Both if-branches are under if (boot_cpu_has(X86_FEATURE_APIC)), unify
them.
Also, simplify the test for bits:
- 17 ("ApicExtBrdCst: APIC extended broadcast enable") and
- 18 ("ApicExtId: APIC extended ID enable.")
in "D18F0x68 Link Transaction Control."
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459837795-2588-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
fpregs_{g,s}et() are not sizzling-hot paths to justify the need for
static_cpu_has(). Use the normal boot_cpu_has() helper.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459837795-2588-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use static_cpu_has() in the timing-sensitive paths in fpstate_init() and
fpu__copy().
While at it, simplify the use in init_cyrix() and get rid of the ternary
operator.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459801503-15600-6-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we loop over all queued machine check error records to pass them
to the registered notifiers we use llist_for_each_entry(). But the loop
calls gen_pool_free() for the entry in the body of the loop - and then
the iterator looks at node->next after the free.
Use llist_for_each_entry_safe() instead.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/0205920@agluck-desk.sc.intel.com
Link: http://lkml.kernel.org/r/1459929916-12852-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Allowing user code to map the HPET is problematic. HPET
implementations are notoriously buggy, and there are probably many
machines on which even MMIO reads from bogus HPET addresses are
problematic.
We have a report that the Dell Precision M2800 with:
ACPI: HPET 0x00000000C8FE6238 000038 (v01 DELL CBX3 01072009 AMI. 00000005)
is either so slow when accessing the HPET or actually hangs in some
regard, causing soft lockups to be reported if users do unexpected
things to the HPET.
The vclock HPET code has also always been a questionable speedup.
Accessing an HPET is exceedingly slow (on the order of several
microseconds), so the added overhead in requiring a syscall to read
the HPET is a small fraction of the total code of accessing it.
To avoid future problems, let's just delete the code entirely.
In the long run, this could actually be a speedup. Waiman Long as a
patch to optimize the case where multiple CPUs contend for the HPET,
but that won't help unless all the accesses are mediated by the
kernel.
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Waiman Long <Waiman.Long@hpe.com>
Cc: Waiman Long <waiman.long@hpe.com>
Link: http://lkml.kernel.org/r/d2f90bba98db9905041cff294646d290d378f67a.1460074438.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Erratum 88 affects old AMD K8s, where a SWAPGS fails to cause an input
dependency on GS. Therefore, we need to MFENCE before it.
But that MFENCE is expensive and unnecessary on the remaining x86 CPUs
out there so patch it out on the CPUs which don't require it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/aec6b2df1bfc56101d4e9e2e5d5d570bf41663c6.1460075211.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It was in detect_nopl(), which was either a mistake by me or some kind
of mis-merge.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: ff236456f072 ("x86/cpu: Move X86_BUG_ESPFIX initialization to generic_identify")
Link: http://lkml.kernel.org/r/0949337f13660461edca08ab67d1a841441289c9.1460075211.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The old code was incomprehensible and was buggy on AMD CPUs.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5f6bde874c6fe6831c6711b5b1522a238ba035b4.1460075211.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AMD and Intel do different things when writing zero to a segment
selector. Since neither vendor documents the behavior well and it's
easy to test the behavior, try nulling fs to see what happens.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/61588ba0e0df35beafd363dc8b68a4c5878ef095.1460075211.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ARCH_GET_FS and ARCH_GET_GS attempted to figure out the fsbase and
gsbase respectively from saved thread state. This was wrong: fsbase
and gsbase live in registers while a thread is running, not in
memory.
For reasons I can't fathom, the fsbase and gsbase code were
different. Since neither was correct, I didn't try to figure out
what the point of the difference was.
Change it to simply read the MSRs.
The code for reading the base for a remote thread is also completely
wrong if the target thread uses its own descriptors (which is the case
for all 32-bit threaded programs), but fixing that is a different
story.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/c6e7b507c72ca3bdbf6c7a8a3ceaa0334e873bd9.1460075211.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use static_cpu_has() in __flush_tlb_all() due to the time-sensitivity of
this one.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459266123-21878-10-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... before assigning local vars. Kill out label too and simplify.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458130769-24963-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
get_mtrr_state() calls pat_init() on BSP even if MTRR is disabled.
This results in calling pat_init() on BSP only since APs do not call
pat_init() when MTRR is disabled. This inconsistency between BSP
and APs leads to undefined behavior.
Make BSP's calling condition to pat_init() consistent with AP's,
mtrr_ap_init() and mtrr_aps_init().
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: elliott@hpe.com
Cc: konrad.wilk@oracle.com
Cc: paul.gortmaker@windriver.com
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1458769323-24491-6-git-send-email-toshi.kani@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A Xorg failure on qemu32 was reported as a regression [1] caused by
commit 9cd25aac1f ("x86/mm/pat: Emulate PAT when it is disabled").
This patch fixes the Xorg crash.
Negative effects of this regression were the following two failures [2]
in Xorg on QEMU with QEMU CPU model "qemu32" (-cpu qemu32), which were
triggered by the fact that its virtual CPU does not support MTRRs.
#1. copy_process() failed in the check in reserve_pfn_range()
copy_process
copy_mm
dup_mm
dup_mmap
copy_page_range
track_pfn_copy
reserve_pfn_range
A WC map request was tracked as WC in memtype, which set a PTE as
UC (pgprot) per __cachemode2pte_tbl[]. This led to this error in
reserve_pfn_range() called from track_pfn_copy(), which obtained
a pgprot from a PTE. It converts pgprot to page_cache_mode, which
does not necessarily result in the original page_cache_mode since
__cachemode2pte_tbl[] redirects multiple types to UC.
#2. error path in copy_process() then hit WARN_ON_ONCE in
untrack_pfn().
x86/PAT: Xorg:509 map pfn expected mapping type uncached-
minus for [mem 0xfd000000-0xfdffffff], got write-combining
Call Trace:
dump_stack
warn_slowpath_common
? untrack_pfn
? untrack_pfn
warn_slowpath_null
untrack_pfn
? __kunmap_atomic
unmap_single_vma
? pagevec_move_tail_fn
unmap_vmas
exit_mmap
mmput
copy_process.part.47
_do_fork
SyS_clone
do_syscall_32_irqs_on
entry_INT80_32
These negative effects are caused by two separate bugs, but they
can be addressed in separate patches. Fixing the pat_init() issue
described below addresses the root cause, and avoids Xorg to hit
these cases.
When the CPU does not support MTRRs, MTRR does not call pat_init(),
which leaves PAT enabled without initializing PAT. This pat_init()
issue is a long-standing issue, but manifested as issue #1 (and then
hit issue #2) with the above-mentioned commit because the memtype
now tracks cache attribute with 'page_cache_mode'.
This pat_init() issue existed before the commit, but we used pgprot
in memtype. Hence, we did not have issue #1 before. But WC request
resulted in WT in effect because WC pgrot is actually WT when PAT
is not initialized. This is not how it was designed to work. When
PAT is set to disable properly, WC is converted to UC. The use of
WT can result in a system crash if the target range does not support
WT. Fortunately, nobody ran into such issue before.
To fix this pat_init() issue, PAT code has been enhanced to provide
pat_disable() interface. Call this interface when MTRRs are disabled.
By setting PAT to disable properly, PAT bypasses the memtype check,
and avoids issue #1.
[1]: https://lkml.org/lkml/2016/3/3/828
[2]: https://lkml.org/lkml/2016/3/4/775
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: elliott@hpe.com
Cc: konrad.wilk@oracle.com
Cc: paul.gortmaker@windriver.com
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1458769323-24491-5-git-send-email-toshi.kani@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It turns out AMD gets x86_max_cores wrong when there are compute
units.
The issue is that Linux assumes:
nr_logical_cpus = nr_cores * nr_siblings
But AMD reports its CU unit as 2 cores, but then sets num_smp_siblings
to 2 as well.
Boris: fixup ras/mce_amd_inj.c too, to compute the Node Base Core
properly, according to the new nomenclature.
Fixes: 1f12e32f4c ("x86/topology: Create logical package id")
Reported-by: Xiong Zhou <jencce.kernel@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andreas Herrmann <aherrmann@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Link: http://lkml.kernel.org/r/20160317095220.GO6344@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Implement the stack depot and provide CONFIG_STACKDEPOT. Stack depot
will allow KASAN store allocation/deallocation stack traces for memory
chunks. The stack traces are stored in a hash table and referenced by
handles which reside in the kasan_alloc_meta and kasan_free_meta
structures in the allocated memory chunks.
IRQ stack traces are cut below the IRQ entry point to avoid unnecessary
duplication.
Right now stackdepot support is only enabled in SLAB allocator. Once
KASAN features in SLAB are on par with those in SLUB we can switch SLUB
to stackdepot as well, thus removing the dependency on SLUB stack
bookkeeping, which wastes a lot of memory.
This patch is based on the "mm: kasan: stack depots" patch originally
prepared by Dmitry Chernenkov.
Joonsoo has said that he plans to reuse the stackdepot code for the
mm/page_owner.c debugging facility.
[akpm@linux-foundation.org: s/depot_stack_handle/depot_stack_handle_t]
[aryabinin@virtuozzo.com: comment style fixes]
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KASAN needs to know whether the allocation happens in an IRQ handler.
This lets us strip everything below the IRQ entry point to reduce the
number of unique stack traces needed to be stored.
Move the definition of __irq_entry to <linux/interrupt.h> so that the
users don't need to pull in <linux/ftrace.h>. Also introduce the
__softirq_entry macro which is similar to __irq_entry, but puts the
corresponding functions to the .softirqentry.text section.
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some visible changes:
A new flag was added to distinguish traces done in NMI context.
Preempt tracer now shows functions where preemption is disabled but
interrupts are still enabled.
Other notes:
Updates were done to function tracing to allow better performance
with perf.
Infrastructure code has been added to allow for a new histogram
feature for recording live trace event histograms that can be
configured by simple user commands. The feature itself was just
finished, but needs a round in linux-next before being pulled.
This only includes some infrastructure changes that will be needed.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJW8/WPAAoJEKKk/i67LK/8wrAH/j2gU9ZfjVxTu8068TBGWRJP
yvvzq0cK5evB3dsVuUmKKRfU52nSv4J1WcFF569X0RulSLylR0dHlcxFJMn4kkgR
bm0AHRrqOf87ub3VimcpG146iVQij37l5A0SRoFbvSPLQx1KUW18v99x41Ji8dv6
oWXRc6/YhdzEE7l0nUsVjmScQ4b2emsems3cxZzXOY+nRJsiim6i+VaDeatdyey1
csLVqtRCs+x62TVtxG3+GhcLdRoPRbnHAGzrKDFIn1SrQaRXCc54wN5d2hWxjgNI
1laOwaj070lnJiWfBLIP/K+lx+VKRx5/O0rKZX35foLUTqJJKSyjAbKXuMCcSAM=
=2h2K
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"Nothing major this round. Mostly small clean ups and fixes.
Some visible changes:
- A new flag was added to distinguish traces done in NMI context.
- Preempt tracer now shows functions where preemption is disabled but
interrupts are still enabled.
Other notes:
- Updates were done to function tracing to allow better performance
with perf.
- Infrastructure code has been added to allow for a new histogram
feature for recording live trace event histograms that can be
configured by simple user commands. The feature itself was just
finished, but needs a round in linux-next before being pulled.
This only includes some infrastructure changes that will be needed"
* tag 'trace-v4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (22 commits)
tracing: Record and show NMI state
tracing: Fix trace_printk() to print when not using bprintk()
tracing: Remove redundant reset per-CPU buff in irqsoff tracer
x86: ftrace: Fix the misleading comment for arch/x86/kernel/ftrace.c
tracing: Fix crash from reading trace_pipe with sendfile
tracing: Have preempt(irqs)off trace preempt disabled functions
tracing: Fix return while holding a lock in register_tracer()
ftrace: Use kasprintf() in ftrace_profile_tracefs()
ftrace: Update dynamic ftrace calls only if necessary
ftrace: Make ftrace_hash_rec_enable return update bool
tracing: Fix typoes in code comment and printk in trace_nop.c
tracing, writeback: Replace cgroup path to cgroup ino
tracing: Use flags instead of bool in trigger structure
tracing: Add an unreg_all() callback to trigger commands
tracing: Add needs_rec flag to event triggers
tracing: Add a per-event-trigger 'paused' field
tracing: Add get_syscall_name()
tracing: Add event record param to trigger_ops.func()
tracing: Make event trigger functions available
tracing: Make ftrace_event_field checking functions available
...
Pull perf fixes from Ingo Molnar:
"This tree contains various perf fixes on the kernel side, plus three
hw/event-enablement late additions:
- Intel Memory Bandwidth Monitoring events and handling
- the AMD Accumulated Power Mechanism reporting facility
- more IOMMU events
... and a final round of perf tooling updates/fixes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
perf llvm: Use strerror_r instead of the thread unsafe strerror one
perf llvm: Use realpath to canonicalize paths
perf tools: Unexport some methods unused outside strbuf.c
perf probe: No need to use formatting strbuf method
perf help: Use asprintf instead of adhoc equivalents
perf tools: Remove unused perf_pathdup, xstrdup functions
perf tools: Do not include stringify.h from the kernel sources
tools include: Copy linux/stringify.h from the kernel
tools lib traceevent: Remove redundant CPU output
perf tools: Remove needless 'extern' from function prototypes
perf tools: Simplify die() mechanism
perf tools: Remove unused DIE_IF macro
perf script: Remove lots of unused arguments
perf thread: Rename perf_event__preprocess_sample_addr to thread__resolve
perf machine: Rename perf_event__preprocess_sample to machine__resolve
perf tools: Add cpumode to struct perf_sample
perf tests: Forward the perf_sample in the dwarf unwind test
perf tools: Remove misplaced __maybe_unused
perf list: Fix documentation of :ppp
perf bench numa: Fix assertion for nodes bitfield
...
Merge third patch-bomb from Andrew Morton:
- more ocfs2 changes
- a few hotfixes
- Andy's compat cleanups
- misc fixes to fatfs, ptrace, coredump, cpumask, creds, eventfd,
panic, ipmi, kgdb, profile, kfifo, ubsan, etc.
- many rapidio updates: fixes, new drivers.
- kcov: kernel code coverage feature. Like gcov, but not
"prohibitively expensive".
- extable code consolidation for various archs
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (81 commits)
ia64/extable: use generic search and sort routines
x86/extable: use generic search and sort routines
s390/extable: use generic search and sort routines
alpha/extable: use generic search and sort routines
kernel/...: convert pr_warning to pr_warn
drivers: dma-coherent: use memset_io for DMA_MEMORY_IO mappings
drivers: dma-coherent: use MEMREMAP_WC for DMA_MEMORY_MAP
memremap: add MEMREMAP_WC flag
memremap: don't modify flags
kernel/signal.c: add compile-time check for __ARCH_SI_PREAMBLE_SIZE
mm/mprotect.c: don't imply PROT_EXEC on non-exec fs
ipc/sem: make semctl setting sempid consistent
ubsan: fix tree-wide -Wmaybe-uninitialized false positives
kfifo: fix sparse complaints
scripts/gdb: account for changes in module data structure
scripts/gdb: add cmdline reader command
scripts/gdb: add version command
kernel: add kcov code coverage
profile: hide unused functions when !CONFIG_PROC_FS
hpwdt: use nmi_panic() when kernel panics in NMI handler
...
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
x86's is_compat_task always checked the current syscall type, not the
task type. It has no non-arch users any more, so just remove it to
avoid confusion.
On x86, nothing should really be checking the task ABI. There are
legitimate users for the syscall ABI and for the mm ABI.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The async pagefault wake code can run from the idle task in exception
context, so everything here needs to be made non-preemptible.
Conversion to a simple wait queue and raw spinlock does the trick.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD CPU family 15h model 0x60 introduces a mechanism for measuring
accumulated power. It is used to report the processor power consumption
and support for it is indicated by CPUID Fn8000_0007_EDX[12].
Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andreas Herrmann <herrmann.der.user@googlemail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hector Marco-Gisbert <hecmargi@upv.es>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kristen Carlson Accardi <kristen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert Richter <rric@kernel.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wan Zongshun <Vincent.Wan@amd.com>
Cc: spg_linux_kernel@amd.com
Link: http://lkml.kernel.org/r/1452739808-11871-4-git-send-email-ray.huang@amd.com
[ Resolved conflict and moved the synthetic CPUID slot to 19. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The MBM init patch enumerates the Intel MBM (Memory b/w monitoring)
and initializes the perf events and datastructures for monitoring the
memory b/w.
Its based on original patch series by Tony Luck and Kanaka Juvva.
Memory bandwidth monitoring (MBM) provides OS/VMM a way to monitor
bandwidth from one level of cache to another. The current patches
support L3 external bandwidth monitoring. It supports both 'local
bandwidth' and 'total bandwidth' monitoring for the socket. Local
bandwidth measures the amount of data sent through the memory controller
on the socket and total b/w measures the total system bandwidth.
Extending the cache quality of service monitoring (CQM) we add two
more events to the perf infrastructure:
intel_cqm_llc/local_bytes - bytes sent through local socket memory controller
intel_cqm_llc/total_bytes - total L3 external bytes sent
The tasks are associated with a Resouce Monitoring ID (RMID) just like
in CQM and OS uses a MSR write to indicate the RMID of the task during
scheduling.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: fenghua.yu@intel.com
Cc: h.peter.anvin@intel.com
Cc: ravi.v.shankar@intel.com
Cc: vikas.shivappa@intel.com
Link: http://lkml.kernel.org/r/1457652732-4499-4-git-send-email-vikas.shivappa@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 protection key support from Ingo Molnar:
"This tree adds support for a new memory protection hardware feature
that is available in upcoming Intel CPUs: 'protection keys' (pkeys).
There's a background article at LWN.net:
https://lwn.net/Articles/643797/
The gist is that protection keys allow the encoding of
user-controllable permission masks in the pte. So instead of having a
fixed protection mask in the pte (which needs a system call to change
and works on a per page basis), the user can map a (handful of)
protection mask variants and can change the masks runtime relatively
cheaply, without having to change every single page in the affected
virtual memory range.
This allows the dynamic switching of the protection bits of large
amounts of virtual memory, via user-space instructions. It also
allows more precise control of MMU permission bits: for example the
executable bit is separate from the read bit (see more about that
below).
This tree adds the MM infrastructure and low level x86 glue needed for
that, plus it adds a high level API to make use of protection keys -
if a user-space application calls:
mmap(..., PROT_EXEC);
or
mprotect(ptr, sz, PROT_EXEC);
(note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
this special case, and will set a special protection key on this
memory range. It also sets the appropriate bits in the Protection
Keys User Rights (PKRU) register so that the memory becomes unreadable
and unwritable.
So using protection keys the kernel is able to implement 'true'
PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
PROT_READ as well. Unreadable executable mappings have security
advantages: they cannot be read via information leaks to figure out
ASLR details, nor can they be scanned for ROP gadgets - and they
cannot be used by exploits for data purposes either.
We know about no user-space code that relies on pure PROT_EXEC
mappings today, but binary loaders could start making use of this new
feature to map binaries and libraries in a more secure fashion.
There is other pending pkeys work that offers more high level system
call APIs to manage protection keys - but those are not part of this
pull request.
Right now there's a Kconfig that controls this feature
(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
(like most x86 CPU feature enablement code that has no runtime
overhead), but it's not user-configurable at the moment. If there's
any serious problem with this then we can make it configurable and/or
flip the default"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
mm/core, x86/mm/pkeys: Add execute-only protection keys support
x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
x86/mm/pkeys: Allow kernel to modify user pkey rights register
x86/fpu: Allow setting of XSAVE state
x86/mm: Factor out LDT init from context init
mm/core, x86/mm/pkeys: Add arch_validate_pkey()
mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
x86/mm/pkeys: Add Kconfig prompt to existing config option
x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
x86/mm/pkeys: Dump PKRU with other kernel registers
mm/core, x86/mm/pkeys: Differentiate instruction fetches
x86/mm/pkeys: Optimize fault handling in access_error()
mm/core: Do not enforce PKEY permissions on remote mm access
um, pkeys: Add UML arch_*_access_permitted() methods
mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
x86/mm/gup: Simplify get_user_pages() PTE bit handling
...
Pull EFI updates from Ingo Molnar:
"The main changes are:
- Use separate EFI page tables when executing EFI firmware code.
This isolates the EFI context from the rest of the kernel, which
has security and general robustness advantages. (Matt Fleming)
- Run regular UEFI firmware with interrupts enabled. This is already
the status quo under other OSs. (Ard Biesheuvel)
- Various x86 EFI enhancements, such as the use of non-executable
attributes for EFI memory mappings. (Sai Praneeth Prakhya)
- Various arm64 UEFI enhancements. (Ard Biesheuvel)
- ... various fixes and cleanups.
The separate EFI page tables feature got delayed twice already,
because it's an intrusive change and we didn't feel confident about
it - third time's the charm we hope!"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/mm/pat: Fix boot crash when 1GB pages are not supported by the CPU
x86/efi: Only map kernel text for EFI mixed mode
x86/efi: Map EFI_MEMORY_{XP,RO} memory region bits to EFI page tables
x86/mm/pat: Don't implicitly allow _PAGE_RW in kernel_map_pages_in_pgd()
efi/arm*: Perform hardware compatibility check
efi/arm64: Check for h/w support before booting a >4 KB granular kernel
efi/arm: Check for LPAE support before booting a LPAE kernel
efi/arm-init: Use read-only early mappings
efi/efistub: Prevent __init annotations from being used
arm64/vmlinux.lds.S: Handle .init.rodata.xxx and .init.bss sections
efi/arm64: Drop __init annotation from handle_kernel_image()
x86/mm/pat: Use _PAGE_GLOBAL bit for EFI page table mappings
efi/runtime-wrappers: Run UEFI Runtime Services with interrupts enabled
efi: Reformat GUID tables to follow the format in UEFI spec
efi: Add Persistent Memory type name
efi: Add NV memory attribute
x86/efi: Show actual ending addresses in efi_print_memmap
x86/efi/bgrt: Don't ignore the BGRT if the 'valid' bit is 0
efivars: Use to_efivar_entry
efi: Runtime-wrapper: Get rid of the rtc_lock spinlock
...
Pull 'objtool' stack frame validation from Ingo Molnar:
"This tree adds a new kernel build-time object file validation feature
(ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation.
It was written by and is maintained by Josh Poimboeuf.
The motivation: there's a category of hard to find kernel bugs, most
of them in assembly code (but also occasionally in C code), that
degrades the quality of kernel stack dumps/backtraces. These bugs are
hard to detect at the source code level. Such bugs result in
incorrect/incomplete backtraces most of time - but can also in some
rare cases result in crashes or other undefined behavior.
The build time correctness checking is done via the new 'objtool'
user-space utility that was written for this purpose and which is
hosted in the kernel repository in tools/objtool/. The tool's (very
simple) UI and source code design is shaped after Git and perf and
shares quite a bit of infrastructure with tools/perf (which tooling
infrastructure sharing effort got merged via perf and is already
upstream). Objtool follows the well-known kernel coding style.
Objtool does not try to check .c or .S files, it instead analyzes the
resulting .o generated machine code from first principles: it decodes
the instruction stream and interprets it. (Right now objtool supports
the x86-64 architecture.)
From tools/objtool/Documentation/stack-validation.txt:
"The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time. It has a "check" subcommand
which analyzes every .o file and ensures the validity of its stack
metadata. It enforces a set of rules on asm code and C inline
assembly code so that stack traces can be reliable.
Currently it only checks frame pointer usage, but there are plans to
add CFI validation for C files and CFI generation for asm files.
For each function, it recursively follows all possible code paths
and validates the correct frame pointer state at each instruction.
It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions). Similarly, it knows how to follow switch statements,
for which gcc sometimes uses jump tables."
When this new kernel option is enabled (it's disabled by default), the
tool, if it finds any suspicious assembly code pattern, outputs
warnings in compiler warning format:
warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch
warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup
warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
... so that scripts that pick up compiler warnings will notice them.
All known warnings triggered by the tool are fixed by the tree, most
of the commits in fact prepare the kernel to be warning-free. Most of
them are bugfixes or cleanups that stand on their own, but there are
also some annotations of 'special' stack frames for justified cases
such entries to JIT-ed code (BPF) or really special boot time code.
There are two other long-term motivations behind this tool as well:
- To improve the quality and reliability of kernel stack frames, so
that they can be used for optimized live patching.
- To create independent infrastructure to check the correctness of
CFI stack frames at build time. CFI debuginfo is notoriously
unreliable and we cannot use it in the kernel as-is without extra
checking done both on the kernel side and on the build side.
The quality of kernel stack frames matters to debuggability as well,
so IMO we can merge this without having to consider the live patching
or CFI debuginfo angle"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
objtool: Only print one warning per function
objtool: Add several performance improvements
tools: Copy hashtable.h into tools directory
objtool: Fix false positive warnings for functions with multiple switch statements
objtool: Rename some variables and functions
objtool: Remove superflous INIT_LIST_HEAD
objtool: Add helper macros for traversing instructions
objtool: Fix false positive warnings related to sibling calls
objtool: Compile with debugging symbols
objtool: Detect infinite recursion
objtool: Prevent infinite recursion in noreturn detection
objtool: Detect and warn if libelf is missing and don't break the build
tools: Support relative directory path for 'O='
objtool: Support CROSS_COMPILE
x86/asm/decoder: Use explicitly signed chars
objtool: Enable stack metadata validation on 64-bit x86
objtool: Add CONFIG_STACK_VALIDATION option
objtool: Add tool to perform compile-time stack metadata validation
x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard
sched: Always inline context_switch()
...
Commit 2213e9a66b ("kallsyms: add support for relative offsets in
kallsyms address table") changed the default kallsyms symbol table
format to use relative references rather than absolute addresses.
This reduces the size of the kallsyms symbol table by 50% on 64-bit
architectures, and further reduces the size of the relocation tables
used by relocatable kernels. Since the memory footprint of the static
kernel image is always much smaller than 4 GB, these relative references
are assumed to be representable in 32 bits, even when the native word
size is 64 bits.
On 64-bit architectures, this obviously only works if the distance
between each relative reference and the chosen anchor point is
representable in 32 bits, and so the table generation code in
scripts/kallsyms.c scans the table for the lowest value that is covered
by the kernel text, and selects it as the anchor point.
However, when using the GOLD linker rather than the default BFD linker
to build the x86_64 kernel, the symbol phys_offset_64, which is the
result of arithmetic defined in the linker script, is emitted as a 'T'
rather than an 'A' type symbol, resulting in scripts/kallsyms.c to
mistake it for a suitable anchor point, even though it is far away from
the actual kernel image in the virtual address space. This results in
out-of-range warnings from scripts/kallsyms.c and a broken build.
So let's align with the BFD linker, and emit the phys_offset_[32|64]
symbols as absolute symbols explicitly. Note that the out of range
issue does not exist on 32-bit x86, but this patch changes both symbols
for symmetry.
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from David Miller:
"Highlights:
1) Support more Realtek wireless chips, from Jes Sorenson.
2) New BPF types for per-cpu hash and arrap maps, from Alexei
Starovoitov.
3) Make several TCP sysctls per-namespace, from Nikolay Borisov.
4) Allow the use of SO_REUSEPORT in order to do per-thread processing
of incoming TCP/UDP connections. The muxing can be done using a
BPF program which hashes the incoming packet. From Craig Gallek.
5) Add a multiplexer for TCP streams, to provide a messaged based
interface. BPF programs can be used to determine the message
boundaries. From Tom Herbert.
6) Add 802.1AE MACSEC support, from Sabrina Dubroca.
7) Avoid factorial complexity when taking down an inetdev interface
with lots of configured addresses. We were doing things like
traversing the entire address less for each address removed, and
flushing the entire netfilter conntrack table for every address as
well.
8) Add and use SKB bulk free infrastructure, from Jesper Brouer.
9) Allow offloading u32 classifiers to hardware, and implement for
ixgbe, from John Fastabend.
10) Allow configuring IRQ coalescing parameters on a per-queue basis,
from Kan Liang.
11) Extend ethtool so that larger link mode masks can be supported.
From David Decotigny.
12) Introduce devlink, which can be used to configure port link types
(ethernet vs Infiniband, etc.), port splitting, and switch device
level attributes as a whole. From Jiri Pirko.
13) Hardware offload support for flower classifiers, from Amir Vadai.
14) Add "Local Checksum Offload". Basically, for a tunneled packet
the checksum of the outer header is 'constant' (because with the
checksum field filled into the inner protocol header, the payload
of the outer frame checksums to 'zero'), and we can take advantage
of that in various ways. From Edward Cree"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1548 commits)
bonding: fix bond_get_stats()
net: bcmgenet: fix dma api length mismatch
net/mlx4_core: Fix backward compatibility on VFs
phy: mdio-thunder: Fix some Kconfig typos
lan78xx: add ndo_get_stats64
lan78xx: handle statistics counter rollover
RDS: TCP: Remove unused constant
RDS: TCP: Add sysctl tunables for sndbuf/rcvbuf on rds-tcp socket
net: smc911x: convert pxa dma to dmaengine
team: remove duplicate set of flag IFF_MULTICAST
bonding: remove duplicate set of flag IFF_MULTICAST
net: fix a comment typo
ethernet: micrel: fix some error codes
ip_tunnels, bpf: define IP_TUNNEL_OPTS_MAX and use it
bpf, dst: add and use dst_tclassid helper
bpf: make skb->tc_classid also readable
net: mvneta: bm: clarify dependencies
cls_bpf: reset class and reuse major in da
ldmvsw: Checkpatch sunvnet.c and sunvnet_common.c
ldmvsw: Add ldmvsw.c driver code
...
The notifier is missing the CPU_DOWN_FAILED transition. That leaves the
heartbeat disabled when CPU_DOWN_PREPARE fails.
It also does not handle the FROZEN transition variants. That might not be an
issue for UV, but it's inconsistent.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>