We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task_stack.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/hotplug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/hotplug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/topology.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/topology.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 platform updates from Ingo Molnar:
"Misc platform updates: SGI UV4 support additions, intel-mid Merrifield
enhancements and purge of old code"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/platform/UV/NMI: Fix uneccessary kABI breakage
x86/platform/UV: Clean up the NMI code to match current coding style
x86/platform/UV: Ensure uv_system_init is called when necessary
x86/platform/UV: Initialize PCH GPP_D_0 NMI Pin to be NMI source
x86/platform/UV: Verify NMI action is valid, default is standard
x86/platform/UV: Add basic CPU NMI health check
x86/platform/UV: Add Support for UV4 Hubless NMIs
x86/platform/UV: Add Support for UV4 Hubless systems
x86/platform/UV: Clean up the UV APIC code
x86/platform/intel-mid: Move watchdog registration to arch_initcall()
x86/platform/intel-mid: Don't shadow error code of mp_map_gsi_to_irq()
x86/platform/intel-mid: Allocate RTC interrupt for Merrifield
x86/ioapic: Return suitable error code in mp_map_gsi_to_irq()
x86/platform/UV: Fix 2 socket config problem
x86/platform/UV: Fix panic with missing UVsystab support
x86/platform/intel-mid: Enable RTC on Intel Merrifield
x86/platform/intel: Remove PMIC GPIO block support
x86/platform/intel-mid: Make intel_scu_device_register() static
x86/platform/intel-mid: Enable GPIO keys on Merrifield
x86/platform/intel-mid: Get rid of duplication of IPC handler
...
Commit:
a33d331761 ("x86/CPU/AMD: Fix Bulldozer topology")
restored the initial approach we had with the Fam15h topology of
enumerating CU (Compute Unit) threads as cores. And this is still
correct - they're beefier than HT threads but still have some
shared functionality.
Our current approach has a problem with the Mad Max Steam game, for
example. Yves Dionne reported a certain "choppiness" while playing on
v4.9.5.
That problem stems most likely from the fact that the CU threads share
resources within one CU and when we schedule to a thread of a different
compute unit, this incurs latency due to migrating the working set to a
different CU through the caches.
When the thread siblings mask mirrors that aspect of the CUs and
threads, the scheduler pays attention to it and tries to schedule within
one CU first. Which takes care of the latency, of course.
Reported-by: Yves Dionne <yves.dionne@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.9
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20170205105022.8705-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the check to whether this is a UV system that needs initialization
from is_uv_system() to the internal uv_system_init() function. This is
because on a UV system without a HUB the is_uv_system() returns false.
But we still need some specific UV system initialization. See the
uv_system_init() for change to a quick check if UV is applicable. This
change should not increase overhead since is_uv_system() also called
into this same area.
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Russ Anderson <rja@hpe.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20170125163518.256403963@asylum.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
prefill_possible_map() reinitializes the cpu_possible_map by setting the
possible cpu bits and clearing all other bits up to NR_CPUS.
This is technically always correct because cpu_possible_map is statically
allocated and sized NR_CPUS. With CPUMASK_OFFSTACK and DEBUG_PER_CPU_MAPS
enabled the bounds check of cpu masks happens on nr_cpu_ids. nr_cpu_ids is
initialized to NR_CPUS and only limited after the set/clear bit loops have
been executed.
But if the system was booted with "nr_cpus=N" on the command line, where N
is < NR_CPUS then nr_cpu_ids is limited in the parameter parsing function
before prefill_possible_map() is invoked. As a consequence the cpumask
bounds check triggers when clearing the bits past nr_cpu_ids.
Add a helper which allows to reset cpu_possible_map w/o the bounds check
and then set only the possible bits which are well inside bounds.
Reported-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: 0x7f454c46@gmail.com
Cc: Jan Beulich <JBeulich@novell.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1612131836050.3415@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The logical package management has several issues:
- The APIC ids provided by ACPI are not required to be the same as the
initial APIC id which can be retrieved by CPUID. The APIC ids provided
by ACPI are those which are written by the BIOS into the APIC. The
initial id is set by hardware and can not be changed. The hardware
provided ids contain the real hardware package information.
Especially AMD sets the effective APIC id different from the hardware id
as they need to reserve space for the IOAPIC ids starting at id 0.
As a consequence those machines trigger the currently active firmware
bug printouts in dmesg, These are obviously wrong.
- Virtual machines have their own interesting of enumerating APICs and
packages which are not reliably covered by the current implementation.
The sizing of the mapping array has been tweaked to be generously large to
handle systems which provide a wrong core count when HT is disabled so the
whole magic which checks for space in the physical hotplug case is not
needed anymore.
Simplify the whole machinery and do the mapping when the CPU starts and the
CPUID derived physical package information is available. This solves the
observed problems on AMD machines and works for the virtualization issues
as well.
Remove the extra call from XEN cpu bringup code as it is not longer
required.
Fixes: d49597fd3b ("x86/cpu: Deal with broken firmware (VMWare/XEN)")
Reported-and-tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: M. Vefa Bicakci <m.v.b@runbox.com>
Cc: xen-devel <xen-devel@lists.xen.org>
Cc: Charles (Chas) Williams <ciwillia@brocade.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Alok Kataria <akataria@vmware.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1612121102260.3429@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 idle updates from Ingo Molnar:
"There were two bigger changes in this development cycle:
- remove idle notifiers:
32 files changed, 74 insertions(+), 803 deletions(-)
These notifiers were of questionable value and the main usecase,
the i7300 driver, was essentially unmaintained and can be removed,
plus modern power management concepts don't need the callback - so
use this golden opportunity and get rid of this opaque and fragile
callback from a latency sensitive code path.
(Len Brown, Thomas Gleixner)
- improve the AMD Erratum 400 workaround that used high overhead MSR
polling in the idle loop (Borisla Petkov, Thomas Gleixner)"
* 'x86-idle-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Remove empty idle.h header
x86/amd: Simplify AMD E400 aware idle routine
x86/amd: Check for the C1E bug post ACPI subsystem init
x86/bugs: Separate AMD E400 erratum and C1E bug
x86/cpufeature: Provide helper to set bugs bits
x86/idle: Remove enter_idle(), exit_idle()
x86: Remove x86_test_and_clear_bit_percpu()
x86/idle: Remove is_idle flag
x86/idle: Remove idle_notifier
i7300_idle: Remove this driver
Pull x86 FPU updates from Ingo Molnar:
"The main changes in this cycle were:
- do a large round of simplifications after all CPUs do 'eager' FPU
context switching in v4.9: remove CR0 twiddling, remove leftover
eager/lazy bts, etc (Andy Lutomirski)
- more FPU code simplifications: remove struct fpu::counter, clarify
nomenclature, remove unnecessary arguments/functions and better
structure the code (Rik van Riel)"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Remove clts()
x86/fpu: Remove stts()
x86/fpu: Handle #NM without FPU emulation as an error
x86/fpu, lguest: Remove CR0.TS support
x86/fpu, kvm: Remove host CR0.TS manipulation
x86/fpu: Remove irq_ts_save() and irq_ts_restore()
x86/fpu: Stop saving and restoring CR0.TS in fpu__init_check_bugs()
x86/fpu: Get rid of two redundant clts() calls
x86/fpu: Finish excising 'eagerfpu'
x86/fpu: Split old_fpu & new_fpu handling into separate functions
x86/fpu: Remove 'cpu' argument from __cpu_invalidate_fpregs_state()
x86/fpu: Split old & new FPU code paths
x86/fpu: Remove __fpregs_(de)activate()
x86/fpu: Rename lazy restore functions to "register state valid"
x86/fpu, kvm: Remove KVM vcpu->fpu_counter
x86/fpu: Remove struct fpu::counter
x86/fpu: Remove use_eager_fpu()
x86/fpu: Remove the XFEATURE_MASK_EAGER/LAZY distinction
x86/fpu: Hard-disable lazy FPU mode
x86/crypto, x86/fpu: Remove X86_FEATURE_EAGER_FPU #ifdef from the crc32c code
Pull x86 CPU updates from Ingo Molnar:
"The changes in this development cycle were:
- AMD CPU topology enhancements that are cleanups on current CPUs but
which enable future Fam17 hardware. (Yazen Ghannam)
- unify bugs.c and bugs_64.c (Borislav Petkov)
- remove the show_msr= boot option (Borislav Petkov)
- simplify a boot message (Borislav Petkov)"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/AMD: Clean up cpu_llc_id assignment per topology feature
x86/cpu: Get rid of the show_msr= boot option
x86/cpu: Merge bugs.c and bugs_64.c
x86/cpu: Remove the printk format specifier in "CPU0: "
Pull x86 asm updates from Ingo Molnar:
"The main changes in this development cycle were:
- a large number of call stack dumping/printing improvements: higher
robustness, better cross-context dumping, improved output, etc.
(Josh Poimboeuf)
- vDSO getcpu() performance improvement for future Intel CPUs with
the RDPID instruction (Andy Lutomirski)
- add two new Intel AVX512 features and the CPUID support
infrastructure for it: AVX512IFMA and AVX512VBMI. (Gayatri Kammela,
He Chen)
- more copy-user unification (Borislav Petkov)
- entry code assembly macro simplifications (Alexander Kuleshov)
- vDSO C/R support improvements (Dmitry Safonov)
- misc fixes and cleanups (Borislav Petkov, Paul Bolle)"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
scripts/decode_stacktrace.sh: Fix address line detection on x86
x86/boot/64: Use defines for page size
x86/dumpstack: Make stack name tags more comprehensible
selftests/x86: Add test_vdso to test getcpu()
x86/vdso: Use RDPID in preference to LSL when available
x86/dumpstack: Handle NULL stack pointer in show_trace_log_lvl()
x86/cpufeatures: Enable new AVX512 cpu features
x86/cpuid: Provide get_scattered_cpuid_leaf()
x86/cpuid: Cleanup cpuid_regs definitions
x86/copy_user: Unify the code by removing the 64-bit asm _copy_*_user() variants
x86/unwind: Ensure stack grows down
x86/vdso: Set vDSO pointer only after success
x86/prctl/uapi: Remove #ifdef for CHECKPOINT_RESTORE
x86/unwind: Detect bad stack return address
x86/dumpstack: Warn on stack recursion
x86/unwind: Warn on bad frame pointer
x86/decoder: Use stderr if insn sanity test fails
x86/decoder: Use stdout if insn decoder test is successful
mm/page_alloc: Remove kernel address exposure in free_reserved_area()
x86/dumpstack: Remove raw stack dump
...
Pull scheduler updates from Ingo Molnar:
"The main scheduler changes in this cycle were:
- support Intel Turbo Boost Max Technology 3.0 (TBM3) by introducig a
notion of 'better cores', which the scheduler will prefer to
schedule single threaded workloads on. (Tim Chen, Srinivas
Pandruvada)
- enhance the handling of asymmetric capacity CPUs further (Morten
Rasmussen)
- improve/fix load handling when moving tasks between task groups
(Vincent Guittot)
- simplify and clean up the cputime code (Stanislaw Gruszka)
- improve mass fork()ed task spread a.k.a. hackbench speedup (Vincent
Guittot)
- make struct kthread kmalloc()ed and related fixes (Oleg Nesterov)
- add uaccess atomicity debugging (when using access_ok() in the
wrong context), under CONFIG_DEBUG_ATOMIC_SLEEP=y (Peter Zijlstra)
- implement various fixes, cleanups and other enhancements (Daniel
Bristot de Oliveira, Martin Schwidefsky, Rafael J. Wysocki)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
sched/core: Use load_avg for selecting idlest group
sched/core: Fix find_idlest_group() for fork
kthread: Don't abuse kthread_create_on_cpu() in __kthread_create_worker()
kthread: Don't use to_live_kthread() in kthread_[un]park()
kthread: Don't use to_live_kthread() in kthread_stop()
Revert "kthread: Pin the stack via try_get_task_stack()/put_task_stack() in to_live_kthread() function"
kthread: Make struct kthread kmalloc'ed
x86/uaccess, sched/preempt: Verify access_ok() context
sched/x86: Make CONFIG_SCHED_MC_PRIO=y easier to enable
sched/x86: Change CONFIG_SCHED_ITMT to CONFIG_SCHED_MC_PRIO
x86/sched: Use #include <linux/mutex.h> instead of #include <asm/mutex.h>
cpufreq/intel_pstate: Use CPPC to get max performance
acpi/bus: Set _OSC for diverse core support
acpi/bus: Enable HWP CPPC objects
x86/sched: Add SD_ASYM_PACKING flags to x86 ITMT CPU
x86/sysctl: Add sysctl for ITMT scheduling feature
x86: Enable Intel Turbo Boost Max Technology 3.0
x86/topology: Define x86's arch_update_cpu_topology
sched: Extend scheduler's asym packing
sched/fair: Clean up the tunable parameter definitions
...
One include less is always a good thing(tm). Good riddance.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-6-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reorganize the E400 detection now that we have everything in place:
switch the CPUs to broadcast mode after the LAPIC has been initialized
and remove the facilities that were used previously on the idle path.
Unfortunately static_cpu_has_bug() cannpt be used in the E400 idle routine
because alternatives have been applied when the actual detection happens,
so the static switching does not take effect and the test will stay
false. Use boot_cpu_has_bug() instead which is definitely an improvement
over the RDMSR and the cpumask handling.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-5-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently after bringing up secondary CPUs all arches print "Brought up
%d CPUs". On x86 they also print the number of nodes that were brought
online.
It would be nice to also print the number of nodes on other arches.
Although we could override smp_announce() on the other ~10 NUMA aware
arches, it seems simpler to just always print the number of nodes. On
non-NUMA arches there is just always 1 node.
Having done that, smp_announce() is no longer weak, and seems small
enough to just pull directly into smp_init().
Also update the printing of "%d CPUs" to be smart when an SMP kernel is
booted on a single CPU system, or when only one CPU is available, eg:
smp: Brought up 2 nodes, 1 CPU
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: akpm@osdl.org
Cc: jgross@suse.com
Cc: ak@linux.intel.com
Cc: tim.c.chen@linux.intel.com
Cc: len.brown@intel.com
Cc: peterz@infradead.org
Cc: richard@nod.at
Cc: jolsa@redhat.com
Cc: boris.ostrovsky@oracle.com
Cc: mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1477460275-8266-2-git-send-email-mpe@ellerman.id.au
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We're using a literal, move it into the string.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161024173844.23038-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Apparently trying to poke a disabled or non-existent APIC
leads to a box that doesn't even boot. Let's not do that.
No real clue if this is the right fix, but at least my
P3 machine boots again.
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: dyoung@redhat.com
Cc: kexec@lists.infradead.org
Cc: stable@vger.kernel.org
Fixes: 2a51fe083e ("arch/x86: Handle non enumerated CPU after physical hotplug")
Link: http://lkml.kernel.org/r/1477102684-5092-1-git-send-email-ville.syrjala@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On 32-bit kernels, the initial idle stack calculation doesn't take into
account the TOP_OF_KERNEL_STACK_PADDING, making the stack end address
inconsistent with other tasks on 32-bit.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6cf569410bfa84cf923902fc4d628444cace94be.1474480779.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The __{fpu,cpu}_invalidate_fpregs_state() functions can only be used
to invalidate a resource they control. Document that, and change
the API a little bit to reflect that.
Go back to open coding the fpu_fpregs_owner_ctx write in the CPU
hotplug code, which should be the exception, and move __kernel_fpu_begin()
to this API.
This patch has no functional changes to the current code.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1476447331-21566-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a CPU is physically added to a system then the MADT table is not
updated.
If subsequently a kdump kernel is started on that physically added CPU then
the ACPI enumeration fails to provide the information for this CPU which is
now the boot CPU of the kdump kernel.
As a consequence, generic_processor_info() is not invoked for that CPU so
the number of enumerated processors is 0 and none of the initializations,
including the logical package id management, are performed.
We have code which relies on the correctness of the logical package map and
other information which is initialized via generic_processor_info().
Executing such code will result in undefined behaviour or kernel crashes.
This problem applies only to the kdump kernel because a normal kexec will
switch to the original boot CPU, which is enumerated in MADT, before
jumping into the kexec kernel.
The boot code already has a check for num_processors equal 0 in
prefill_possible_map(). We can use that check as an indicator that the
enumeration of the boot CPU did not happen and invoke generic_processor_info()
for it. That initializes the relevant data for the boot CPU and therefore
prevents subsequent failure.
[ tglx: Refined the code and rewrote the changelog ]
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Fixes: 1f12e32f4c ("x86/topology: Create logical package id")
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: dyoung@redhat.com
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: kexec@lists.infradead.org
Link: http://lkml.kernel.org/r/1475514432-27682-1-git-send-email-prarit@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Name the functions after the state they track, rather than the function
they currently enable. This should make it more obvious when we use the
fpu_register_state_valid() function for something else in the future.
Signed-off-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: pbonzini@redhat.com
Link: http://lkml.kernel.org/r/1475627678-20788-8-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull CPU hotplug updates from Thomas Gleixner:
"Yet another batch of cpu hotplug core updates and conversions:
- Provide core infrastructure for multi instance drivers so the
drivers do not have to keep custom lists.
- Convert custom lists to the new infrastructure. The block-mq custom
list conversion comes through the block tree and makes the diffstat
tip over to more lines removed than added.
- Handle unbalanced hotplug enable/disable calls more gracefully.
- Remove the obsolete CPU_STARTING/DYING notifier support.
- Convert another batch of notifier users.
The relayfs changes which conflicted with the conversion have been
shipped to me by Andrew.
The remaining lot is targeted for 4.10 so that we finally can remove
the rest of the notifiers"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
cpufreq: Fix up conversion to hotplug state machine
blk/mq: Reserve hotplug states for block multiqueue
x86/apic/uv: Convert to hotplug state machine
s390/mm/pfault: Convert to hotplug state machine
mips/loongson/smp: Convert to hotplug state machine
mips/octeon/smp: Convert to hotplug state machine
fault-injection/cpu: Convert to hotplug state machine
padata: Convert to hotplug state machine
cpufreq: Convert to hotplug state machine
ACPI/processor: Convert to hotplug state machine
virtio scsi: Convert to hotplug state machine
oprofile/timer: Convert to hotplug state machine
block/softirq: Convert to hotplug state machine
lib/irq_poll: Convert to hotplug state machine
x86/microcode: Convert to hotplug state machine
sh/SH-X3 SMP: Convert to hotplug state machine
ia64/mca: Convert to hotplug state machine
ARM/OMAP/wakeupgen: Convert to hotplug state machine
ARM/shmobile: Convert to hotplug state machine
arm64/FP/SIMD: Convert to hotplug state machine
...
Pull low-level x86 updates from Ingo Molnar:
"In this cycle this topic tree has become one of those 'super topics'
that accumulated a lot of changes:
- Add CONFIG_VMAP_STACK=y support to the core kernel and enable it on
x86 - preceded by an array of changes. v4.8 saw preparatory changes
in this area already - this is the rest of the work. Includes the
thread stack caching performance optimization. (Andy Lutomirski)
- switch_to() cleanups and all around enhancements. (Brian Gerst)
- A large number of dumpstack infrastructure enhancements and an
unwinder abstraction. The secret long term plan is safe(r) live
patching plus maybe another attempt at debuginfo based unwinding -
but all these current bits are standalone enhancements in a frame
pointer based debug environment as well. (Josh Poimboeuf)
- More __ro_after_init and const annotations. (Kees Cook)
- Enable KASLR for the vmemmap memory region. (Thomas Garnier)"
[ The virtually mapped stack changes are pretty fundamental, and not
x86-specific per se, even if they are only used on x86 right now. ]
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
x86/asm: Get rid of __read_cr4_safe()
thread_info: Use unsigned long for flags
x86/alternatives: Add stack frame dependency to alternative_call_2()
x86/dumpstack: Fix show_stack() task pointer regression
x86/dumpstack: Remove dump_trace() and related callbacks
x86/dumpstack: Convert show_trace_log_lvl() to use the new unwinder
oprofile/x86: Convert x86_backtrace() to use the new unwinder
x86/stacktrace: Convert save_stack_trace_*() to use the new unwinder
perf/x86: Convert perf_callchain_kernel() to use the new unwinder
x86/unwind: Add new unwind interface and implementations
x86/dumpstack: Remove NULL task pointer convention
fork: Optimize task creation by caching two thread stacks per CPU if CONFIG_VMAP_STACK=y
sched/core: Free the stack early if CONFIG_THREAD_INFO_IN_TASK
lib/syscall: Pin the task stack in collect_syscall()
x86/process: Pin the target stack in get_wchan()
x86/dumpstack: Pin the target stack when dumping it
kthread: Pin the stack via try_get_task_stack()/put_task_stack() in to_live_kthread() function
sched/core: Add try_get_task_stack() and put_task_stack()
x86/entry/64: Fix a minor comment rebase error
iommu/amd: Don't put completion-wait semaphore on stack
...
Pull x86 apic updates from Ingo Molnar:
"The main changes are:
- Persistent CPU/node numbering across CPU hotplug/unplug events.
This is a pretty involved series of changes that first fetches all
the information during bootup and then uses it for the various
hotplug/unplug methods. (Gu Zheng, Dou Liyang)
- IO-APIC hot-add/remove fixes and enhancements. (Rui Wang)
- ... various fixes, cleanups and enhancements"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
x86/apic: Fix silent & fatal merge conflict in __generic_processor_info()
acpi: Fix broken error check in map_processor()
acpi: Validate processor id when mapping the processor
acpi: Provide mechanism to validate processors in the ACPI tables
x86/acpi: Set persistent cpuid <-> nodeid mapping when booting
x86/acpi: Enable MADT APIs to return disabled apicids
x86/acpi: Introduce persistent storage for cpuid <-> apicid mapping
x86/acpi: Enable acpi to register all possible cpus at boot time
x86/numa: Online memory-less nodes at boot time
x86/apic: Get rid of apic_version[] array
x86/apic: Order irq_enter/exit() calls correctly vs. ack_APIC_irq()
x86/ioapic: Ignore root bridges without a companion ACPI device
x86/apic: Update comment about disabling processor focus
x86/smpboot: Check APIC ID before setting up default routing
x86/ioapic: Fix IOAPIC failing to request resource
x86/ioapic: Fix lost IOAPIC resource after hot-removal and hotadd
x86/ioapic: Fix setup_res() failing to get resource
x86/ioapic: Support hot-removal of IOAPICs present during boot
x86/ioapic: Change prototype of acpi_ioapic_add()
x86/apic, ACPI: Fix incorrect assignment when handling apic/x2apic entries
...
Current code can call set_cpu_sibling_map() and invoke sched_set_topology()
more than once (e.g. on CPU hot plug). When this happens after
sched_init_smp() has been called, we lose the NUMA topology extension to
sched_domain_topology in sched_init_numa(). This results in incorrect
topology when the sched domain is rebuilt.
This patch fixes the bug and issues warning if we call sched_set_topology()
after sched_init_smp().
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/1474485552-141429-2-git-send-email-srinivas.pandruvada@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Bring in the upstream modifications so we can fixup the silent merge
conflict which is introduced by this merge.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The array has a size of MAX_LOCAL_APIC, which can be as large as 32k, so it
can consume up to 128k.
The array has been there forever and was never used for anything useful
other than a version mismatch check which was introduced in 2009.
There is no reason to store the version in an array. The kernel is not
prepared to handle different APIC versions anyway, so the real important
part is to detect a version mismatch and warn about it, which can be done
with a single variable as well.
[ tglx: Massaged changelog ]
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Andy Lutomirski <luto@amacapital.net>
CC: Borislav Petkov <bp@alien8.de>
CC: Brian Gerst <brgerst@gmail.com>
CC: Mike Travis <travis@sgi.com>
Link: http://lkml.kernel.org/r/20160913181232.30815-1-dvlasenk@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the low-level context switch code to an out-of-line asm stub instead of
using complex inline asm. This allows constructing a new stack frame for the
child process to make it seamlessly flow to ret_from_fork without an extra
test and branch in __switch_to(). It also improves code generation for
__schedule() by using the C calling convention instead of clobbering all
registers.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1471106302-10159-5-git-send-email-brgerst@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is not a bugfix, but code optimization.
If the BSP's APIC ID in local APIC is unexpected,
a kernel panic will occur and the system will halt.
That means no need to enable APIC mode, and no reason
to set up the default routing for APIC.
The combination of default_setup_apic_routing() and
apic_bsp_setup() are used to enable APIC mode.
They two should be kept together, rather than being
separated by the codes of checking APIC ID.
Just like their usage in APIC_init_uniprocessor().
Signed-off-by: Wei Jiangang <weijg.fnst@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/1471576957-12961-1-git-send-email-weijg.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'stack_start' variable is similar in usage to 'initial_code' and
'initial_gs': they're all stored in head_64.S and they're all updated by
SMP and ACPI suspend before starting a CPU.
Rename it to 'initial_stack' to be consistent with the others.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/87063d773a3212051b77e17b0ee427f6582a5050.1471535549.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Frank reported kernel panic when he disabled several cores in BIOS
via following option:
Core Disable Bitmap(Hex) [0]
with number 0xFFE, which leaves 16 CPUs in system (out of 48).
The kernel panic below goes along with following messages:
smpboot: Max logical packages: 2^M
smpboot: APIC(0) Converting physical 0 to logical package 0^M
smpboot: APIC(20) Converting physical 1 to logical package 1^M
smpboot: APIC(40) Package 2 exceeds logical package map^M
smpboot: CPU 8 APICId 40 disabled^M
smpboot: APIC(60) Package 3 exceeds logical package map^M
smpboot: CPU 12 APICId 60 disabled^M
...
general protection fault: 0000 [#1] SMP^M
Modules linked in:^M
CPU: 15 PID: 1 Comm: swapper/0 Not tainted 4.7.0-rc5+ #1^M
Hardware name: SGI UV300/UV300, BIOS SGI UV 300 series BIOS 05/25/2016^M
task: ffff8801673e0000 ti: ffff8801673ac000 task.ti: ffff8801673ac000^M
RIP: 0010:[<ffffffff81014d54>] [<ffffffff81014d54>] uncore_change_context+0xd4/0x180^M
...
[<ffffffff810158ac>] uncore_event_init_cpu+0x6c/0x70^M
[<ffffffff81d8c91c>] intel_uncore_init+0x1c2/0x2dd^M
[<ffffffff81d8c75a>] ? uncore_cpu_setup+0x17/0x17^M
[<ffffffff81002190>] do_one_initcall+0x50/0x190^M
[<ffffffff810ab193>] ? parse_args+0x293/0x480^M
[<ffffffff81d87365>] kernel_init_freeable+0x1a5/0x249^M
[<ffffffff81d86a35>] ? set_debug_rodata+0x12/0x12^M
[<ffffffff816dc19e>] kernel_init+0xe/0x110^M
[<ffffffff816e93bf>] ret_from_fork+0x1f/0x40^M
[<ffffffff816dc190>] ? rest_init+0x80/0x80^M
The reason for the panic is wrong value of __max_logical_packages,
which lets logical_package_map uninitialized and the uncore code
relying on this map being properly initialized (maybe we should
add some safety checks there as well).
The __max_logical_packages is computed as:
DIV_ROUND_UP(total_cpus, ncpus);
- ncpus being number of cores
With above BIOS setup we get total_cpus == 16 which set
__max_logical_packages to 2 (ncpus is 12).
Once topology_update_package_map processes CPU with logical
pkg over 2 we display above messages and fail to initialize
the physical_to_logical_pkg map, which makes the uncore code
crash.
The fix is to remove logical_package_map bitmap completely
and keep and update the logical_packages number instead.
After we enumerate all the present CPUs, we check if the
enumerated logical packages count is within its computed
maximum from BIOS data.
If it's not the case, we set this maximum to the new enumerated
value and freeze any new addition of logical packages.
The freeze is because lot of init code like uncore/rapl/cqm
depends on having maximum logical package value set to allocate
their data, so we can't change it later on.
Prarit Bhargava tested the patch and confirms that it solves
the problem:
From dmidecode:
Core Count: 24
Core Enabled: 24
Thread Count: 48
Orig kernel boot log:
[ 0.464981] smpboot: Max logical packages: 19
[ 0.469861] smpboot: APIC(0) Converting physical 0 to logical package 0
[ 0.477261] smpboot: APIC(40) Converting physical 1 to logical package 1
[ 0.484760] smpboot: APIC(80) Converting physical 2 to logical package 2
[ 0.492258] smpboot: APIC(c0) Converting physical 3 to logical package 3
1. nr_cpus=8, should stop enumerating in package 0:
[ 0.533664] smpboot: APIC(0) Converting physical 0 to logical package 0
[ 0.539596] smpboot: Max logical packages: 19
2. max_cpus=8, should still enumerate all packages:
[ 0.526494] smpboot: APIC(0) Converting physical 0 to logical package 0
[ 0.532428] smpboot: APIC(40) Converting physical 1 to logical package 1
[ 0.538456] smpboot: APIC(80) Converting physical 2 to logical package 2
[ 0.544486] smpboot: APIC(c0) Converting physical 3 to logical package 3
[ 0.550524] smpboot: Max logical packages: 19
3. nr_cpus=49 ( 2 socket + 1 core on 3rd socket), should stop enumerating in
package 2:
[ 0.521378] smpboot: APIC(0) Converting physical 0 to logical package 0
[ 0.527314] smpboot: APIC(40) Converting physical 1 to logical package 1
[ 0.533345] smpboot: APIC(80) Converting physical 2 to logical package 2
[ 0.539368] smpboot: Max logical packages: 19
4. maxcpus=49, should still enumerate all packages:
[ 0.525591] smpboot: APIC(0) Converting physical 0 to logical package 0
[ 0.531525] smpboot: APIC(40) Converting physical 1 to logical package 1
[ 0.537547] smpboot: APIC(80) Converting physical 2 to logical package 2
[ 0.543579] smpboot: APIC(c0) Converting physical 3 to logical package 3
[ 0.549624] smpboot: Max logical packages: 19
5. kdump (nr_cpus=1) works as well.
Reported-by: Frank Ramsay <framsay@redhat.com>
Tested-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Reviewed-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160815101700.GA30090@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that Xen no longer allocates irqs in _cpu_up() we can restore
commit:
a899418167 ("hotplug: Prevent alloc/free of irq descriptors during cpu up/down")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: david.vrabel@citrix.com
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1470244948-17674-3-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 header cleanups from Ingo Molnar:
"This tree is a cleanup of the x86 tree reducing spurious uses of
module.h - which should improve build performance a bit"
* 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, crypto: Restore MODULE_LICENSE() to glue_helper.c so it loads
x86/apic: Remove duplicated include from probe_64.c
x86/ce4100: Remove duplicated include from ce4100.c
x86/headers: Include spinlock_types.h in x8664_ksyms_64.c for missing spinlock_t
x86/platform: Delete extraneous MODULE_* tags fromm ts5500
x86: Audit and remove any remaining unnecessary uses of module.h
x86/kvm: Audit and remove any unnecessary uses of module.h
x86/xen: Audit and remove any unnecessary uses of module.h
x86/platform: Audit and remove any unnecessary uses of module.h
x86/lib: Audit and remove any unnecessary uses of module.h
x86/kernel: Audit and remove any unnecessary uses of module.h
x86/mm: Audit and remove any unnecessary uses of module.h
x86: Don't use module.h just for AUTHOR / LICENSE tags
- Rework the cpufreq governor interface to make it more straightforward
and modify the conservative governor to avoid using transition
notifications (Rafael Wysocki).
- Rework the handling of frequency tables by the cpufreq core to make
it more efficient (Viresh Kumar).
- Modify the schedutil governor to reduce the number of wakeups it
causes to occur in cases when the CPU frequency doesn't need to be
changed (Steve Muckle, Viresh Kumar).
- Fix some minor issues and clean up code in the cpufreq core and
governors (Rafael Wysocki, Viresh Kumar).
- Add Intel Broxton support to the intel_pstate driver (Srinivas
Pandruvada).
- Fix problems related to the config TDP feature and to the validity
of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
Srinivas Pandruvada).
- Make intel_pstate update the cpu_frequency tracepoint even if
the frequency doesn't change to avoid confusing powertop (Rafael
Wysocki).
- Clean up the usage of __init/__initdata in intel_pstate, mark some
of its internal variables as __read_mostly and drop an unused
structure element from it (Jisheng Zhang, Carsten Emde).
- Clean up the usage of some duplicate MSR symbols in intel_pstate
and turbostat (Srinivas Pandruvada).
- Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
Adiga, Viresh Kumar, Ben Dooks).
- Fix a regression (introduced during the 4.5 cycle) in the
pcc-cpufreq driver by reverting the problematic commit (Andreas
Herrmann).
- Add support for Intel Denverton to intel_idle, clean up Broxton
support in it and make it explicitly non-modular (Jacob Pan,
Jan Beulich, Paul Gortmaker).
- Add support for Denverton and Ivy Bridge server to the Intel RAPL
power capping driver and make it more careful about the handing
of MSRs that may not be present (Jacob Pan, Xiaolong Wang).
- Fix resume from hibernation on x86-64 by making the CPU offline
during resume avoid using MONITOR/MWAIT in the "play dead" loop
which may lead to an inadvertent "revival" of a "dead" CPU and
a page fault leading to a kernel crash from it (Rafael Wysocki).
- Make memory management during resume from hibernation more
straightforward (Rafael Wysocki).
- Add debug features that should help to detect problems related
to hibernation and resume from it (Rafael Wysocki, Chen Yu).
- Clean up hibernation core somewhat (Rafael Wysocki).
- Prevent KASAN from instrumenting the hibernation core which leads
to large numbers of false-positives from it (James Morse).
- Prevent PM (hibernate and suspend) notifiers from being called
during the cleanup phase if they have not been called during the
corresponding preparation phase which is possible if one of the
other notifiers returns an error at that time (Lianwei Wang).
- Improve suspend-related debug printout in the tasks freezer and
clean up suspend-related console handling (Roger Lu, Borislav
Petkov).
- Update the AnalyzeSuspend script in the kernel sources to
version 4.2 (Todd Brandt).
- Modify the generic power domains framework to make it handle
system suspend/resume better (Ulf Hansson).
- Make the runtime PM framework avoid resuming devices synchronously
when user space changes the runtime PM settings for them and
improve its error reporting (Rafael Wysocki, Linus Walleij).
- Fix error paths in devfreq drivers (exynos, exynos-ppmu, exynos-bus)
and in the core, make some devfreq code explicitly non-modular and
change some of it into tristate (Bartlomiej Zolnierkiewicz,
Peter Chen, Paul Gortmaker).
- Add DT support to the generic PM clocks management code and make
it export some more symbols (Jon Hunter, Paul Gortmaker).
- Make the PCI PM core code slightly more robust against possible
driver errors (Andy Shevchenko).
- Make it possible to change DESTDIR and PREFIX in turbostat
(Andy Shevchenko).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJXl7/dAAoJEILEb/54YlRx+VgQAIQJOWvxKew3Yl02c/sdj9OT
5VNnFrzGzdcAPofvvG9qGq8B0Es1vYehJpwwOB21ri8EvYv0riIiU1yrqslObojQ
oaZOkSBpbIoKjGR4CpYA/A+feE+8EqIBdPGd+lx5a6oRdUi7tRVHBG9lyLO3FB/i
jan1q8dMpZsmu+Y+rVVHGnCVuIlIEqr2ZnZfCwDAulO2Arp/QFAh4kH08ELATvrl
bkPa25vq7/VMP/vCDzrfZKD5mUuKogIRu/J5wx4py1nE+FB35cKKyqBOgklLwAeY
UI8vjDhr/myNUs54AZlktOkq47TCYvjvhX9kmOxBjuWqFbRusU012IRek1fYPRIV
ZqbkqNX7UEVQwunAEg9AyFwyzEtOht93dQDT5RLEd4QzKuM76gmHpLeTGGMzE+nu
FnmF9JGl4DVwqpZl9yU2+hR2Mt3bP8OF8qYmNiGUB3KO4emPslhSd+6y8liA5Bx2
SJf0Gb//vaHCh3/uMnwAonYPqRkZvBLOMwuL1VUjNQfRMnQtDdgHMYB1aT/EglPA
8ww6j4J8rVRLAxvYQ3UEmNA/vBNclKXblRR18+JddEZP9/oX0ATfwnCCUpr839uk
xxyQhrm4/AI60+PHWCX4GG80YrKdOGTkF7LXCQZanVWjjuyF17rufegZ2YWLT07v
JU1Cmumfdy2jJluT8xsR
=uVGz
-----END PGP SIGNATURE-----
Merge tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"Again, the majority of changes go into the cpufreq subsystem, but
there are no big features this time. The cpufreq changes that stand
out somewhat are the governor interface rework and improvements
related to the handling of frequency tables. Apart from those, there
are fixes and new device/CPU IDs in drivers, cleanups and an
improvement of the new schedutil governor.
Next, there are some changes in the hibernation core, including a fix
for a nasty problem related to the MONITOR/MWAIT usage by CPU offline
during resume from hibernation, a few core improvements related to
memory management during resume, a couple of additional debug features
and cleanups.
Finally, we have some fixes and cleanups in the devfreq subsystem,
generic power domains framework improvements related to system
suspend/resume, support for some new chips in intel_idle and in the
power capping RAPL driver, a new version of the AnalyzeSuspend utility
and some assorted fixes and cleanups.
Specifics:
- Rework the cpufreq governor interface to make it more
straightforward and modify the conservative governor to avoid using
transition notifications (Rafael Wysocki).
- Rework the handling of frequency tables by the cpufreq core to make
it more efficient (Viresh Kumar).
- Modify the schedutil governor to reduce the number of wakeups it
causes to occur in cases when the CPU frequency doesn't need to be
changed (Steve Muckle, Viresh Kumar).
- Fix some minor issues and clean up code in the cpufreq core and
governors (Rafael Wysocki, Viresh Kumar).
- Add Intel Broxton support to the intel_pstate driver (Srinivas
Pandruvada).
- Fix problems related to the config TDP feature and to the validity
of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
Srinivas Pandruvada).
- Make intel_pstate update the cpu_frequency tracepoint even if the
frequency doesn't change to avoid confusing powertop (Rafael
Wysocki).
- Clean up the usage of __init/__initdata in intel_pstate, mark some
of its internal variables as __read_mostly and drop an unused
structure element from it (Jisheng Zhang, Carsten Emde).
- Clean up the usage of some duplicate MSR symbols in intel_pstate
and turbostat (Srinivas Pandruvada).
- Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
Adiga, Viresh Kumar, Ben Dooks).
- Fix a regression (introduced during the 4.5 cycle) in the
pcc-cpufreq driver by reverting the problematic commit (Andreas
Herrmann).
- Add support for Intel Denverton to intel_idle, clean up Broxton
support in it and make it explicitly non-modular (Jacob Pan, Jan
Beulich, Paul Gortmaker).
- Add support for Denverton and Ivy Bridge server to the Intel RAPL
power capping driver and make it more careful about the handing of
MSRs that may not be present (Jacob Pan, Xiaolong Wang).
- Fix resume from hibernation on x86-64 by making the CPU offline
during resume avoid using MONITOR/MWAIT in the "play dead" loop
which may lead to an inadvertent "revival" of a "dead" CPU and a
page fault leading to a kernel crash from it (Rafael Wysocki).
- Make memory management during resume from hibernation more
straightforward (Rafael Wysocki).
- Add debug features that should help to detect problems related to
hibernation and resume from it (Rafael Wysocki, Chen Yu).
- Clean up hibernation core somewhat (Rafael Wysocki).
- Prevent KASAN from instrumenting the hibernation core which leads
to large numbers of false-positives from it (James Morse).
- Prevent PM (hibernate and suspend) notifiers from being called
during the cleanup phase if they have not been called during the
corresponding preparation phase which is possible if one of the
other notifiers returns an error at that time (Lianwei Wang).
- Improve suspend-related debug printout in the tasks freezer and
clean up suspend-related console handling (Roger Lu, Borislav
Petkov).
- Update the AnalyzeSuspend script in the kernel sources to version
4.2 (Todd Brandt).
- Modify the generic power domains framework to make it handle system
suspend/resume better (Ulf Hansson).
- Make the runtime PM framework avoid resuming devices synchronously
when user space changes the runtime PM settings for them and
improve its error reporting (Rafael Wysocki, Linus Walleij).
- Fix error paths in devfreq drivers (exynos, exynos-ppmu,
exynos-bus) and in the core, make some devfreq code explicitly
non-modular and change some of it into tristate (Bartlomiej
Zolnierkiewicz, Peter Chen, Paul Gortmaker).
- Add DT support to the generic PM clocks management code and make it
export some more symbols (Jon Hunter, Paul Gortmaker).
- Make the PCI PM core code slightly more robust against possible
driver errors (Andy Shevchenko).
- Make it possible to change DESTDIR and PREFIX in turbostat (Andy
Shevchenko)"
* tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (89 commits)
Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency"
PM / hibernate: Introduce test_resume mode for hibernation
cpufreq: export cpufreq_driver_resolve_freq()
cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index()
PCI / PM: check all fields in pci_set_platform_pm()
cpufreq: acpi-cpufreq: use cached frequency mapping when possible
cpufreq: schedutil: map raw required frequency to driver frequency
cpufreq: add cpufreq_driver_resolve_freq()
cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT
intel_pstate: Update cpu_frequency tracepoint every time
cpufreq: intel_pstate: clean remnant struct element
PM / tools: scripts: AnalyzeSuspend v4.2
x86 / hibernate: Use hlt_play_dead() when resuming from hibernation
cpufreq: powernv: Replacing pstate_id with frequency table index
intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate()
PM / hibernate: Image data protection during restoration
PM / hibernate: Add missing braces in __register_nosave_region()
PM / hibernate: Clean up comments in snapshot.c
PM / hibernate: Clean up function headers in snapshot.c
PM / hibernate: Add missing braces in hibernate_setup()
...
Pull x86 mm updates from Ingo Molnar:
"Various x86 low level modifications:
- preparatory work to support virtually mapped kernel stacks (Andy
Lutomirski)
- support for 64-bit __get_user() on 32-bit kernels (Benjamin
LaHaise)
- (involved) workaround for Knights Landing CPU erratum (Dave Hansen)
- MPX enhancements (Dave Hansen)
- mremap() extension to allow remapping of the special VDSO vma, for
purposes of user level context save/restore (Dmitry Safonov)
- hweight and entry code cleanups (Borislav Petkov)
- bitops code generation optimizations and cleanups with modern GCC
(H. Peter Anvin)
- syscall entry code optimizations (Paolo Bonzini)"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
x86/mm/cpa: Add missing comment in populate_pdg()
x86/mm/cpa: Fix populate_pgd(): Stop trying to deallocate failed PUDs
x86/syscalls: Add compat_sys_preadv64v2/compat_sys_pwritev64v2
x86/smp: Remove unnecessary initialization of thread_info::cpu
x86/smp: Remove stack_smp_processor_id()
x86/uaccess: Move thread_info::addr_limit to thread_struct
x86/dumpstack: Rename thread_struct::sig_on_uaccess_error to sig_on_uaccess_err
x86/uaccess: Move thread_info::uaccess_err and thread_info::sig_on_uaccess_err to thread_struct
x86/dumpstack: When OOPSing, rewind the stack before do_exit()
x86/mm/64: In vmalloc_fault(), use CR3 instead of current->active_mm
x86/dumpstack/64: Handle faults when printing the "Stack: " part of an OOPS
x86/dumpstack: Try harder to get a call trace on stack overflow
x86/mm: Remove kernel_unmap_pages_in_pgd() and efi_cleanup_page_tables()
x86/mm/cpa: In populate_pgd(), don't set the PGD entry until it's populated
x86/mm/hotplug: Don't remove PGD entries in remove_pagetable()
x86/mm: Use pte_none() to test for empty PTE
x86/mm: Disallow running with 32-bit PTEs to work around erratum
x86/mm: Ignore A/D bits in pte/pmd/pud_none()
x86/mm: Move swap offset/type up in PTE to work around erratum
x86/entry: Inline enter_from_user_mode()
...
On Intel hardware, native_play_dead() uses mwait_play_dead() by
default and only falls back to the other methods if that fails.
That also happens during resume from hibernation, when the restore
(boot) kernel runs disable_nonboot_cpus() to take all of the CPUs
except for the boot one offline.
However, that is problematic, because the address passed to
__monitor() in mwait_play_dead() is likely to be written to in the
last phase of hibernate image restoration and that causes the "dead"
CPU to start executing instructions again. Unfortunately, the page
containing the address in that CPU's instruction pointer may not be
valid any more at that point.
First, that page may have been overwritten with image kernel memory
contents already, so the instructions the CPU attempts to execute may
simply be invalid. Second, the page tables previously used by that
CPU may have been overwritten by image kernel memory contents, so the
address in its instruction pointer is impossible to resolve then.
A report from Varun Koyyalagunta and investigation carried out by
Chen Yu show that the latter sometimes happens in practice.
To prevent it from happening, temporarily change the smp_ops.play_dead
pointer during resume from hibernation so that it points to a special
"play dead" routine which uses hlt_play_dead() and avoids the
inadvertent "revivals" of "dead" CPUs this way.
A slightly unpleasant consequence of this change is that if the
system is hibernated with one or more CPUs offline, it will generally
draw more power after resume than it did before hibernation, because
the physical state entered by CPUs via hlt_play_dead() is higher-power
than the mwait_play_dead() one in the majority of cases. It is
possible to work around this, but it is unclear how much of a problem
that's going to be in practice, so the workaround will be implemented
later if it turns out to be necessary.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=106371
Reported-by: Varun Koyyalagunta <cpudebug@centtech.com>
Original-by: Chen Yu <yu.c.chen@intel.com>
Tested-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
It's statically initialized to zero -- no need to dynamically
initialize it to zero as well.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6cf6314dce3051371a913ee19d1b88e29c68c560.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed. Build testing
revealed some implicit header usage that was fixed up accordingly.
Note that some bool/obj-y instances remain since module.h is
the header for some exception table entry stuff, and for things
like __init_or_module (code that is tossed when MODULES=n).
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-4-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For SMT specific workarounds it is useful to know if SMT is active
on any online CPU in the system. This currently requires a loop
over all online CPUs.
Add a global variable that is updated with the maximum number
of smt threads on any CPU on online/offline, and use it for
topology_max_smt_threads()
The single call is easier to use than a loop.
Not exported to user space because user space already can use
the existing sibling interfaces to find this out.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/1463703002-19686-2-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were:
- MSR access API fixes and enhancements (Andy Lutomirski)
- early exception handling improvements (Andy Lutomirski)
- user-space FS/GS prctl usage fixes and improvements (Andy
Lutomirski)
- Remove the cpu_has_*() APIs and replace them with equivalents
(Borislav Petkov)
- task switch micro-optimization (Brian Gerst)
- 32-bit entry code simplification (Denys Vlasenko)
- enhance PAT handling in enumated CPUs (Toshi Kani)
... and lots of other cleanups/fixlets"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
x86/arch_prctl/64: Restore accidentally removed put_cpu() in ARCH_SET_GS
x86/entry/32: Remove asmlinkage_protect()
x86/entry/32: Remove GET_THREAD_INFO() from entry code
x86/entry, sched/x86: Don't save/restore EFLAGS on task switch
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs
selftests/x86/ldt_gdt: Test set_thread_area() deletion of an active segment
x86/tls: Synchronize segment registers in set_thread_area()
x86/asm/64: Rename thread_struct's fs and gs to fsbase and gsbase
x86/arch_prctl/64: Remove FSBASE/GSBASE < 4G optimization
x86/segments/64: When load_gs_index fails, clear the base
x86/segments/64: When loadsegment(fs, ...) fails, clear the base
x86/asm: Make asm/alternative.h safe from assembly
x86/asm: Stop depending on ptrace.h in alternative.h
x86/entry: Rename is_{ia32,x32}_task() to in_{ia32,x32}_syscall()
x86/asm: Make sure verify_cpu() has a good stack
x86/extable: Add a comment about early exception handlers
x86/msr: Set the return value to zero when native_rdmsr_safe() fails
x86/paravirt: Make "unsafe" MSR accesses unsafe even if PARAVIRT=y
x86/paravirt: Add paravirt_{read,write}_msr()
x86/msr: Carry on after a non-"safe" MSR access fails
...
Joseph reported that a XEN guest dies with a division by 0 in the package
topology setup code. This happens if cpu_info.x86_max_cores is zero.
Handle that case and emit a warning. This does not fix the underlying XEN bug,
but makes the code more robust.
Reported-and-tested-by: Joseph Salisbury <joseph.salisbury@canonical.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1605062046270.3540@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>