsmount() to create a mount for a superblock")
Fixes: cf3cba4a42 ("vfs: syscall: Add fspick() to select a superblock for reconfiguration")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-05-16 12:23:45 -04:00
David Howells
cf3cba4a42 vfs: syscall: Add fspick() to select a superblock for reconfiguration
Provide an fspick() system call that can be used to pick an existing
mountpoint into an fs_context which can thereafter be used to reconfigure a
superblock (equivalent of the superblock side of -o remount).

This looks like:

	int fd = fspick(AT_FDCWD, "/mnt",
			FSPICK_CLOEXEC | FSPICK_NO_AUTOMOUNT);
	fsconfig(fd, FSCONFIG_SET_FLAG, "intr", NULL, 0);
	fsconfig(fd, FSCONFIG_SET_FLAG, "noac", NULL, 0);
	fsconfig(fd, FSCONFIG_CMD_RECONFIGURE, NULL, NULL, 0);

At the point of fspick being called, the file descriptor referring to the
filesystem context is in exactly the same state as the one that was created
by fsopen() after fsmount() has been successfully called.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-api@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-03-20 18:49:06 -04:00
David Howells
93766fbd26 vfs: syscall: Add fsmount() to create a mount for a superblock
Provide a system call by which a filesystem opened with fsopen() and
configured by a series of fsconfig() calls can have a detached mount object
created for it.  This mount object can then be attached to the VFS mount
hierarchy using move_mount() by passing the returned file descriptor as the
from directory fd.

The system call looks like:

	int mfd = fsmount(int fsfd, unsigned int flags,
			  unsigned int attr_flags);

where fsfd is the file descriptor returned by fsopen().  flags can be 0 or
FSMOUNT_CLOEXEC.  attr_flags is a bitwise-OR of the following flags:

	MOUNT_ATTR_RDONLY	Mount read-only
	MOUNT_ATTR_NOSUID	Ignore suid and sgid bits
	MOUNT_ATTR_NODEV	Disallow access to device special files
	MOUNT_ATTR_NOEXEC	Disallow program execution
	MOUNT_ATTR__ATIME	Setting on how atime should be updated
	MOUNT_ATTR_RELATIME	- Update atime relative to mtime/ctime
	MOUNT_ATTR_NOATIME	- Do not update access times
	MOUNT_ATTR_STRICTATIME	- Always perform atime updates
	MOUNT_ATTR_NODIRATIME	Do not update directory access times

In the event that fsmount() fails, it may be possible to get an error
message by calling read() on fsfd.  If no message is available, ENODATA
will be reported.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-api@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-03-20 18:49:06 -04:00
David Howells
ecdab150fd vfs: syscall: Add fsconfig() for configuring and managing a context
Add a syscall for configuring a filesystem creation context and triggering
actions upon it, to be used in conjunction with fsopen, fspick and fsmount.

    long fsconfig(int fs_fd, unsigned int cmd, const char *key,
		  const void *value, int aux);

Where fs_fd indicates the context, cmd indicates the action to take, key
indicates the parameter name for parameter-setting actions and, if needed,
value points to a buffer containing the value and aux can give more
information for the value.

The following command IDs are proposed:

 (*) FSCONFIG_SET_FLAG: No value is specified.  The parameter must be
     boolean in nature.  The key may be prefixed with "no" to invert the
     setting. value must be NULL and aux must be 0.

 (*) FSCONFIG_SET_STRING: A string value is specified.  The parameter can
     be expecting boolean, integer, string or take a path.  A conversion to
     an appropriate type will be attempted (which may include looking up as
     a path).  value points to a NUL-terminated string and aux must be 0.

 (*) FSCONFIG_SET_BINARY: A binary blob is specified.  value points to
     the blob and aux indicates its size.  The parameter must be expecting
     a blob.

 (*) FSCONFIG_SET_PATH: A non-empty path is specified.  The parameter must
     be expecting a path object.  value points to a NUL-terminated string
     that is the path and aux is a file descriptor at which to start a
     relative lookup or AT_FDCWD.

 (*) FSCONFIG_SET_PATH_EMPTY: As fsconfig_set_path, but with AT_EMPTY_PATH
     implied.

 (*) FSCONFIG_SET_FD: An open file descriptor is specified.  value must
     be NULL and aux indicates the file descriptor.

 (*) FSCONFIG_CMD_CREATE: Trigger superblock creation.

 (*) FSCONFIG_CMD_RECONFIGURE: Trigger superblock reconfiguration.

For the "set" command IDs, the idea is that the file_system_type will point
to a list of parameters and the types of value that those parameters expect
to take.  The core code can then do the parse and argument conversion and
then give the LSM and FS a cooked option or array of options to use.

Source specification is also done the same way same way, using special keys
"source", "source1", "source2", etc..

[!] Note that, for the moment, the key and value are just glued back
together and handed to the filesystem.  Every filesystem that uses options
uses match_token() and co. to do this, and this will need to be changed -
but not all at once.

Example usage:

    fd = fsopen("ext4", FSOPEN_CLOEXEC);
    fsconfig(fd, fsconfig_set_path, "source", "/dev/sda1", AT_FDCWD);
    fsconfig(fd, fsconfig_set_path_empty, "journal_path", "", journal_fd);
    fsconfig(fd, fsconfig_set_fd, "journal_fd", "", journal_fd);
    fsconfig(fd, fsconfig_set_flag, "user_xattr", NULL, 0);
    fsconfig(fd, fsconfig_set_flag, "noacl", NULL, 0);
    fsconfig(fd, fsconfig_set_string, "sb", "1", 0);
    fsconfig(fd, fsconfig_set_string, "errors", "continue", 0);
    fsconfig(fd, fsconfig_set_string, "data", "journal", 0);
    fsconfig(fd, fsconfig_set_string, "context", "unconfined_u:...", 0);
    fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0);
    mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC);

or:

    fd = fsopen("ext4", FSOPEN_CLOEXEC);
    fsconfig(fd, fsconfig_set_string, "source", "/dev/sda1", 0);
    fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0);
    mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC);

or:

    fd = fsopen("afs", FSOPEN_CLOEXEC);
    fsconfig(fd, fsconfig_set_string, "source", "#grand.central.org:root.cell", 0);
    fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0);
    mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC);

or:

    fd = fsopen("jffs2", FSOPEN_CLOEXEC);
    fsconfig(fd, fsconfig_set_string, "source", "mtd0", 0);
    fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0);
    mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC);

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-api@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-03-20 18:49:06 -04:00
David Howells
24dcb3d90a vfs: syscall: Add fsopen() to prepare for superblock creation
Provide an fsopen() system call that starts the process of preparing to
create a superblock that will then be mountable, using an fd as a context
handle.  fsopen() is given the name of the filesystem that will be used:

	int mfd = fsopen(const char *fsname, unsigned int flags);

where flags can be 0 or FSOPEN_CLOEXEC.

For example:

	sfd = fsopen("ext4", FSOPEN_CLOEXEC);
	fsconfig(sfd, FSCONFIG_SET_PATH, "source", "/dev/sda1", AT_FDCWD);
	fsconfig(sfd, FSCONFIG_SET_FLAG, "noatime", NULL, 0);
	fsconfig(sfd, FSCONFIG_SET_FLAG, "acl", NULL, 0);
	fsconfig(sfd, FSCONFIG_SET_FLAG, "user_xattr", NULL, 0);
	fsconfig(sfd, FSCONFIG_SET_STRING, "sb", "1", 0);
	fsconfig(sfd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
	fsinfo(sfd, NULL, ...); // query new superblock attributes
	mfd = fsmount(sfd, FSMOUNT_CLOEXEC, MS_RELATIME);
	move_mount(mfd, "", sfd, AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH);

	sfd = fsopen("afs", -1);
	fsconfig(fd, FSCONFIG_SET_STRING, "source",
		 "#grand.central.org:root.cell", 0);
	fsconfig(fd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
	mfd = fsmount(sfd, 0, MS_NODEV);
	move_mount(mfd, "", sfd, AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH);

If an error is reported at any step, an error message may be available to be
read() back (ENODATA will be reported if there isn't an error available) in
the form:

	"e <subsys>:<problem>"
	"e SELinux:Mount on mountpoint not permitted"

Once fsmount() has been called, further fsconfig() calls will incur EBUSY,
even if the fsmount() fails.  read() is still possible to retrieve error
information.

The fsopen() syscall creates a mount context and hangs it of the fd that it
returns.

Netlink is not used because it is optional and would make the core VFS
dependent on the networking layer and also potentially add network
namespace issues.

Note that, for the moment, the caller must have SYS_CAP_ADMIN to use
fsopen().

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-api@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-03-20 18:49:06 -04:00
David Howells
2db154b3ea vfs: syscall: Add move_mount(2) to move mounts around
Add a move_mount() system call that will move a mount from one place to
another and, in the next commit, allow to attach an unattached mount tree.

The new system call looks like the following:

	int move_mount(int from_dfd, const char *from_path,
		       int to_dfd, const char *to_path,
		       unsigned int flags);

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-api@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-03-20 18:49:06 -04:00
Al Viro
a07b200047 vfs: syscall: Add open_tree(2) to reference or clone a mount
open_tree(dfd, pathname, flags)

Returns an O_PATH-opened file descriptor or an error.
dfd and pathname specify the location to open, in usual
fashion (see e.g. fstatat(2)).  flags should be an OR of
some of the following:
	* AT_PATH_EMPTY, AT_NO_AUTOMOUNT, AT_SYMLINK_NOFOLLOW -
same meanings as usual
	* OPEN_TREE_CLOEXEC - make the resulting descriptor
close-on-exec
	* OPEN_TREE_CLONE or OPEN_TREE_CLONE | AT_RECURSIVE -
instead of opening the location in question, create a detached
mount tree matching the subtree rooted at location specified by
dfd/pathname.  With AT_RECURSIVE the entire subtree is cloned,
without it - only the part within in the mount containing the
location in question.  In other words, the same as mount --rbind
or mount --bind would've taken.  The detached tree will be
dissolved on the final close of obtained file.  Creation of such
detached trees requires the same capabilities as doing mount --bind.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-api@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-03-20 18:49:06 -04:00
Linus Torvalds
a9dce6679d pidfd patches for v5.1-rc1
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE7btrcuORLb1XUhEwjrBW1T7ssS0FAlx+nn4ACgkQjrBW1T7s
 sS2kwg//aJUCwLIhV91gXUFN2jHTCf0/+5fnigEk7JhAT5wmAykxLM8tprLlIlyp
 HtwNQx54hq/6p010Ulo9K50VS6JRii+2lNSpC6IkqXXdHXXm0ViH+5I9Nru8SVJ+
 avRCYWNjW9Gn1EtcB2yv6KP3XffgnQ6ZLIr4QJwglOxgAqUaWZ68woSUlrIR5yFj
 j48wAxjsC3g2qwGLvXPeiwYZHwk6VnYmrZ3eWXPDthWRDC4zkjyBdchZZzFJagSC
 6sX8T9s5ua5juZMokEJaWjuBQQyfg0NYu41hupSdVjV7/0D3E+5/DiReInvLmSup
 63bZ85uKRqWTNgl4cmJ1W3aVe2RYYemMZCXVVYYvU+IKpvTSzzYY7us+FyMAIRUV
 bT+XPGzTWcGrChzv9bHZcBrkL91XGqyxRJz56jLl6EhRtqxmzmywf6mO6pS2WK4N
 r+aBDgXeJbG39KguCzwUgVX8hC6YlSxSP8Md+2sK+UoAdfTUvFtdCYnjhuACofCt
 saRvDIPF8N9qn4Ch3InzCKkrUTL/H3BZKBl2jo6tYQ9smUsFZW7lQoip5Ui/0VS+
 qksJ91djOc9facGoOorPazojY5fO5Lj3Hg+cGIoxUV0jPH483z7hWH0ALynb0f6z
 EDsgNyEUpIO2nJMJJfm37ysbU/j1gOpzQdaAEaWeknwtfecFPzM=
 =yOWp
 -----END PGP SIGNATURE-----

Merge tag 'pidfd-v5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull pidfd system call from Christian Brauner:
 "This introduces the ability to use file descriptors from /proc/<pid>/
  as stable handles on struct pid. Even if a pid is recycled the handle
  will not change. For a start these fds can be used to send signals to
  the processes they refer to.

  With the ability to use /proc/<pid> fds as stable handles on struct
  pid we can fix a long-standing issue where after a process has exited
  its pid can be reused by another process. If a caller sends a signal
  to a reused pid it will end up signaling the wrong process.

  With this patchset we enable a variety of use cases. One obvious
  example is that we can now safely delegate an important part of
  process management - sending signals - to processes other than the
  parent of a given process by sending file descriptors around via scm
  rights and not fearing that the given process will have been recycled
  in the meantime. It also allows for easy testing whether a given
  process is still alive or not by sending signal 0 to a pidfd which is
  quite handy.

  There has been some interest in this feature e.g. from systems
  management (systemd, glibc) and container managers. I have requested
  and gotten comments from glibc to make sure that this syscall is
  suitable for their needs as well. In the future I expect it to take on
  most other pid-based signal syscalls. But such features are left for
  the future once they are needed.

  This has been sitting in linux-next for quite a while and has not
  caused any issues. It comes with selftests which verify basic
  functionality and also test that a recycled pid cannot be signaled via
  a pidfd.

  Jon has written about a prior version of this patchset. It should
  cover the basic functionality since not a lot has changed since then:

      https://lwn.net/Articles/773459/

  The commit message for the syscall itself is extensively documenting
  the syscall, including it's functionality and extensibility"

* tag 'pidfd-v5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
  selftests: add tests for pidfd_send_signal()
  signal: add pidfd_send_signal() syscall
2019-03-16 13:47:14 -07:00
Linus Torvalds
38e7571c07 io_uring-2019-03-06
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlyAJvAQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgphb+EACFaKI2HIdjExQ5T7Cxebzwky+Qiro3FV55
 ziW00FZrkJ5g0h4ItBzh/5SDlcNQYZDMlA3s4xzWIMadWl5PjMPq1uJul0cITbSl
 WIJO5hpgNMXeUEhvcXUl6+f/WzpgYUxN40uW8N5V7EKlooaFVfudDqJGlvEv+UgB
 g8NWQYThSG+/e7r9OGwK0xDRVKfpjxVvmqmnDH3DrxKaDgSOwTf4xn1u41wKwfQ3
 3uPfQ+GBeTqt4a2AhOi7K6KQFNnj5Jz5CXYMiOZI2JGtLPcL6dmyBVD7K0a0HUr+
 rs4ghNdd1+puvPGNK4TX8qV0uiNrMctoRNVA/JDd1ZTYEKTmNLxeFf+olfYHlwuK
 K5FRs60/lgNzNkzcUpFvJHitPwYtxYJdB36PyswE1FZP1YviEeVoKNt9W8aIhEoA
 549uj90brfA74eCINGhq98pJqj9CNyCPw3bfi76f5Ej2utwYDb9S5Cp2gfSa853X
 qc/qNda9efEq7ikwCbPzhekRMXZo6TSXtaSmC2C+Vs5+mD1Scc4kdAvdCKGQrtr9
 aoy0iQMYO2NDZ/G5fppvXtMVuEPAZWbsGftyOe15IlMysjRze2ycJV8cFahKEVM9
 uBeXLyH1pqGU/j7ABP4+XRZ/sbHJTwjKJbnXhTgBsdU8XO/CR3U+kRQFTsidKMfH
 Wlo3uH2h2A==
 =p78E
 -----END PGP SIGNATURE-----

Merge tag 'io_uring-2019-03-06' of git://git.kernel.dk/linux-block

Pull io_uring IO interface from Jens Axboe:
 "Second attempt at adding the io_uring interface.

  Since the first one, we've added basic unit testing of the three
  system calls, that resides in liburing like the other unit tests that
  we have so far. It'll take a while to get full coverage of it, but
  we're working towards it. I've also added two basic test programs to
  tools/io_uring. One uses the raw interface and has support for all the
  various features that io_uring supports outside of standard IO, like
  fixed files, fixed IO buffers, and polled IO. The other uses the
  liburing API, and is a simplified version of cp(1).

  This adds support for a new IO interface, io_uring.

  io_uring allows an application to communicate with the kernel through
  two rings, the submission queue (SQ) and completion queue (CQ) ring.
  This allows for very efficient handling of IOs, see the v5 posting for
  some basic numbers:

    https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/

  Outside of just efficiency, the interface is also flexible and
  extendable, and allows for future use cases like the upcoming NVMe
  key-value store API, networked IO, and so on. It also supports async
  buffered IO, something that we've always failed to support in the
  kernel.

  Outside of basic IO features, it supports async polled IO as well.
  This particular feature has already been tested at Facebook months ago
  for flash storage boxes, with 25-33% improvements. It makes polled IO
  actually useful for real world use cases, where even basic flash sees
  a nice win in terms of efficiency, latency, and performance. These
  boxes were IOPS bound before, now they are not.

  This series adds three new system calls. One for setting up an
  io_uring instance (io_uring_setup(2)), one for submitting/completing
  IO (io_uring_enter(2)), and one for aux functions like registrating
  file sets, buffers, etc (io_uring_register(2)). Through the help of
  Arnd, I've coordinated the syscall numbers so merge on that front
  should be painless.

  Jon did a writeup of the interface a while back, which (except for
  minor details that have been tweaked) is still accurate. Find that
  here:

    https://lwn.net/Articles/776703/

  Huge thanks to Al Viro for helping getting the reference cycle code
  correct, and to Jann Horn for his extensive reviews focused on both
  security and bugs in general.

  There's a userspace library that provides basic functionality for
  applications that don't need or want to care about how to fiddle with
  the rings directly. It has helpers to allow applications to easily set
  up an io_uring instance, and submit/complete IO through it without
  knowing about the intricacies of the rings. It also includes man pages
  (thanks to Jeff Moyer), and will continue to grow support helper
  functions and features as time progresses. Find it here:

    git://git.kernel.dk/liburing

  Fio has full support for the raw interface, both in the form of an IO
  engine (io_uring), but also with a small test application (t/io_uring)
  that can exercise and benchmark the interface"

* tag 'io_uring-2019-03-06' of git://git.kernel.dk/linux-block:
  io_uring: add a few test tools
  io_uring: allow workqueue item to handle multiple buffered requests
  io_uring: add support for IORING_OP_POLL
  io_uring: add io_kiocb ref count
  io_uring: add submission polling
  io_uring: add file set registration
  net: split out functions related to registering inflight socket files
  io_uring: add support for pre-mapped user IO buffers
  block: implement bio helper to add iter bvec pages to bio
  io_uring: batch io_kiocb allocation
  io_uring: use fget/fput_many() for file references
  fs: add fget_many() and fput_many()
  io_uring: support for IO polling
  io_uring: add fsync support
  Add io_uring IO interface
2019-03-08 14:48:40 -08:00
Christian Brauner
3eb39f4793
signal: add pidfd_send_signal() syscall
The kill() syscall operates on process identifiers (pid). After a process
has exited its pid can be reused by another process. If a caller sends a
signal to a reused pid it will end up signaling the wrong process. This
issue has often surfaced and there has been a push to address this problem [1].

This patch uses file descriptors (fd) from proc/<pid> as stable handles on
struct pid. Even if a pid is recycled the handle will not change. The fd
can be used to send signals to the process it refers to.
Thus, the new syscall pidfd_send_signal() is introduced to solve this
problem. Instead of pids it operates on process fds (pidfd).

/* prototype and argument /*
long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags);

/* syscall number 424 */
The syscall number was chosen to be 424 to align with Arnd's rework in his
y2038 to minimize merge conflicts (cf. [25]).

In addition to the pidfd and signal argument it takes an additional
siginfo_t and flags argument. If the siginfo_t argument is NULL then
pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it
is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo().
The flags argument is added to allow for future extensions of this syscall.
It currently needs to be passed as 0. Failing to do so will cause EINVAL.

/* pidfd_send_signal() replaces multiple pid-based syscalls */
The pidfd_send_signal() syscall currently takes on the job of
rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a
positive pid is passed to kill(2). It will however be possible to also
replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended.

/* sending signals to threads (tid) and process groups (pgid) */
Specifically, the pidfd_send_signal() syscall does currently not operate on
process groups or threads. This is left for future extensions.
In order to extend the syscall to allow sending signal to threads and
process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and
PIDFD_TYPE_TID) should be added. This implies that the flags argument will
determine what is signaled and not the file descriptor itself. Put in other
words, grouping in this api is a property of the flags argument not a
property of the file descriptor (cf. [13]). Clarification for this has been
requested by Eric (cf. [19]).
When appropriate extensions through the flags argument are added then
pidfd_send_signal() can additionally replace the part of kill(2) which
operates on process groups as well as the tgkill(2) and
rt_tgsigqueueinfo(2) syscalls.
How such an extension could be implemented has been very roughly sketched
in [14], [15], and [16]. However, this should not be taken as a commitment
to a particular implementation. There might be better ways to do it.
Right now this is intentionally left out to keep this patchset as simple as
possible (cf. [4]).

/* naming */
The syscall had various names throughout iterations of this patchset:
- procfd_signal()
- procfd_send_signal()
- taskfd_send_signal()
In the last round of reviews it was pointed out that given that if the
flags argument decides the scope of the signal instead of different types
of fds it might make sense to either settle for "procfd_" or "pidfd_" as
prefix. The community was willing to accept either (cf. [17] and [18]).
Given that one developer expressed strong preference for the "pidfd_"
prefix (cf. [13]) and with other developers less opinionated about the name
we should settle for "pidfd_" to avoid further bikeshedding.

The  "_send_signal" suffix was chosen to reflect the fact that the syscall
takes on the job of multiple syscalls. It is therefore intentional that the
name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the
fomer because it might imply that pidfd_send_signal() is a replacement for
kill(2), and not the latter because it is a hassle to remember the correct
spelling - especially for non-native speakers - and because it is not
descriptive enough of what the syscall actually does. The name
"pidfd_send_signal" makes it very clear that its job is to send signals.

/* zombies */
Zombies can be signaled just as any other process. No special error will be
reported since a zombie state is an unreliable state (cf. [3]). However,
this can be added as an extension through the @flags argument if the need
ever arises.

/* cross-namespace signals */
The patch currently enforces that the signaler and signalee either are in
the same pid namespace or that the signaler's pid namespace is an ancestor
of the signalee's pid namespace. This is done for the sake of simplicity
and because it is unclear to what values certain members of struct
siginfo_t would need to be set to (cf. [5], [6]).

/* compat syscalls */
It became clear that we would like to avoid adding compat syscalls
(cf. [7]).  The compat syscall handling is now done in kernel/signal.c
itself by adding __copy_siginfo_from_user_generic() which lets us avoid
compat syscalls (cf. [8]). It should be noted that the addition of
__copy_siginfo_from_user_any() is caused by a bug in the original
implementation of rt_sigqueueinfo(2) (cf. 12).
With upcoming rework for syscall handling things might improve
significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain
any additional callers.

/* testing */
This patch was tested on x64 and x86.

/* userspace usage */
An asciinema recording for the basic functionality can be found under [9].
With this patch a process can be killed via:

 #define _GNU_SOURCE
 #include <errno.h>
 #include <fcntl.h>
 #include <signal.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <sys/stat.h>
 #include <sys/syscall.h>
 #include <sys/types.h>
 #include <unistd.h>

 static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info,
                                         unsigned int flags)
 {
 #ifdef __NR_pidfd_send_signal
         return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags);
 #else
         return -ENOSYS;
 #endif
 }

 int main(int argc, char *argv[])
 {
         int fd, ret, saved_errno, sig;

         if (argc < 3)
                 exit(EXIT_FAILURE);

         fd = open(argv[1], O_DIRECTORY | O_CLOEXEC);
         if (fd < 0) {
                 printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]);
                 exit(EXIT_FAILURE);
         }

         sig = atoi(argv[2]);

         printf("Sending signal %d to process %s\n", sig, argv[1]);
         ret = do_pidfd_send_signal(fd, sig, NULL, 0);

         saved_errno = errno;
         close(fd);
         errno = saved_errno;

         if (ret < 0) {
                 printf("%s - Failed to send signal %d to process %s\n",
                        strerror(errno), sig, argv[1]);
                 exit(EXIT_FAILURE);
         }

         exit(EXIT_SUCCESS);
 }

/* Q&A
 * Given that it seems the same questions get asked again by people who are
 * late to the party it makes sense to add a Q&A section to the commit
 * message so it's hopefully easier to avoid duplicate threads.
 *
 * For the sake of progress please consider these arguments settled unless
 * there is a new point that desperately needs to be addressed. Please make
 * sure to check the links to the threads in this commit message whether
 * this has not already been covered.
 */
Q-01: (Florian Weimer [20], Andrew Morton [21])
      What happens when the target process has exited?
A-01: Sending the signal will fail with ESRCH (cf. [22]).

Q-02:  (Andrew Morton [21])
       Is the task_struct pinned by the fd?
A-02:  No. A reference to struct pid is kept. struct pid - as far as I
       understand - was created exactly for the reason to not require to
       pin struct task_struct (cf. [22]).

Q-03: (Andrew Morton [21])
      Does the entire procfs directory remain visible? Just one entry
      within it?
A-03: The same thing that happens right now when you hold a file descriptor
      to /proc/<pid> open (cf. [22]).

Q-04: (Andrew Morton [21])
      Does the pid remain reserved?
A-04: No. This patchset guarantees a stable handle not that pids are not
      recycled (cf. [22]).

Q-05: (Andrew Morton [21])
      Do attempts to signal that fd return errors?
A-05: See {Q,A}-01.

Q-06: (Andrew Morton [22])
      Is there a cleaner way of obtaining the fd? Another syscall perhaps.
A-06: Userspace can already trivially retrieve file descriptors from procfs
      so this is something that we will need to support anyway. Hence,
      there's no immediate need to add another syscalls just to make
      pidfd_send_signal() not dependent on the presence of procfs. However,
      adding a syscalls to get such file descriptors is planned for a
      future patchset (cf. [22]).

Q-07: (Andrew Morton [21] and others)
      This fd-for-a-process sounds like a handy thing and people may well
      think up other uses for it in the future, probably unrelated to
      signals. Are the code and the interface designed to permit such
      future applications?
A-07: Yes (cf. [22]).

Q-08: (Andrew Morton [21] and others)
      Now I think about it, why a new syscall? This thing is looking
      rather like an ioctl?
A-08: This has been extensively discussed. It was agreed that a syscall is
      preferred for a variety or reasons. Here are just a few taken from
      prior threads. Syscalls are safer than ioctl()s especially when
      signaling to fds. Processes are a core kernel concept so a syscall
      seems more appropriate. The layout of the syscall with its four
      arguments would require the addition of a custom struct for the
      ioctl() thereby causing at least the same amount or even more
      complexity for userspace than a simple syscall. The new syscall will
      replace multiple other pid-based syscalls (see description above).
      The file-descriptors-for-processes concept introduced with this
      syscall will be extended with other syscalls in the future. See also
      [22], [23] and various other threads already linked in here.

Q-09: (Florian Weimer [24])
      What happens if you use the new interface with an O_PATH descriptor?
A-09:
      pidfds opened as O_PATH fds cannot be used to send signals to a
      process (cf. [2]). Signaling processes through pidfds is the
      equivalent of writing to a file. Thus, this is not an operation that
      operates "purely at the file descriptor level" as required by the
      open(2) manpage. See also [4].

/* References */
[1]:  https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/
[2]:  https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/
[3]:  https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/
[4]:  https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/
[5]:  https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/
[6]:  https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/
[7]:  https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/
[8]:  https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/
[9]:  https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy
[11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/
[12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/
[13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/
[14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/
[15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/
[16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/
[17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/
[18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/
[19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/
[20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/
[21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/
[22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/
[23]: https://lwn.net/Articles/773459/
[24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/
[25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/

Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Jann Horn <jannh@google.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Florian Weimer <fweimer@redhat.com>
Signed-off-by: Christian Brauner <christian@brauner.io>
Reviewed-by: Tycho Andersen <tycho@tycho.ws>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2019-03-05 17:03:53 +01:00
Jens Axboe
edafccee56 io_uring: add support for pre-mapped user IO buffers
If we have fixed user buffers, we can map them into the kernel when we
setup the io_uring. That avoids the need to do get_user_pages() for
each and every IO.

To utilize this feature, the application must call io_uring_register()
after having setup an io_uring instance, passing in
IORING_REGISTER_BUFFERS as the opcode. The argument must be a pointer to
an iovec array, and the nr_args should contain how many iovecs the
application wishes to map.

If successful, these buffers are now mapped into the kernel, eligible
for IO. To use these fixed buffers, the application must use the
IORING_OP_READ_FIXED and IORING_OP_WRITE_FIXED opcodes, and then
set sqe->index to the desired buffer index. sqe->addr..sqe->addr+seq->len
must point to somewhere inside the indexed buffer.

The application may register buffers throughout the lifetime of the
io_uring instance. It can call io_uring_register() with
IORING_UNREGISTER_BUFFERS as the opcode to unregister the current set of
buffers, and then register a new set. The application need not
unregister buffers explicitly before shutting down the io_uring
instance.

It's perfectly valid to setup a larger buffer, and then sometimes only
use parts of it for an IO. As long as the range is within the originally
mapped region, it will work just fine.

For now, buffers must not be file backed. If file backed buffers are
passed in, the registration will fail with -1/EOPNOTSUPP. This
restriction may be relaxed in the future.

RLIMIT_MEMLOCK is used to check how much memory we can pin. A somewhat
arbitrary 1G per buffer size is also imposed.

Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-02-28 08:24:23 -07:00
Jens Axboe
2b188cc1bb Add io_uring IO interface
The submission queue (SQ) and completion queue (CQ) rings are shared
between the application and the kernel. This eliminates the need to
copy data back and forth to submit and complete IO.

IO submissions use the io_uring_sqe data structure, and completions
are generated in the form of io_uring_cqe data structures. The SQ
ring is an index into the io_uring_sqe array, which makes it possible
to submit a batch of IOs without them being contiguous in the ring.
The CQ ring is always contiguous, as completion events are inherently
unordered, and hence any io_uring_cqe entry can point back to an
arbitrary submission.

Two new system calls are added for this:

io_uring_setup(entries, params)
	Sets up an io_uring instance for doing async IO. On success,
	returns a file descriptor that the application can mmap to
	gain access to the SQ ring, CQ ring, and io_uring_sqes.

io_uring_enter(fd, to_submit, min_complete, flags, sigset, sigsetsize)
	Initiates IO against the rings mapped to this fd, or waits for
	them to complete, or both. The behavior is controlled by the
	parameters passed in. If 'to_submit' is non-zero, then we'll
	try and submit new IO. If IORING_ENTER_GETEVENTS is set, the
	kernel will wait for 'min_complete' events, if they aren't
	already available. It's valid to set IORING_ENTER_GETEVENTS
	and 'min_complete' == 0 at the same time, this allows the
	kernel to return already completed events without waiting
	for them. This is useful only for polling, as for IRQ
	driven IO, the application can just check the CQ ring
	without entering the kernel.

With this setup, it's possible to do async IO with a single system
call. Future developments will enable polled IO with this interface,
and polled submission as well. The latter will enable an application
to do IO without doing ANY system calls at all.

For IRQ driven IO, an application only needs to enter the kernel for
completions if it wants to wait for them to occur.

Each io_uring is backed by a workqueue, to support buffered async IO
as well. We will only punt to an async context if the command would
need to wait for IO on the device side. Any data that can be accessed
directly in the page cache is done inline. This avoids the slowness
issue of usual threadpools, since cached data is accessed as quickly
as a sync interface.

Sample application: http://git.kernel.dk/cgit/fio/plain/t/io_uring.c

Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-02-28 08:24:23 -07:00
Arnd Bergmann
48166e6ea4 y2038: add 64-bit time_t syscalls to all 32-bit architectures
This adds 21 new system calls on each ABI that has 32-bit time_t
today. All of these have the exact same semantics as their existing
counterparts, and the new ones all have macro names that end in 'time64'
for clarification.

This gets us to the point of being able to safely use a C library
that has 64-bit time_t in user space. There are still a couple of
loose ends to tie up in various areas of the code, but this is the
big one, and should be entirely uncontroversial at this point.

In particular, there are four system calls (getitimer, setitimer,
waitid, and getrusage) that don't have a 64-bit counterpart yet,
but these can all be safely implemented in the C library by wrapping
around the existing system calls because the 32-bit time_t they
pass only counts elapsed time, not time since the epoch. They
will be dealt with later.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-07 00:13:28 +01:00
Arnd Bergmann
d33c577ccc y2038: rename old time and utime syscalls
The time, stime, utime, utimes, and futimesat system calls are only
used on older architectures, and we do not provide y2038 safe variants
of them, as they are replaced by clock_gettime64, clock_settime64,
and utimensat_time64.

However, for consistency it seems better to have the 32-bit architectures
that still use them call the "time32" entry points (leaving the
traditional handlers for the 64-bit architectures), like we do for system
calls that now require two versions.

Note: We used to always define __ARCH_WANT_SYS_TIME and
__ARCH_WANT_SYS_UTIME and only set __ARCH_WANT_COMPAT_SYS_TIME and
__ARCH_WANT_SYS_UTIME32 for compat mode on 64-bit kernels. Now this is
reversed: only 64-bit architectures set __ARCH_WANT_SYS_TIME/UTIME, while
we need __ARCH_WANT_SYS_TIME32/UTIME32 for 32-bit architectures and compat
mode. The resulting asm/unistd.h changes look a bit counterintuitive.

This is only a cleanup patch and it should not change any behavior.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2019-02-07 00:13:28 +01:00
Arnd Bergmann
00bf25d693 y2038: use time32 syscall names on 32-bit
This is the big flip, where all 32-bit architectures set COMPAT_32BIT_TIME
and use the _time32 system calls from the former compat layer instead
of the system calls that take __kernel_timespec and similar arguments.

The temporary redirects for __kernel_timespec, __kernel_itimerspec
and __kernel_timex can get removed with this.

It would be easy to split this commit by architecture, but with the new
generated system call tables, it's easy enough to do it all at once,
which makes it a little easier to check that the changes are the same
in each table.

Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-02-07 00:13:28 +01:00
Arnd Bergmann
8dabe7245b y2038: syscalls: rename y2038 compat syscalls
A lot of system calls that pass a time_t somewhere have an implementation
using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have
been reworked so that this implementation can now be used on 32-bit
architectures as well.

The missing step is to redefine them using the regular SYSCALL_DEFINEx()
to get them out of the compat namespace and make it possible to build them
on 32-bit architectures.

Any system call that ends in 'time' gets a '32' suffix on its name for
that version, while the others get a '_time32' suffix, to distinguish
them from the normal version, which takes a 64-bit time argument in the
future.

In this step, only 64-bit architectures are changed, doing this rename
first lets us avoid touching the 32-bit architectures twice.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-02-07 00:13:27 +01:00
Arnd Bergmann
0d6040d468 arch: add split IPC system calls where needed
The IPC system call handling is highly inconsistent across architectures,
some use sys_ipc, some use separate calls, and some use both.  We also
have some architectures that require passing IPC_64 in the flags, and
others that set it implicitly.

For the addition of a y2038 safe semtimedop() system call, I chose to only
support the separate entry points, but that requires first supporting
the regular ones with their own syscall numbers.

The IPC_64 is now implied by the new semctl/shmctl/msgctl system
calls even on the architectures that require passing it with the ipc()
multiplexer.

I'm not adding the new semtimedop() or semop() on 32-bit architectures,
those will get implemented using the new semtimedop_time64() version
that gets added along with the other time64 calls.
Three 64-bit architectures (powerpc, s390 and sparc) get semtimedop().

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2019-01-25 17:22:50 +01:00
Mathieu Desnoyers
05c17cedf8 x86: Wire up restartable sequence system call
Wire up the rseq system call on x86 32/64.

This provides an ABI improving the speed of a user-space getcpu
operation on x86 by removing the need to perform a function call, "lsl"
instruction, or system call on the fast path, as well as improving the
speed of user-space operations on per-cpu data.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Hunter <ahh@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20180602124408.8430-8-mathieu.desnoyers@efficios.com
2018-06-06 11:58:32 +02:00
Christoph Hellwig
7a074e96de aio: implement io_pgetevents
This is the io_getevents equivalent of ppoll/pselect and allows to
properly mix signals and aio completions (especially with IOCB_CMD_POLL)
and atomically executes the following sequence:

	sigset_t origmask;

	pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
	ret = io_getevents(ctx, min_nr, nr, events, timeout);
	pthread_sigmask(SIG_SETMASK, &origmask, NULL);

Note that unlike many other signal related calls we do not pass a sigmask
size, as that would get us to 7 arguments, which aren't easily supported
by the syscall infrastructure.  It seems a lot less painful to just add a
new syscall variant in the unlikely case we're going to increase the
sigset size.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-05-02 19:57:24 +02:00
Dominik Brodowski
d5a00528b5 syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*()
This rename allows us to have a coherent syscall stub naming convention on
64-bit x86 (0xffffffff prefix removed):

 810f0af0 t            kernel_waitid	# common (32/64) kernel helper

 <inline>            __do_sys_waitid	# inlined helper doing actual work
 810f0be0 t          __se_sys_waitid	# C func calling inlined helper

 <inline>     __do_compat_sys_waitid	# inlined helper doing actual work
 810f0d80 t   __se_compat_sys_waitid	# compat C func calling inlined helper

 810f2080 T         __x64_sys_waitid	# x64 64-bit-ptregs -> C stub
 810f20b0 T        __ia32_sys_waitid	# ia32 32-bit-ptregs -> C stub[*]
 810f2470 T __ia32_compat_sys_waitid	# ia32 32-bit-ptregs -> compat C stub
 810f2490 T  __x32_compat_sys_waitid	# x32 64-bit-ptregs -> compat C stub

    [*] This stub is unused, as the syscall table links
	__ia32_compat_sys_waitid instead of __ia32_sys_waitid as we need
	a compat variant here.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180409105145.5364-4-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-04-09 16:47:28 +02:00
Dominik Brodowski
5ac9efa3c5 syscalls/core, syscalls/x86: Clean up compat syscall stub naming convention
Tidy the naming convention for compat syscall subs. Hints which describe
the purpose of the stub go in front and receive a double underscore to
denote that they are generated on-the-fly by the COMPAT_SYSCALL_DEFINEx()
macro.

For the generic case, this means:

t            kernel_waitid	# common C function (see kernel/exit.c)

    __do_compat_sys_waitid	# inlined helper doing the actual work
				# (takes original parameters as declared)

T   __se_compat_sys_waitid	# sign-extending C function calling inlined
				# helper (takes parameters of type long,
				# casts them to unsigned long and then to
				# the declared type)

T        compat_sys_waitid      # alias to __se_compat_sys_waitid()
				# (taking parameters as declared), to
				# be included in syscall table

For x86, the naming is as follows:

t            kernel_waitid	# common C function (see kernel/exit.c)

    __do_compat_sys_waitid	# inlined helper doing the actual work
				# (takes original parameters as declared)

t   __se_compat_sys_waitid      # sign-extending C function calling inlined
				# helper (takes parameters of type long,
				# casts them to unsigned long and then to
				# the declared type)

T __ia32_compat_sys_waitid	# IA32_EMULATION 32-bit-ptregs -> C stub,
				# calls __se_compat_sys_waitid(); to be
				# included in syscall table

T  __x32_compat_sys_waitid	# x32 64-bit-ptregs -> C stub, calls
				# __se_compat_sys_waitid(); to be included
				# in syscall table

If only one of IA32_EMULATION and x32 is enabled, __se_compat_sys_waitid()
may be inlined into the stub __{ia32,x32}_compat_sys_waitid().

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180409105145.5364-3-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-04-09 16:47:28 +02:00
Dominik Brodowski
e145242ea0 syscalls/core, syscalls/x86: Clean up syscall stub naming convention
Tidy the naming convention for compat syscall subs. Hints which describe
the purpose of the stub go in front and receive a double underscore to
denote that they are generated on-the-fly by the SYSCALL_DEFINEx() macro.

For the generic case, this means (0xffffffff prefix removed):

 810f08d0 t     kernel_waitid	# common C function (see kernel/exit.c)

 <inline>     __do_sys_waitid	# inlined helper doing the actual work
				# (takes original parameters as declared)

 810f1aa0 T   __se_sys_waitid	# sign-extending C function calling inlined
				# helper (takes parameters of type long;
				# casts them to the declared type)

 810f1aa0 T        sys_waitid	# alias to __se_sys_waitid() (taking
				# parameters as declared), to be included
				# in syscall table

For x86, the naming is as follows:

 810efc70 t     kernel_waitid	# common C function (see kernel/exit.c)

 <inline>     __do_sys_waitid	# inlined helper doing the actual work
				# (takes original parameters as declared)

 810efd60 t   __se_sys_waitid	# sign-extending C function calling inlined
				# helper (takes parameters of type long;
				# casts them to the declared type)

 810f1140 T __ia32_sys_waitid	# IA32_EMULATION 32-bit-ptregs -> C stub,
				# calls __se_sys_waitid(); to be included
				# in syscall table

 810f1110 T        sys_waitid	# x86 64-bit-ptregs -> C stub, calls
				# __se_sys_waitid(); to be included in
				# syscall table

For x86, sys_waitid() will be re-named to __x64_sys_waitid in a follow-up
patch.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180409105145.5364-2-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-04-09 16:47:27 +02:00
Dominik Brodowski
ebeb8c82ff syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32
Extend ARCH_HAS_SYSCALL_WRAPPER for i386 emulation and for x32 on 64-bit
x86.

For x32, all we need to do is to create an additional stub for each
compat syscall which decodes the parameters in x86-64 ordering, e.g.:

	asmlinkage long __compat_sys_x32_xyzzy(struct pt_regs *regs)
	{
		return c_SyS_xyzzy(regs->di, regs->si, regs->dx);
	}

For i386 emulation, we need to teach compat_sys_*() to take struct
pt_regs as its only argument, e.g.:

	asmlinkage long __compat_sys_ia32_xyzzy(struct pt_regs *regs)
	{
		return c_SyS_xyzzy(regs->bx, regs->cx, regs->dx);
	}

In addition, we need to create additional stubs for common syscalls
(that is, for syscalls which have the same parameters on 32-bit and
64-bit), e.g.:

	asmlinkage long __sys_ia32_xyzzy(struct pt_regs *regs)
	{
		return c_sys_xyzzy(regs->bx, regs->cx, regs->dx);
	}

This approach avoids leaking random user-provided register content down
the call chain.

This patch is based on an original proof-of-concept

 | From: Linus Torvalds <torvalds@linux-foundation.org>
 | Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

and was split up and heavily modified by me, in particular to base it on
ARCH_HAS_SYSCALL_WRAPPER.

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180405095307.3730-6-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-04-05 16:59:38 +02:00
Dominik Brodowski
ab0d1e85bf fs/quota: use COMPAT_SYSCALL_DEFINE for sys32_quotactl()
While sys32_quotactl() is only needed on x86, it can use the recommended
COMPAT_SYSCALL_DEFINEx() machinery for its setup.

Acked-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2018-04-02 20:15:47 +02:00
Dominik Brodowski
b51d3cdf44 x86: remove compat_sys_x86_waitpid()
compat_sys_x86_waitpid() is not needed, as it takes the same parameters
(int, *int, int) as the native syscall.

Suggested-by: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: x86@kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2018-04-02 20:15:03 +02:00
Dominik Brodowski
af52201d99 x86/entry: Do not special-case clone(2) in compat entry
With the CPU renaming registers on its own, and all the overhead of the
syscall entry/exit, it is doubtful whether the compiled output of

	mov	%r8, %rax
	mov	%rcx, %r8
	mov	%rax, %rcx
	jmpq	sys_clone

is measurably slower than the hand-crafted version of

	xchg	%r8, %rcx

So get rid of this special case.

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@amacapital.net
Cc: viro@zeniv.linux.org.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-07 07:57:31 +01:00
Dominik Brodowski
4ddb45db30 x86/syscalls: Use COMPAT_SYSCALL_DEFINEx() macros for x86-only compat syscalls
While at it, convert declarations of type "unsigned" to "unsigned int".

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@amacapital.net
Cc: viro@zeniv.linux.org.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-07 07:57:30 +01:00
Dominik Brodowski
b411991e0c x86/syscalls/32: Simplify $entry == $compat entries
If the compat entry point is equivalent to the native entry point, it
does not need to be specified explicitly.

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@amacapital.net
Cc: viro@zeniv.linux.org.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-07 07:57:29 +01:00
Linus Torvalds
204f144c9f Merge branch 'work.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull fs/compat.c cleanups from Al Viro:
 "More moving of compat syscalls from fs/compat.c to fs/*.c where the
  native counterparts live.

  And death to compat_sys_getdents64() - the only architecture that used
  to need it was ia64, and _that_ has lost biarch support quite a few
  years ago"

* 'work.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  fs/compat.c: trim unused includes
  move compat_rw_copy_check_uvector() over to fs/read_write.c
  fhandle: move compat syscalls from compat.c
  open: move compat syscalls from compat.c
  stat: move compat syscalls from compat.c
  fcntl: move compat syscalls from compat.c
  readdir: move compat syscalls from compat.c
  statfs: move compat syscalls from compat.c
  utimes: move compat syscalls from compat.c
  move compat select-related syscalls to fs/select.c
  Remove compat_sys_getdents64()
2017-05-02 11:54:26 -07:00
Al Viro
2611dc1939 Remove compat_sys_getdents64()
Unlike normal compat syscall variants, it is needed only for
biarch architectures that have different alignement requirements for
u64 in 32bit and 64bit ABI *and* have __put_user() that won't handle
a store of 64bit value at 32bit-aligned address.  We used to have one
such (ia64), but its biarch support has been gone since 2010 (after
being broken in 2008, which went unnoticed since nobody had been using
it).

It had escaped removal at the same time only because back in 2004
a patch that switched several syscalls on amd64 from private wrappers to
generic compat ones had switched to use of compat_sys_getdents64(), which
hadn't needed (or used) a compat wrapper on amd64.

Let's bury it - it's at least 7 years overdue.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-04-17 12:52:22 -04:00
Kyle Huey
79170fda31 x86/syscalls/32: Wire up arch_prctl on x86-32
Hook up arch_prctl to call do_arch_prctl() on x86-32, and in 32 bit compat
mode on x86-64. This allows to have arch_prctls that are not specific to 64
bits.

On UML, simply stub out this syscall.

Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: linux-kselftest@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Robert O'Callahan <robert@ocallahan.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: user-mode-linux-devel@lists.sourceforge.net
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: user-mode-linux-user@lists.sourceforge.net
Cc: David Matlack <dmatlack@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: linux-fsdevel@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/20170320081628.18952-7-khuey@kylehuey.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-20 16:10:33 +01:00
David Howells
a528d35e8b statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.

The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode.  This change is propagated to the vfs_getattr*()
function.

Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.

========
OVERVIEW
========

The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.

A number of requests were gathered for features to be included.  The
following have been included:

 (1) Make the fields a consistent size on all arches and make them large.

 (2) Spare space, request flags and information flags are provided for
     future expansion.

 (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
     __s64).

 (4) Creation time: The SMB protocol carries the creation time, which could
     be exported by Samba, which will in turn help CIFS make use of
     FS-Cache as that can be used for coherency data (stx_btime).

     This is also specified in NFSv4 as a recommended attribute and could
     be exported by NFSD [Steve French].

 (5) Lightweight stat: Ask for just those details of interest, and allow a
     netfs (such as NFS) to approximate anything not of interest, possibly
     without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
     Dilger] (AT_STATX_DONT_SYNC).

 (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
     its cached attributes are up to date [Trond Myklebust]
     (AT_STATX_FORCE_SYNC).

And the following have been left out for future extension:

 (7) Data version number: Could be used by userspace NFS servers [Aneesh
     Kumar].

     Can also be used to modify fill_post_wcc() in NFSD which retrieves
     i_version directly, but has just called vfs_getattr().  It could get
     it from the kstat struct if it used vfs_xgetattr() instead.

     (There's disagreement on the exact semantics of a single field, since
     not all filesystems do this the same way).

 (8) BSD stat compatibility: Including more fields from the BSD stat such
     as creation time (st_btime) and inode generation number (st_gen)
     [Jeremy Allison, Bernd Schubert].

 (9) Inode generation number: Useful for FUSE and userspace NFS servers
     [Bernd Schubert].

     (This was asked for but later deemed unnecessary with the
     open-by-handle capability available and caused disagreement as to
     whether it's a security hole or not).

(10) Extra coherency data may be useful in making backups [Andreas Dilger].

     (No particular data were offered, but things like last backup
     timestamp, the data version number and the DOS archive bit would come
     into this category).

(11) Allow the filesystem to indicate what it can/cannot provide: A
     filesystem can now say it doesn't support a standard stat feature if
     that isn't available, so if, for instance, inode numbers or UIDs don't
     exist or are fabricated locally...

     (This requires a separate system call - I have an fsinfo() call idea
     for this).

(12) Store a 16-byte volume ID in the superblock that can be returned in
     struct xstat [Steve French].

     (Deferred to fsinfo).

(13) Include granularity fields in the time data to indicate the
     granularity of each of the times (NFSv4 time_delta) [Steve French].

     (Deferred to fsinfo).

(14) FS_IOC_GETFLAGS value.  These could be translated to BSD's st_flags.
     Note that the Linux IOC flags are a mess and filesystems such as Ext4
     define flags that aren't in linux/fs.h, so translation in the kernel
     may be a necessity (or, possibly, we provide the filesystem type too).

     (Some attributes are made available in stx_attributes, but the general
     feeling was that the IOC flags were to ext[234]-specific and shouldn't
     be exposed through statx this way).

(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
     Michael Kerrisk].

     (Deferred, probably to fsinfo.  Finding out if there's an ACL or
     seclabal might require extra filesystem operations).

(16) Femtosecond-resolution timestamps [Dave Chinner].

     (A __reserved field has been left in the statx_timestamp struct for
     this - if there proves to be a need).

(17) A set multiple attributes syscall to go with this.

===============
NEW SYSTEM CALL
===============

The new system call is:

	int ret = statx(int dfd,
			const char *filename,
			unsigned int flags,
			unsigned int mask,
			struct statx *buffer);

The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat().  There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags.  There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.

Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):

 (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
     respect.

 (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
     its attributes with the server - which might require data writeback to
     occur to get the timestamps correct.

 (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
     network filesystem.  The resulting values should be considered
     approximate.

mask is a bitmask indicating the fields in struct statx that are of
interest to the caller.  The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat().  It should be noted that asking for
more information may entail extra I/O operations.

buffer points to the destination for the data.  This must be 256 bytes in
size.

======================
MAIN ATTRIBUTES RECORD
======================

The following structures are defined in which to return the main attribute
set:

	struct statx_timestamp {
		__s64	tv_sec;
		__s32	tv_nsec;
		__s32	__reserved;
	};

	struct statx {
		__u32	stx_mask;
		__u32	stx_blksize;
		__u64	stx_attributes;
		__u32	stx_nlink;
		__u32	stx_uid;
		__u32	stx_gid;
		__u16	stx_mode;
		__u16	__spare0[1];
		__u64	stx_ino;
		__u64	stx_size;
		__u64	stx_blocks;
		__u64	__spare1[1];
		struct statx_timestamp	stx_atime;
		struct statx_timestamp	stx_btime;
		struct statx_timestamp	stx_ctime;
		struct statx_timestamp	stx_mtime;
		__u32	stx_rdev_major;
		__u32	stx_rdev_minor;
		__u32	stx_dev_major;
		__u32	stx_dev_minor;
		__u64	__spare2[14];
	};

The defined bits in request_mask and stx_mask are:

	STATX_TYPE		Want/got stx_mode & S_IFMT
	STATX_MODE		Want/got stx_mode & ~S_IFMT
	STATX_NLINK		Want/got stx_nlink
	STATX_UID		Want/got stx_uid
	STATX_GID		Want/got stx_gid
	STATX_ATIME		Want/got stx_atime{,_ns}
	STATX_MTIME		Want/got stx_mtime{,_ns}
	STATX_CTIME		Want/got stx_ctime{,_ns}
	STATX_INO		Want/got stx_ino
	STATX_SIZE		Want/got stx_size
	STATX_BLOCKS		Want/got stx_blocks
	STATX_BASIC_STATS	[The stuff in the normal stat struct]
	STATX_BTIME		Want/got stx_btime{,_ns}
	STATX_ALL		[All currently available stuff]

stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.

Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution.  Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.

The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does.  The following
attributes map to FS_*_FL flags and are the same numerical value:

	STATX_ATTR_COMPRESSED		File is compressed by the fs
	STATX_ATTR_IMMUTABLE		File is marked immutable
	STATX_ATTR_APPEND		File is append-only
	STATX_ATTR_NODUMP		File is not to be dumped
	STATX_ATTR_ENCRYPTED		File requires key to decrypt in fs

Within the kernel, the supported flags are listed by:

	KSTAT_ATTR_FS_IOC_FLAGS

[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]

New flags include:

	STATX_ATTR_AUTOMOUNT		Object is an automount trigger

These are for the use of GUI tools that might want to mark files specially,
depending on what they are.

Fields in struct statx come in a number of classes:

 (0) stx_dev_*, stx_blksize.

     These are local system information and are always available.

 (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
     stx_size, stx_blocks.

     These will be returned whether the caller asks for them or not.  The
     corresponding bits in stx_mask will be set to indicate whether they
     actually have valid values.

     If the caller didn't ask for them, then they may be approximated.  For
     example, NFS won't waste any time updating them from the server,
     unless as a byproduct of updating something requested.

     If the values don't actually exist for the underlying object (such as
     UID or GID on a DOS file), then the bit won't be set in the stx_mask,
     even if the caller asked for the value.  In such a case, the returned
     value will be a fabrication.

     Note that there are instances where the type might not be valid, for
     instance Windows reparse points.

 (2) stx_rdev_*.

     This will be set only if stx_mode indicates we're looking at a
     blockdev or a chardev, otherwise will be 0.

 (3) stx_btime.

     Similar to (1), except this will be set to 0 if it doesn't exist.

=======
TESTING
=======

The following test program can be used to test the statx system call:

	samples/statx/test-statx.c

Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.

Here's some example output.  Firstly, an NFS directory that crosses to
another FSID.  Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.

	[root@andromeda ~]# /tmp/test-statx -A /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:26           Inode: 1703937     Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000
	Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)

Secondly, the result of automounting on that directory.

	[root@andromeda ~]# /tmp/test-statx /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:27           Inode: 2           Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-03-02 20:51:15 -05:00
Dave Hansen
eac0ca77e4 x86, pkeys: remove cruft from never-merged syscalls
pkey_set() and pkey_get() were syscalls present in older versions
of the protection keys patches.  The syscall number definitions
were inadvertently left in place.  This patch removes them.

I did a git grep and verified that these are the last places in
the tree that these appear, save for the protection_keys.c tests
and Documentation.  Those spots talk about functions called
pkey_get/set() which are wrappers for the direct PKRU
instructions, not the syscalls.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: mgorman@techsingularity.net
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Fixes: f9afc6197e ("x86: Wire up protection keys system calls")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-17 14:16:13 -07:00
Dave Hansen
f9afc6197e x86: Wire up protection keys system calls
This is all that we need to get the new system calls themselves
working on x86.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: mgorman@techsingularity.net
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163017.E3C06FD2@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-09 13:02:27 +02:00
David Howells
f7d665627e x86/syscalls/64: Add compat_sys_keyctl for 32-bit userspace
x86_64 needs to use compat_sys_keyctl for 32-bit userspace rather than
calling sys_keyctl(). The latter will work in a lot of cases, thereby
hiding the issue.

Reported-by: Stephan Mueller <smueller@chronox.de>
Tested-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keyrings@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/146961615805.14395.5581949237156769439.stgit@warthog.procyon.org.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-01 11:31:24 +02:00
Dmitry V. Levin
9a7a076e8e x86: Use compat version for preadv2 and pwritev2
Similar to preadv and pwritev, preadv2 and pwritev2 need compat entries
in the 32-bit syscall table.

This bug was found by strace test suite.

Fixes: 4babf2c5ef ("x86: wire up preadv2 and pwritev2")
Signed-off-by: Dmitry V. Levin <ldv@altlinux.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20160511084817.GA29823@altlinux.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-12 14:27:13 +02:00
Christoph Hellwig
4babf2c5ef x86: wire up preadv2 and pwritev2
Signed-off-by: Milosz Tanski <milosz@adfin.com>
[hch: rebased due to newly added syscalls]
Reviewed-by: Stephen Bates <stephen.bates@pmcs.com>
Tested-by: Stephen Bates <stephen.bates@pmcs.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-03-04 12:20:10 -05:00
Zach Brown
cb4c4e8091 x86: add sys_copy_file_range to syscall tables
Add sys_copy_file_range to the x86 syscall tables.

Signed-off-by: Zach Brown <zab@redhat.com>
[Anna Schumaker: Update syscall number in syscall_32.tbl]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-01 14:00:54 -05:00
Eric B Munson
a8ca5d0ecb mm: mlock: add new mlock system call
With the refactored mlock code, introduce a new system call for mlock.
The new call will allow the user to specify what lock states are being
added.  mlock2 is trivial at the moment, but a follow on patch will add a
new mlock state making it useful.

Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Andy Lutomirski
8169aff611 x86/entry/64/compat: Set up full pt_regs for all compat syscalls
This is conceptually simpler.  More importantly, it eliminates
the PTREGSCALL and execve stubs, which were not compatible with
the C ABI.  This means that C code can call through the compat
syscall table.

The execve stubs are a bit subtle.  They did two things: they
cleared some registers and they forced slow-path return.
Neither is necessary any more: elf_common_init clears the extra
registers and start_thread calls force_iret().

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/f95b7f7dfaacf88a8cae85bb06226cae53769287.1444091584.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-09 09:41:07 +02:00
Mathieu Desnoyers
5b25b13ab0 sys_membarrier(): system-wide memory barrier (generic, x86)
Here is an implementation of a new system call, sys_membarrier(), which
executes a memory barrier on all threads running on the system.  It is
implemented by calling synchronize_sched().  It can be used to
distribute the cost of user-space memory barriers asymmetrically by
transforming pairs of memory barriers into pairs consisting of
sys_membarrier() and a compiler barrier.  For synchronization primitives
that distinguish between read-side and write-side (e.g.  userspace RCU
[1], rwlocks), the read-side can be accelerated significantly by moving
the bulk of the memory barrier overhead to the write-side.

The existing applications of which I am aware that would be improved by
this system call are as follows:

* Through Userspace RCU library (http://urcu.so)
  - DNS server (Knot DNS) https://www.knot-dns.cz/
  - Network sniffer (http://netsniff-ng.org/)
  - Distributed object storage (https://sheepdog.github.io/sheepdog/)
  - User-space tracing (http://lttng.org)
  - Network storage system (https://www.gluster.org/)
  - Virtual routers (https://events.linuxfoundation.org/sites/events/files/slides/DPDK_RCU_0MQ.pdf)
  - Financial software (https://lkml.org/lkml/2015/3/23/189)

Those projects use RCU in userspace to increase read-side speed and
scalability compared to locking.  Especially in the case of RCU used by
libraries, sys_membarrier can speed up the read-side by moving the bulk of
the memory barrier cost to synchronize_rcu().

* Direct users of sys_membarrier
  - core dotnet garbage collector (https://github.com/dotnet/coreclr/issues/198)

Microsoft core dotnet GC developers are planning to use the mprotect()
side-effect of issuing memory barriers through IPIs as a way to implement
Windows FlushProcessWriteBuffers() on Linux.  They are referring to
sys_membarrier in their github thread, specifically stating that
sys_membarrier() is what they are looking for.

To explain the benefit of this scheme, let's introduce two example threads:

Thread A (non-frequent, e.g. executing liburcu synchronize_rcu())
Thread B (frequent, e.g. executing liburcu
rcu_read_lock()/rcu_read_unlock())

In a scheme where all smp_mb() in thread A are ordering memory accesses
with respect to smp_mb() present in Thread B, we can change each
smp_mb() within Thread A into calls to sys_membarrier() and each
smp_mb() within Thread B into compiler barriers "barrier()".

Before the change, we had, for each smp_mb() pairs:

Thread A                    Thread B
previous mem accesses       previous mem accesses
smp_mb()                    smp_mb()
following mem accesses      following mem accesses

After the change, these pairs become:

Thread A                    Thread B
prev mem accesses           prev mem accesses
sys_membarrier()            barrier()
follow mem accesses         follow mem accesses

As we can see, there are two possible scenarios: either Thread B memory
accesses do not happen concurrently with Thread A accesses (1), or they
do (2).

1) Non-concurrent Thread A vs Thread B accesses:

Thread A                    Thread B
prev mem accesses
sys_membarrier()
follow mem accesses
                            prev mem accesses
                            barrier()
                            follow mem accesses

In this case, thread B accesses will be weakly ordered. This is OK,
because at that point, thread A is not particularly interested in
ordering them with respect to its own accesses.

2) Concurrent Thread A vs Thread B accesses

Thread A                    Thread B
prev mem accesses           prev mem accesses
sys_membarrier()            barrier()
follow mem accesses         follow mem accesses

In this case, thread B accesses, which are ensured to be in program
order thanks to the compiler barrier, will be "upgraded" to full
smp_mb() by synchronize_sched().

* Benchmarks

On Intel Xeon E5405 (8 cores)
(one thread is calling sys_membarrier, the other 7 threads are busy
looping)

1000 non-expedited sys_membarrier calls in 33s =3D 33 milliseconds/call.

* User-space user of this system call: Userspace RCU library

Both the signal-based and the sys_membarrier userspace RCU schemes
permit us to remove the memory barrier from the userspace RCU
rcu_read_lock() and rcu_read_unlock() primitives, thus significantly
accelerating them. These memory barriers are replaced by compiler
barriers on the read-side, and all matching memory barriers on the
write-side are turned into an invocation of a memory barrier on all
active threads in the process. By letting the kernel perform this
synchronization rather than dumbly sending a signal to every process
threads (as we currently do), we diminish the number of unnecessary wake
ups and only issue the memory barriers on active threads. Non-running
threads do not need to execute such barrier anyway, because these are
implied by the scheduler context switches.

Results in liburcu:

Operations in 10s, 6 readers, 2 writers:

memory barriers in reader:    1701557485 reads, 2202847 writes
signal-based scheme:          9830061167 reads,    6700 writes
sys_membarrier:               9952759104 reads,     425 writes
sys_membarrier (dyn. check):  7970328887 reads,     425 writes

The dynamic sys_membarrier availability check adds some overhead to
the read-side compared to the signal-based scheme, but besides that,
sys_membarrier slightly outperforms the signal-based scheme. However,
this non-expedited sys_membarrier implementation has a much slower grace
period than signal and memory barrier schemes.

Besides diminishing the number of wake-ups, one major advantage of the
membarrier system call over the signal-based scheme is that it does not
need to reserve a signal. This plays much more nicely with libraries,
and with processes injected into for tracing purposes, for which we
cannot expect that signals will be unused by the application.

An expedited version of this system call can be added later on to speed
up the grace period. Its implementation will likely depend on reading
the cpu_curr()->mm without holding each CPU's rq lock.

This patch adds the system call to x86 and to asm-generic.

[1] http://urcu.so

membarrier(2) man page:

MEMBARRIER(2)              Linux Programmer's Manual             MEMBARRIER(2)

NAME
       membarrier - issue memory barriers on a set of threads

SYNOPSIS
       #include <linux/membarrier.h>

       int membarrier(int cmd, int flags);

DESCRIPTION
       The cmd argument is one of the following:

       MEMBARRIER_CMD_QUERY
              Query  the  set  of  supported commands. It returns a bitmask of
              supported commands.

       MEMBARRIER_CMD_SHARED
              Execute a memory barrier on all threads running on  the  system.
              Upon  return from system call, the caller thread is ensured that
              all running threads have passed through a state where all memory
              accesses  to  user-space  addresses  match program order between
              entry to and return from the system  call  (non-running  threads
              are de facto in such a state). This covers threads from all pro=E2=80=90
              cesses running on the system.  This command returns 0.

       The flags argument needs to be 0. For future extensions.

       All memory accesses performed  in  program  order  from  each  targeted
       thread is guaranteed to be ordered with respect to sys_membarrier(). If
       we use the semantic "barrier()" to represent a compiler barrier forcing
       memory  accesses  to  be performed in program order across the barrier,
       and smp_mb() to represent explicit memory barriers forcing full  memory
       ordering  across  the barrier, we have the following ordering table for
       each pair of barrier(), sys_membarrier() and smp_mb():

       The pair ordering is detailed as (O: ordered, X: not ordered):

                              barrier()   smp_mb() sys_membarrier()
              barrier()          X           X            O
              smp_mb()           X           O            O
              sys_membarrier()   O           O            O

RETURN VALUE
       On success, these system calls return zero.  On error, -1 is  returned,
       and errno is set appropriately. For a given command, with flags
       argument set to 0, this system call is guaranteed to always return the
       same value until reboot.

ERRORS
       ENOSYS System call is not implemented.

       EINVAL Invalid arguments.

Linux                             2015-04-15                     MEMBARRIER(2)

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Nicholas Miell <nmiell@comcast.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Pranith Kumar <bobby.prani@gmail.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-11 15:21:34 -07:00
Andrea Arcangeli
1380fca084 userfaultfd: activate syscall
This activates the userfaultfd syscall.

[sfr@canb.auug.org.au: activate syscall fix]
[akpm@linux-foundation.org: don't enable userfaultfd on powerpc]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Andy Lutomirski
9dea5dc921 x86/entry/syscalls: Wire up 32-bit direct socket calls
On x86_64, there's no socketcall syscall; instead all of the
socket calls are real syscalls.  For 32-bit programs, we're
stuck offering the socketcall syscall, but it would be nice to
expose the direct calls as well.  This will enable seccomp to
filter socket calls (for new userspace only, but that's fine for
some applications) and it will provide a tiny performance boost.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Alexander Larsson <alexl@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Cosimo Cecchi <cosimo@endlessm.com>
Cc: Dan Nicholson <nicholson@endlessm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rajalakshmi Srinivasaraghavan <raji@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tulio Magno Quites Machado Filho <tuliom@linux.vnet.ibm.com>
Cc: libc-alpha <libc-alpha@sourceware.org>
Link: http://lkml.kernel.org/r/cb5138299d37d5800e2d135b01a7667fa6115854.1436912629.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-21 10:11:04 +02:00
Ingo Molnar
1f57d5d85b x86/asm/entry: Move the arch/x86/syscalls/ definitions to arch/x86/entry/syscalls/
The build time generated syscall definitions are entry code related, move
them into the arch/x86/entry/ directory.

Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-04 07:37:37 +02:00