Do not hardcode is_smm so that all the architectural conditions for
blocking SMIs are listed in a single place. Well, in two places because
this introduces some code duplication between Intel and AMD.
This ensures that nested SVM obeys GIF in kvm_vcpu_has_events.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Re-request KVM_REQ_EVENT if vcpu_enter_guest() bails after processing
pending requests and an immediate exit was requested. This fixes a bug
where a pending event, e.g. VMX preemption timer, is delayed and/or lost
if the exit was deferred due to something other than a higher priority
_injected_ event, e.g. due to a pending nested VM-Enter. This bug only
affects the !injected case as kvm_x86_ops.cancel_injection() sets
KVM_REQ_EVENT to redo the injection, but that's purely serendipitous
behavior with respect to the deferred event.
Note, emulated preemption timer isn't the only event that can be
affected, it simply happens to be the only event where not re-requesting
KVM_REQ_EVENT is blatantly visible to the guest.
Fixes: f4124500c2 ("KVM: nVMX: Fully emulate preemption timer")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a kvm_x86_ops hook to detect a nested pending "hypervisor timer" and
use it to effectively open a window for servicing the expired timer.
Like pending SMIs on VMX, opening a window simply means requesting an
immediate exit.
This fixes a bug where an expired VMX preemption timer (for L2) will be
delayed and/or lost if a pending exception is injected into L2. The
pending exception is rightly prioritized by vmx_check_nested_events()
and injected into L2, with the preemption timer left pending. Because
no window opened, L2 is free to run uninterrupted.
Fixes: f4124500c2 ("KVM: nVMX: Fully emulate preemption timer")
Reported-by: Jim Mattson <jmattson@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Peter Shier <pshier@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-3-sean.j.christopherson@intel.com>
[Check it in kvm_vcpu_has_events too, to ensure that the preemption
timer is serviced promptly even if the vCPU is halted and L1 is not
intercepting HLT. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Though rdpkru and wrpkru are contingent upon CR4.PKE, the PKRU
resource isn't. It can be read with XSAVE and written with XRSTOR.
So, if we don't set the guest PKRU value here(kvm_load_guest_xsave_state),
the guest can read the host value.
In case of kvm_load_host_xsave_state, guest with CR4.PKE clear could
potentially use XRSTOR to change the host PKRU value.
While at it, move pkru state save/restore to common code and the
host_pkru field to kvm_vcpu_arch. This will let SVM support protection keys.
Cc: stable@vger.kernel.org
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <158932794619.44260.14508381096663848853.stgit@naples-babu.amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The commit 64b5bd2704 ("KVM: nSVM: ignore L1 interrupt window
while running L2 with V_INTR_MASKING=1") introduced a WARN_ON,
which checks if AVIC is enabled when trying to set V_IRQ
in the VMCB for enabling irq window.
The following warning is triggered because the requesting vcpu
(to deactivate AVIC) does not get to process APICv update request
for itself until the next #vmexit.
WARNING: CPU: 0 PID: 118232 at arch/x86/kvm/svm/svm.c:1372 enable_irq_window+0x6a/0xa0 [kvm_amd]
RIP: 0010:enable_irq_window+0x6a/0xa0 [kvm_amd]
Call Trace:
kvm_arch_vcpu_ioctl_run+0x6e3/0x1b50 [kvm]
? kvm_vm_ioctl_irq_line+0x27/0x40 [kvm]
? _copy_to_user+0x26/0x30
? kvm_vm_ioctl+0xb3e/0xd90 [kvm]
? set_next_entity+0x78/0xc0
kvm_vcpu_ioctl+0x236/0x610 [kvm]
ksys_ioctl+0x8a/0xc0
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x58/0x210
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes by sending APICV update request to all other vcpus, and
immediately update APIC for itself.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Link: https://lkml.org/lkml/2020/5/2/167
Fixes: 64b5bd2704 ("KVM: nSVM: ignore L1 interrupt window while running L2 with V_INTR_MASKING=1")
Message-Id: <1588818939-54264-1-git-send-email-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows making request to all other vcpus except the one
specified in the parameter.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <1588771076-73790-2-git-send-email-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are two issues with KVM_EXIT_DEBUG on AMD, whose root cause is the
different handling of DR6 on intercepted #DB exceptions on Intel and AMD.
On Intel, #DB exceptions transmit the DR6 value via the exit qualification
field of the VMCS, and the exit qualification only contains the description
of the precise event that caused a vmexit.
On AMD, instead the DR6 field of the VMCB is filled in as if the #DB exception
was to be injected into the guest. This has two effects when guest debugging
is in use:
* the guest DR6 is clobbered
* the kvm_run->debug.arch.dr6 field can accumulate more debug events, rather
than just the last one that happened (the testcase in the next patch covers
this issue).
This patch fixes both issues by emulating, so to speak, the Intel behavior
on AMD processors. The important observation is that (after the previous
patches) the VMCB value of DR6 is only ever observable from the guest is
KVM_DEBUGREG_WONT_EXIT is set. Therefore we can actually set vmcb->save.dr6
to any value we want as long as KVM_DEBUGREG_WONT_EXIT is clear, which it
will be if guest debugging is enabled.
Therefore it is possible to enter the guest with an all-zero DR6,
reconstruct the #DB payload from the DR6 we get at exit time, and let
kvm_deliver_exception_payload move the newly set bits into vcpu->arch.dr6.
Some extra bits may be included in the payload if KVM_DEBUGREG_WONT_EXIT
is set, but this is harmless.
This may not be the most optimized way to deal with this, but it is
simple and, being confined within SVM code, it gets rid of the set_dr6
callback and kvm_update_dr6.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_x86_ops.set_dr6 is only ever called with vcpu->arch.dr6 as the
second argument. Ensure that the VMCB value is synchronized to
vcpu->arch.dr6 on #DB (both "normal" and nested) and nested vmentry, so
that the current value of DR6 is always available in vcpu->arch.dr6.
The get_dr6 callback can just access vcpu->arch.dr6 and becomes redundant.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When single-step triggered with KVM_SET_GUEST_DEBUG, we should fill in the pc
value with current linear RIP rather than the cached singlestep address.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20200505205000.188252-3-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Go through kvm_queue_exception_p so that the payload is correctly delivered
through the exit qualification, and add a kvm_update_dr6 call to
kvm_deliver_exception_payload that is needed on AMD.
Reported-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_CAP_SET_GUEST_DEBUG should be supported for x86 however it's not declared
as supported. My wild guess is that userspaces like QEMU are using "#ifdef
KVM_CAP_SET_GUEST_DEBUG" to check for the capability instead, but that could be
wrong because the compilation host may not be the runtime host.
The userspace might still want to keep the old "#ifdef" though to not break the
guest debug on old kernels.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20200505154750.126300-1-peterx@redhat.com>
[Do the same for PPC and s390. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using CPUID data can be useful for the processor compatibility
check, but that's it. Using it to compute guest-reserved bits
can have both false positives (such as LA57 and UMIP which we
are already handling) and false negatives: in particular, with
this patch we don't allow anymore a KVM guest to set CR4.PKE
when CR4.PKE is clear on the host.
Fixes: b9dd21e104 ("KVM: x86: simplify handling of PKRU")
Reported-by: Jim Mattson <jmattson@google.com>
Tested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean up some of the patching of kvm_x86_ops, by moving kvm_x86_ops related to
nested virtualization into a separate struct.
As a result, these ops will always be non-NULL on VMX. This is not a problem:
* check_nested_events is only called if is_guest_mode(vcpu) returns true
* get_nested_state treats VMXOFF state the same as nested being disabled
* set_nested_state fails if you attempt to set nested state while
nesting is disabled
* nested_enable_evmcs could already be called on a CPU without VMX enabled
in CPUID.
* nested_get_evmcs_version was fixed in the previous patch
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both Intel and AMD now implement it, so there is no need to check if the
callback is implemented.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In earlier versions of kvm, 'kvm_run' was an independent structure
and was not included in the vcpu structure. At present, 'kvm_run'
is already included in the vcpu structure, so the parameter
'kvm_run' is redundant.
This patch simplifies the function definition, removes the extra
'kvm_run' parameter, and extracts it from the 'kvm_vcpu' structure
if necessary.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Message-Id: <20200416051057.26526-1-tianjia.zhang@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
IPI and Timer cause the main MSRs write vmexits in cloud environment
observation, let's optimize virtual IPI latency more aggressively to
inject target IPI as soon as possible.
Running kvm-unit-tests/vmexit.flat IPI testing on SKX server, disable
adaptive advance lapic timer and adaptive halt-polling to avoid the
interference, this patch can give another 7% improvement.
w/o fastpath -> x86.c fastpath 4238 -> 3543 16.4%
x86.c fastpath -> vmx.c fastpath 3543 -> 3293 7%
w/o fastpath -> vmx.c fastpath 4238 -> 3293 22.3%
Cc: Haiwei Li <lihaiwei@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200410174703.1138-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The macros VM_STAT and VCPU_STAT are redundantly implemented in multiple
files, each used by a different architecure to initialize the debugfs
entries for statistics. Since they all have the same purpose, they can be
unified in a single common definition in include/linux/kvm_host.h
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20200414155625.20559-1-eesposit@redhat.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename functions and variables in kvm_mmu_new_cr3() and related code to
replace "cr3" with "pgd", i.e. continue the work started by commit
727a7e27cf ("KVM: x86: rename set_cr3 callback and related flags to
load_mmu_pgd"). kvm_mmu_new_cr3() and company are not always loading a
new CR3, e.g. when nested EPT is enabled "cr3" is actually an EPTP.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-37-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a separate "skip" override for MMU sync, a future change to avoid
TLB flushes on nested VMX transitions may need to sync the MMU even if
the TLB flush is unnecessary.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-32-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the retrieval of the HPA associated with L1's APIC access page into
VMX code to avoid unnecessarily calling gfn_to_page(), e.g. when the
vCPU is in guest mode (L2). Alternatively, the optimization logic in
VMX could be mirrored into the common x86 code, but that will get ugly
fast when further optimizations are introduced.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-29-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add KVM_REQ_TLB_FLUSH_CURRENT to allow optimized TLB flushing of VMX's
EPTP/VPID contexts[*] from the KVM MMU and/or in a deferred manner, e.g.
to flush L2's context during nested VM-Enter.
Convert KVM_REQ_TLB_FLUSH to KVM_REQ_TLB_FLUSH_CURRENT in flows where
the flush is directly associated with vCPU-scoped instruction emulation,
i.e. MOV CR3 and INVPCID.
Add a comment in vmx_vcpu_load_vmcs() above its KVM_REQ_TLB_FLUSH to
make it clear that it deliberately requests a flush of all contexts.
Service any pending flush request on nested VM-Exit as it's possible a
nested VM-Exit could occur after requesting a flush for L2. Add the
same logic for nested VM-Enter even though it's _extremely_ unlikely
for flush to be pending on nested VM-Enter, but theoretically possible
(in the future) due to RSM (SMM) emulation.
[*] Intel also has an Address Space Identifier (ASID) concept, e.g.
EPTP+VPID+PCID == ASID, it's just not documented in the SDM because
the rules of invalidation are different based on which piece of the
ASID is being changed, i.e. whether the EPTP, VPID, or PCID context
must be invalidated.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-25-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename ->tlb_flush() to ->tlb_flush_all() in preparation for adding a
new hook to flush only the current ASID/context.
Opportunstically replace the comment in vmx_flush_tlb() that explains
why it flushes all EPTP/VPID contexts with a comment explaining why it
unconditionally uses INVEPT when EPT is enabled. I.e. rely on the "all"
part of the name to clarify why it does global INVEPT/INVVPID.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-23-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop @invalidate_gpa from ->tlb_flush() and kvm_vcpu_flush_tlb() now
that all callers pass %true for said param, or ignore the param (SVM has
an internal call to svm_flush_tlb() in svm_flush_tlb_guest that somewhat
arbitrarily passes %false).
Remove __vmx_flush_tlb() as it is no longer used.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-17-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V PV TLB flush mechanism does TLB flush on behalf of the guest
so doing tlb_flush_all() is an overkill, switch to using tlb_flush_guest()
(just like KVM PV TLB flush mechanism) instead. Introduce
KVM_REQ_HV_TLB_FLUSH to support the change.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a dedicated hook to handle flushing TLB entries on behalf of the
guest, i.e. for a paravirtualized TLB flush, and use it directly instead
of bouncing through kvm_vcpu_flush_tlb().
For VMX, change the effective implementation implementation to never do
INVEPT and flush only the current context, i.e. to always flush via
INVVPID(SINGLE_CONTEXT). The INVEPT performed by __vmx_flush_tlb() when
@invalidate_gpa=false and enable_vpid=0 is unnecessary, as it will only
flush guest-physical mappings; linear and combined mappings are flushed
by VM-Enter when VPID is disabled, and changes in the guest pages tables
do not affect guest-physical mappings.
When EPT and VPID are enabled, doing INVVPID is not required (by Intel's
architecture) to invalidate guest-physical mappings, i.e. TLB entries
that cache guest-physical mappings can live across INVVPID as the
mappings are associated with an EPTP, not a VPID. The intent of
@invalidate_gpa is to inform vmx_flush_tlb() that it must "invalidate
gpa mappings", i.e. do INVEPT and not simply INVVPID. Other than nested
VPID handling, which now calls vpid_sync_context() directly, the only
scenario where KVM can safely do INVVPID instead of INVEPT (when EPT is
enabled) is if KVM is flushing TLB entries from the guest's perspective,
i.e. is only required to invalidate linear mappings.
For SVM, flushing TLB entries from the guest's perspective can be done
by flushing the current ASID, as changes to the guest's page tables are
associated only with the current ASID.
Adding a dedicated ->tlb_flush_guest() paves the way toward removing
@invalidate_gpa, which is a potentially dangerous control flag as its
meaning is not exactly crystal clear, even for those who are familiar
with the subtleties of what mappings Intel CPUs are/aren't allowed to
keep across various invalidation scenarios.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-15-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When injecting a page fault or EPT violation/misconfiguration, KVM is
not syncing any shadow PTEs associated with the faulting address,
including those in previous MMUs that are associated with L1's current
EPTP (in a nested EPT scenario), nor is it flushing any hardware TLB
entries. All this is done by kvm_mmu_invalidate_gva.
Page faults that are either !PRESENT or RSVD are exempt from the flushing,
as the CPU is not allowed to cache such translations.
Signed-off-by: Junaid Shahid <junaids@google.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reconstruct the kvm_mmu to be used for page fault injection, we
can simply use fault->nested_page_fault. This matches how
fault->nested_page_fault is assigned in the first place by
FNAME(walk_addr_generic).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Linux 3.14 unconditionally reads the RAPL PMU MSRs on boot, without handling
General Protection Faults on reading those MSRs. Rather than injecting a #GP,
which prevents boot, handle the MSRs by returning 0 for their data. Zero was
checked to be safe by code review of the RAPL PMU driver and in discussion
with the original driver author (eranian@google.com).
Signed-off-by: Venkatesh Srinivas <venkateshs@google.com>
Signed-off-by: Jon Cargille <jcargill@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200416184254.248374-1-jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes a NULL pointer dereference, caused by the PIT firing an interrupt
before the interrupt table has been initialized.
SET_PIT2 can race with the creation of the IRQchip. In particular,
if SET_PIT2 is called with a low PIT timer period (after the creation of
the IOAPIC, but before the instantiation of the irq routes), the PIT can
fire an interrupt at an uninitialized table.
Signed-off-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Jon Cargille <jcargill@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200416191152.259434-1-jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Export the page fault propagation helper so that VMX can use it to
correctly emulate TLB invalidation on page faults in an upcoming patch.
In the (hopefully) not-too-distant future, SGX virtualization will also
want access to the helper for injecting page faults to the correct level
(L1 vs. L2) when emulating ENCLS instructions.
Rename the function to kvm_inject_emulated_page_fault() to clarify that
it is (a) injecting a fault and (b) only for page faults. WARN if it's
invoked with an exception other than PF_VECTOR.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-6-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Except destination shorthand, a destination value 0xffffffff is used to
broadcast interrupts, let's also filter out this for single target IPI
fastpath.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1585815626-28370-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* GICv4.1 support
* 32bit host removal
PPC:
* secure (encrypted) using under the Protected Execution Framework
ultravisor
s390:
* allow disabling GISA (hardware interrupt injection) and protected
VMs/ultravisor support.
x86:
* New dirty bitmap flag that sets all bits in the bitmap when dirty
page logging is enabled; this is faster because it doesn't require bulk
modification of the page tables.
* Initial work on making nested SVM event injection more similar to VMX,
and less buggy.
* Various cleanups to MMU code (though the big ones and related
optimizations were delayed to 5.8). Instead of using cr3 in function
names which occasionally means eptp, KVM too has standardized on "pgd".
* A large refactoring of CPUID features, which now use an array that
parallels the core x86_features.
* Some removal of pointer chasing from kvm_x86_ops, which will also be
switched to static calls as soon as they are available.
* New Tigerlake CPUID features.
* More bugfixes, optimizations and cleanups.
Generic:
* selftests: cleanups, new MMU notifier stress test, steal-time test
* CSV output for kvm_stat.
KVM/MIPS has been broken since 5.5, it does not compile due to a patch committed
by MIPS maintainers. I had already prepared a fix, but the MIPS maintainers
prefer to fix it in generic code rather than KVM so they are taking care of it.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl6GOnIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMfxwf/ZKLZiRoaovXCOG71M/eHtQb8ZIqU
3MPy+On3eC5Sk/aBxWUL9EFZsbYG6kYdbZ1VOvG9XPBoLlnkDSm/IR0kaELHtnjj
oGVda/tvGn46Ne39y8xBptmb91WDcWH0vFthT/CwlMxAw3xjr+gG7Qyo+8F2CW6m
SSSuLiHSBnyO1cQKruBTHZ8qnR8LlnfXEqtd6Y4LFLic0LbLIoIdRcT3wjQrcZrm
Djd7wbTEYZjUfoqZ72ekwEDUsONcDLDSKcguDO9pSMSCGhpxCVT5Vy68KRpoIMs2
nzNWDKjvqQo5zb2+GWxJgkd12Hv+n7PCXZMbVrWBu1pQsewUns9m4mkpGw==
=6fGt
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- GICv4.1 support
- 32bit host removal
PPC:
- secure (encrypted) using under the Protected Execution Framework
ultravisor
s390:
- allow disabling GISA (hardware interrupt injection) and protected
VMs/ultravisor support.
x86:
- New dirty bitmap flag that sets all bits in the bitmap when dirty
page logging is enabled; this is faster because it doesn't require
bulk modification of the page tables.
- Initial work on making nested SVM event injection more similar to
VMX, and less buggy.
- Various cleanups to MMU code (though the big ones and related
optimizations were delayed to 5.8). Instead of using cr3 in
function names which occasionally means eptp, KVM too has
standardized on "pgd".
- A large refactoring of CPUID features, which now use an array that
parallels the core x86_features.
- Some removal of pointer chasing from kvm_x86_ops, which will also
be switched to static calls as soon as they are available.
- New Tigerlake CPUID features.
- More bugfixes, optimizations and cleanups.
Generic:
- selftests: cleanups, new MMU notifier stress test, steal-time test
- CSV output for kvm_stat"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (277 commits)
x86/kvm: fix a missing-prototypes "vmread_error"
KVM: x86: Fix BUILD_BUG() in __cpuid_entry_get_reg() w/ CONFIG_UBSAN=y
KVM: VMX: Add a trampoline to fix VMREAD error handling
KVM: SVM: Annotate svm_x86_ops as __initdata
KVM: VMX: Annotate vmx_x86_ops as __initdata
KVM: x86: Drop __exit from kvm_x86_ops' hardware_unsetup()
KVM: x86: Copy kvm_x86_ops by value to eliminate layer of indirection
KVM: x86: Set kvm_x86_ops only after ->hardware_setup() completes
KVM: VMX: Configure runtime hooks using vmx_x86_ops
KVM: VMX: Move hardware_setup() definition below vmx_x86_ops
KVM: x86: Move init-only kvm_x86_ops to separate struct
KVM: Pass kvm_init()'s opaque param to additional arch funcs
s390/gmap: return proper error code on ksm unsharing
KVM: selftests: Fix cosmetic copy-paste error in vm_mem_region_move()
KVM: Fix out of range accesses to memslots
KVM: X86: Micro-optimize IPI fastpath delay
KVM: X86: Delay read msr data iff writes ICR MSR
KVM: PPC: Book3S HV: Add a capability for enabling secure guests
KVM: arm64: GICv4.1: Expose HW-based SGIs in debugfs
KVM: arm64: GICv4.1: Allow non-trapping WFI when using HW SGIs
...
Replace the kvm_x86_ops pointer in common x86 with an instance of the
struct to save one pointer dereference when invoking functions. Copy the
struct by value to set the ops during kvm_init().
Arbitrarily use kvm_x86_ops.hardware_enable to track whether or not the
ops have been initialized, i.e. a vendor KVM module has been loaded.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200321202603.19355-7-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set kvm_x86_ops with the vendor's ops only after ->hardware_setup()
completes to "prevent" using kvm_x86_ops before they are ready, i.e. to
generate a null pointer fault instead of silently consuming unconfigured
state.
An alternative implementation would be to have ->hardware_setup()
return the vendor's ops, but that would require non-trivial refactoring,
and would arguably result in less readable code, e.g. ->hardware_setup()
would need to use ERR_PTR() in multiple locations, and each vendor's
declaration of the runtime ops would be less obvious.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200321202603.19355-6-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the kvm_x86_ops functions that are used only within the scope of
kvm_init() into a separate struct, kvm_x86_init_ops. In addition to
identifying the init-only functions without restorting to code comments,
this also sets the stage for waiting until after ->hardware_setup() to
set kvm_x86_ops. Setting kvm_x86_ops after ->hardware_setup() is
desirable as many of the hooks are not usable until ->hardware_setup()
completes.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200321202603.19355-3-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass @opaque to kvm_arch_hardware_setup() and
kvm_arch_check_processor_compat() to allow architecture specific code to
reference @opaque without having to stash it away in a temporary global
variable. This will enable x86 to separate its vendor specific callback
ops, which are passed via @opaque, into "init" and "runtime" ops without
having to stash away the "init" ops.
No functional change intended.
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Tested-by: Cornelia Huck <cohuck@redhat.com> #s390
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200321202603.19355-2-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Core:
- Consolidation of the vDSO build infrastructure to address the
difficulties of cross-builds for ARM64 compat vDSO libraries by
restricting the exposure of header content to the vDSO build.
This is achieved by splitting out header content into separate
headers. which contain only the minimaly required information which is
necessary to build the vDSO. These new headers are included from the
kernel headers and the vDSO specific files.
- Enhancements to the generic vDSO library allowing more fine grained
control over the compiled in code, further reducing architecture
specific storage and preparing for adopting the generic library by PPC.
- Cleanup and consolidation of the exit related code in posix CPU timers.
- Small cleanups and enhancements here and there
Drivers:
- The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support
- Correct the clock rate of PIT64b global clock
- setup_irq() cleanup
- Preparation for PWM and suspend support for the TI DM timer
- Expand the fttmr010 driver to support ast2600 systems
- The usual small fixes, enhancements and cleanups all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B+QETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofJ5D/94s5fpaqiuNcaAsLq2D3DRIrTnqxx7
yEeAOPcbYV1bM1SgY/M83L5yGc2S8ny787e26abwRTCZhZV3eAmRTphIFFIZR0Xk
xS+i67odscbdJTRtztKj3uQ9rFxefszRuphyaa89pwSY9nnyMWLcahGSQOGs0LJK
hvmgwPjyM1drNfPxgPiaFg7vDr2XxNATpQr/FBt+BhelvVan8TlAfrkcNPiLr++Y
Axz925FP7jMaRRbZ1acji34gLiIAZk0jLCUdbix7YkPrqDB4GfO+v8Vez+fGClbJ
uDOYeR4r1+Be/BtSJtJ2tHqtsKCcAL6agtaE2+epZq5HbzaZFRvBFaxgFNF8WVcn
3FFibdEMdsRNfZTUVp5wwgOLN0UIqE/7LifE12oLEL2oFB5H2PiNEUw3E02XHO11
rL3zgHhB6Ke1sXKPCjSGdmIQLbxZmV5kOlQFy7XuSeo5fmRapVzKNffnKcftIliF
1HNtZbgdA+3tdxMFCqoo1QX+kotl9kgpslmdZ0qHAbaRb3xqLoSskbqEjFRMuSCC
8bjJrwboD9T5GPfwodSCgqs/58CaSDuqPFbIjCay+p90Fcg6wWAkZtyG04ZLdPRc
GgNNdN4gjTD9bnrRi8cH47z1g8OO4vt4K4SEbmjo8IlDW+9jYMxuwgR88CMeDXd7
hu7aKsr2I2q/WQ==
=5o9G
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timekeeping and timer updates from Thomas Gleixner:
"Core:
- Consolidation of the vDSO build infrastructure to address the
difficulties of cross-builds for ARM64 compat vDSO libraries by
restricting the exposure of header content to the vDSO build.
This is achieved by splitting out header content into separate
headers. which contain only the minimaly required information which
is necessary to build the vDSO. These new headers are included from
the kernel headers and the vDSO specific files.
- Enhancements to the generic vDSO library allowing more fine grained
control over the compiled in code, further reducing architecture
specific storage and preparing for adopting the generic library by
PPC.
- Cleanup and consolidation of the exit related code in posix CPU
timers.
- Small cleanups and enhancements here and there
Drivers:
- The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support
- Correct the clock rate of PIT64b global clock
- setup_irq() cleanup
- Preparation for PWM and suspend support for the TI DM timer
- Expand the fttmr010 driver to support ast2600 systems
- The usual small fixes, enhancements and cleanups all over the
place"
* tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
Revert "clocksource/drivers/timer-probe: Avoid creating dead devices"
vdso: Fix clocksource.h macro detection
um: Fix header inclusion
arm64: vdso32: Enable Clang Compilation
lib/vdso: Enable common headers
arm: vdso: Enable arm to use common headers
x86/vdso: Enable x86 to use common headers
mips: vdso: Enable mips to use common headers
arm64: vdso32: Include common headers in the vdso library
arm64: vdso: Include common headers in the vdso library
arm64: Introduce asm/vdso/processor.h
arm64: vdso32: Code clean up
linux/elfnote.h: Replace elf.h with UAPI equivalent
scripts: Fix the inclusion order in modpost
common: Introduce processor.h
linux/ktime.h: Extract common header for vDSO
linux/jiffies.h: Extract common header for vDSO
linux/time64.h: Extract common header for vDSO
linux/time32.h: Extract common header for vDSO
linux/time.h: Extract common header for vDSO
...
Delay read msr data until we identify guest accesses ICR MSR to avoid
to penalize all other MSR writes.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1585189202-1708-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The original single target IPI fastpath patch forgot to filter the
ICR destination shorthand field. Multicast IPI is not suitable for
this feature since wakeup the multiple sleeping vCPUs will extend
the interrupt disabled time, it especially worse in the over-subscribe
and VM has a little bit more vCPUs scenario. Let's narrow it down to
single target IPI.
Two VMs, each is 76 vCPUs, one running 'ebizzy -M', the other
running cyclictest on all vCPUs, w/ this patch, the avg score
of cyclictest can improve more than 5%. (pv tlb, pv ipi, pv
sched yield are disabled during testing to avoid the disturb).
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1585189202-1708-3-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The WARN_ON is essentially comparing a user-provided value with 0. It is
trivial to trigger it just by passing garbage to KVM_SET_CLOCK. Guests
can break if you do so, but the same applies to every KVM_SET_* ioctl.
So, if it hurts when you do like this, just do not do it.
Reported-by: syzbot+00be5da1d75f1cc95f6b@syzkaller.appspotmail.com
Fixes: 9446e6fce0 ("KVM: x86: fix WARN_ON check of an unsigned less than zero")
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In kvm_arch_dev_ioctl(), the brackets of case KVM_X86_GET_MCE_CAP_SUPPORTED
accidently encapsulates case KVM_GET_MSR_FEATURE_INDEX_LIST and case
KVM_GET_MSRS. It doesn't affect functionality but it's misleading.
Remove unnecessary brackets and opportunistically add a "break" in the
default path.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After test_and_set_bit() for kvm->arch.apicv_inhibit_reasons, we will
always get false when calling kvm_apicv_activated() because it's sure
apicv_inhibit_reasons do not equal to 0.
What the code wants to do, is check whether APICv was *already* active
and if so skip the costly request; we can do this using cmpxchg.
Reported-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
GA Log tracepoint is useful when debugging AVIC performance
issue as it can be used with perf to count the number of times
IOMMU AVIC injects interrupts through the slow-path instead of
directly inject interrupts to the target vcpu.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The set_cr3 callback is not setting the guest CR3, it is setting the
root of the guest page tables, either shadow or two-dimensional.
To make this clearer as well as to indicate that the MMU calls it
via kvm_mmu_load_cr3, rename it to load_mmu_pgd.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invert and rename the kvm_cpuid() param that controls out-of-range logic
to better reflect the semantics of the affected callers, i.e. callers
that bypass the out-of-range logic do so because they are looking up an
exact guest CPUID entry, e.g. to query the maxphyaddr.
Similarly, rename kvm_cpuid()'s internal "found" to "exact" to clarify
that it tracks whether or not the exact requested leaf was found, as
opposed to any usable leaf being found.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>