mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
a396301578
5560 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Jesse Brandeburg
|
c348c16305 |
lib: make a test module with set/clear bit
Test some bit clears/sets to make sure assembly doesn't change, and that the set_bit and clear_bit functions work and don't cause sparse warnings. Instruct Kbuild to build this file with extra warning level -Wextra, to catch new issues, and also doesn't hurt to build with C=1. This was used to test changes to arch/x86/include/asm/bitops.h. In particular, sparse (C=1) was very concerned when the last bit before a natural boundary, like 7, or 31, was being tested, as this causes sign extension (0xffffff7f) for instance when clearing bit 7. Recommended usage: make defconfig scripts/config -m CONFIG_TEST_BITOPS make modules_prepare make C=1 W=1 lib/test_bitops.ko objdump -S -d lib/test_bitops.ko insmod lib/test_bitops.ko rmmod lib/test_bitops.ko <check dmesg>, there should be no compiler/sparse warnings and no error messages in log. Link: http://lkml.kernel.org/r/20200310221747.2848474-2-jesse.brandeburg@intel.com Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> CcL Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
ee01c4d72a |
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton: "More mm/ work, plenty more to come Subsystems affected by this patch series: slub, memcg, gup, kasan, pagealloc, hugetlb, vmscan, tools, mempolicy, memblock, hugetlbfs, thp, mmap, kconfig" * akpm: (131 commits) arm64: mm: use ARCH_HAS_DEBUG_WX instead of arch defined x86: mm: use ARCH_HAS_DEBUG_WX instead of arch defined riscv: support DEBUG_WX mm: add DEBUG_WX support drivers/base/memory.c: cache memory blocks in xarray to accelerate lookup mm/thp: rename pmd_mknotpresent() as pmd_mkinvalid() powerpc/mm: drop platform defined pmd_mknotpresent() mm: thp: don't need to drain lru cache when splitting and mlocking THP hugetlbfs: get unmapped area below TASK_UNMAPPED_BASE for hugetlbfs sparc32: register memory occupied by kernel as memblock.memory include/linux/memblock.h: fix minor typo and unclear comment mm, mempolicy: fix up gup usage in lookup_node tools/vm/page_owner_sort.c: filter out unneeded line mm: swap: memcg: fix memcg stats for huge pages mm: swap: fix vmstats for huge pages mm: vmscan: limit the range of LRU type balancing mm: vmscan: reclaim writepage is IO cost mm: vmscan: determine anon/file pressure balance at the reclaim root mm: balance LRU lists based on relative thrashing mm: only count actual rotations as LRU reclaim cost ... |
||
Kirill A. Shutemov
|
71a2c112a0 |
khugepaged: introduce 'max_ptes_shared' tunable
'max_ptes_shared' specifies how many pages can be shared across multiple processes. Exceeding the number would block the collapse:: /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_shared A higher value may increase memory footprint for some workloads. By default, at least half of pages has to be not shared. [colin.king@canonical.com: fix several spelling mistakes] Link: http://lkml.kernel.org/r/20200420084241.65433-1-colin.king@canonical.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200416160026.16538-9-kirill.shutemov@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
e0c13f9761 |
khugepaged: add self test
Patch series "thp/khugepaged improvements and CoW semantics", v4. The patchset adds khugepaged selftest (anon-THP only for now), expands cases khugepaged can handle and switches anon-THP copy-on-write handling to 4k. This patch (of 8): The test checks if khugepaged is able to recover huge page where we expect to do so. It only covers anon-THP for now. Currently the test shows few failures. They are going to be addressed by the following patches. [colin.king@canonical.com: fix several spelling mistakes] Link: http://lkml.kernel.org/r/20200420084241.65433-1-colin.king@canonical.com [aneesh.kumar@linux.ibm.com: replace the usage of system(3) in the test] Link: http://lkml.kernel.org/r/20200429110727.89388-1-aneesh.kumar@linux.ibm.com [kirill@shutemov.name: fixup for issues I've noticed] Link: http://lkml.kernel.org/r/20200429124816.jp272trghrzxx5j5@box [jhubbard@nvidia.com: add khugepaged to .gitignore] Link: http://lkml.kernel.org/r/20200517002509.362401-1-jhubbard@nvidia.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Zi Yan <ziy@nvidia.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Link: http://lkml.kernel.org/r/20200416160026.16538-1-kirill.shutemov@linux.intel.com Link: http://lkml.kernel.org/r/20200416160026.16538-2-kirill.shutemov@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
cb8e59cc87 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from David Miller: 1) Allow setting bluetooth L2CAP modes via socket option, from Luiz Augusto von Dentz. 2) Add GSO partial support to igc, from Sasha Neftin. 3) Several cleanups and improvements to r8169 from Heiner Kallweit. 4) Add IF_OPER_TESTING link state and use it when ethtool triggers a device self-test. From Andrew Lunn. 5) Start moving away from custom driver versions, use the globally defined kernel version instead, from Leon Romanovsky. 6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin. 7) Allow hard IRQ deferral during NAPI, from Eric Dumazet. 8) Add sriov and vf support to hinic, from Luo bin. 9) Support Media Redundancy Protocol (MRP) in the bridging code, from Horatiu Vultur. 10) Support netmap in the nft_nat code, from Pablo Neira Ayuso. 11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina Dubroca. Also add ipv6 support for espintcp. 12) Lots of ReST conversions of the networking documentation, from Mauro Carvalho Chehab. 13) Support configuration of ethtool rxnfc flows in bcmgenet driver, from Doug Berger. 14) Allow to dump cgroup id and filter by it in inet_diag code, from Dmitry Yakunin. 15) Add infrastructure to export netlink attribute policies to userspace, from Johannes Berg. 16) Several optimizations to sch_fq scheduler, from Eric Dumazet. 17) Fallback to the default qdisc if qdisc init fails because otherwise a packet scheduler init failure will make a device inoperative. From Jesper Dangaard Brouer. 18) Several RISCV bpf jit optimizations, from Luke Nelson. 19) Correct the return type of the ->ndo_start_xmit() method in several drivers, it's netdev_tx_t but many drivers were using 'int'. From Yunjian Wang. 20) Add an ethtool interface for PHY master/slave config, from Oleksij Rempel. 21) Add BPF iterators, from Yonghang Song. 22) Add cable test infrastructure, including ethool interfaces, from Andrew Lunn. Marvell PHY driver is the first to support this facility. 23) Remove zero-length arrays all over, from Gustavo A. R. Silva. 24) Calculate and maintain an explicit frame size in XDP, from Jesper Dangaard Brouer. 25) Add CAP_BPF, from Alexei Starovoitov. 26) Support terse dumps in the packet scheduler, from Vlad Buslov. 27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei. 28) Add devm_register_netdev(), from Bartosz Golaszewski. 29) Minimize qdisc resets, from Cong Wang. 30) Get rid of kernel_getsockopt and kernel_setsockopt in order to eliminate set_fs/get_fs calls. From Christoph Hellwig. * git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits) selftests: net: ip_defrag: ignore EPERM net_failover: fixed rollback in net_failover_open() Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv" Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv" vmxnet3: allow rx flow hash ops only when rss is enabled hinic: add set_channels ethtool_ops support selftests/bpf: Add a default $(CXX) value tools/bpf: Don't use $(COMPILE.c) bpf, selftests: Use bpf_probe_read_kernel s390/bpf: Use bcr 0,%0 as tail call nop filler s390/bpf: Maintain 8-byte stack alignment selftests/bpf: Fix verifier test selftests/bpf: Fix sample_cnt shared between two threads bpf, selftests: Adapt cls_redirect to call csum_level helper bpf: Add csum_level helper for fixing up csum levels bpf: Fix up bpf_skb_adjust_room helper's skb csum setting sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf() crypto/chtls: IPv6 support for inline TLS Crypto/chcr: Fixes a coccinile check error Crypto/chcr: Fixes compilations warnings ... |
||
Linus Torvalds
|
039aeb9deb |
ARM:
- Move the arch-specific code into arch/arm64/kvm - Start the post-32bit cleanup - Cherry-pick a few non-invasive pre-NV patches x86: - Rework of TLB flushing - Rework of event injection, especially with respect to nested virtualization - Nested AMD event injection facelift, building on the rework of generic code and fixing a lot of corner cases - Nested AMD live migration support - Optimization for TSC deadline MSR writes and IPIs - Various cleanups - Asynchronous page fault cleanups (from tglx, common topic branch with tip tree) - Interrupt-based delivery of asynchronous "page ready" events (host side) - Hyper-V MSRs and hypercalls for guest debugging - VMX preemption timer fixes s390: - Cleanups Generic: - switch vCPU thread wakeup from swait to rcuwait The other architectures, and the guest side of the asynchronous page fault work, will come next week. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7VJcYUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPf6QgAq4wU5wdd1lTGz/i3DIhNVJNJgJlp ozLzRdMaJbdbn5RpAK6PEBd9+pt3+UlojpFB3gpJh2Nazv2OzV4yLQgXXXyyMEx1 5Hg7b4UCJYDrbkCiegNRv7f/4FWDkQ9dx++RZITIbxeskBBCEI+I7GnmZhGWzuC4 7kj4ytuKAySF2OEJu0VQF6u0CvrNYfYbQIRKBXjtOwuRK4Q6L63FGMJpYo159MBQ asg3B1jB5TcuGZ9zrjL5LkuzaP4qZZHIRs+4kZsH9I6MODHGUxKonrkablfKxyKy CFK+iaHCuEXXty5K0VmWM3nrTfvpEjVjbMc7e1QGBQ5oXsDM0pqn84syRg== =v7Wn -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Move the arch-specific code into arch/arm64/kvm - Start the post-32bit cleanup - Cherry-pick a few non-invasive pre-NV patches x86: - Rework of TLB flushing - Rework of event injection, especially with respect to nested virtualization - Nested AMD event injection facelift, building on the rework of generic code and fixing a lot of corner cases - Nested AMD live migration support - Optimization for TSC deadline MSR writes and IPIs - Various cleanups - Asynchronous page fault cleanups (from tglx, common topic branch with tip tree) - Interrupt-based delivery of asynchronous "page ready" events (host side) - Hyper-V MSRs and hypercalls for guest debugging - VMX preemption timer fixes s390: - Cleanups Generic: - switch vCPU thread wakeup from swait to rcuwait The other architectures, and the guest side of the asynchronous page fault work, will come next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits) KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test KVM: check userspace_addr for all memslots KVM: selftests: update hyperv_cpuid with SynDBG tests x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls x86/kvm/hyper-v: enable hypercalls regardless of hypercall page x86/kvm/hyper-v: Add support for synthetic debugger interface x86/hyper-v: Add synthetic debugger definitions KVM: selftests: VMX preemption timer migration test KVM: nVMX: Fix VMX preemption timer migration x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit KVM: x86/pmu: Support full width counting KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT KVM: x86: acknowledgment mechanism for async pf page ready notifications KVM: x86: interrupt based APF 'page ready' event delivery KVM: introduce kvm_read_guest_offset_cached() KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present() KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously" KVM: VMX: Replace zero-length array with flexible-array ... |
||
Linus Torvalds
|
e7c93cbfe9 |
threads-v5.8
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXtYhfgAKCRCRxhvAZXjc oghSAP9uVX3vxYtEtNvu9WtEn1uYZcSKZoF1YrcgY7UfSmna0gEAruzyZcai4CJL WKv+4aRq2oYk+hsqZDycAxIsEgWvNg8= =ZWj3 -----END PGP SIGNATURE----- Merge tag 'threads-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread updates from Christian Brauner: "We have been discussing using pidfds to attach to namespaces for quite a while and the patches have in one form or another already existed for about a year. But I wanted to wait to see how the general api would be received and adopted. This contains the changes to make it possible to use pidfds to attach to the namespaces of a process, i.e. they can be passed as the first argument to the setns() syscall. When only a single namespace type is specified the semantics are equivalent to passing an nsfd. That means setns(nsfd, CLONE_NEWNET) equals setns(pidfd, CLONE_NEWNET). However, when a pidfd is passed, multiple namespace flags can be specified in the second setns() argument and setns() will attach the caller to all the specified namespaces all at once or to none of them. Specifying 0 is not valid together with a pidfd. Here are just two obvious examples: setns(pidfd, CLONE_NEWPID | CLONE_NEWNS | CLONE_NEWNET); setns(pidfd, CLONE_NEWUSER); Allowing to also attach subsets of namespaces supports various use-cases where callers setns to a subset of namespaces to retain privilege, perform an action and then re-attach another subset of namespaces. Apart from significantly reducing the number of syscalls needed to attach to all currently supported namespaces (eight "open+setns" sequences vs just a single "setns()"), this also allows atomic setns to a set of namespaces, i.e. either attaching to all namespaces succeeds or we fail without having changed anything. This is centered around a new internal struct nsset which holds all information necessary for a task to switch to a new set of namespaces atomically. Fwiw, with this change a pidfd becomes the only token needed to interact with a container. I'm expecting this to be picked-up by util-linux for nsenter rather soon. Associated with this change is a shiny new test-suite dedicated to setns() (for pidfds and nsfds alike)" * tag 'threads-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: selftests/pidfd: add pidfd setns tests nsproxy: attach to namespaces via pidfds nsproxy: add struct nsset |
||
Thadeu Lima de Souza Cascardo
|
065fcfd497 |
selftests: net: ip_defrag: ignore EPERM
When running with conntrack rules, the dropped overlap fragments may cause EPERM to be returned to sendto. Instead of completely failing, just ignore those errors and continue. If this causes packets with overlap fragments to be dropped as expected, that is okay. And if it causes packets that are expected to be received to be dropped, which should not happen, it will be detected as failure. Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Linus Torvalds
|
cfa3b8068b |
hmm related patches for 5.8
This series adds a selftest for hmm_range_fault() and several of the DEVICE_PRIVATE migration related actions, and another simplification for hmm_range_fault()'s API. - Simplify hmm_range_fault() with a simpler return code, no HMM_PFN_SPECIAL, and no customizable output PFN format - Add a selftest for hmm_range_fault() and DEVICE_PRIVATE related functionality -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl7VQr8ACgkQOG33FX4g mxrpcg/+O+oZ2p8FDTZi/0BTaU0crUiKwJngmmv78UuvD8nzhOZ0fkhK2lsXn9Uo 70lYbfDUSX2TbReP7y39VArW0v+Bj7wo9/7AZ+R2o5A0ajC6kccjGdnb7uEc3L6v CR+uumRYf/ZNz13cbuRBbYEz477DGnz+3vhBb4FLNTFj9XiNAC61jA1WUI0ep6x3 lDrkhDatqmdBJ+EqZDMq2+UH+lWbkptQT7hPqgEp6o7FqdnySxRd+rT3hALz5wNP fbryfWXM7V1eh7Kxr2mBJJqIkgbdhGLj2yLl1Iz11BbG6u7AT20r23WTvJ7hUCyt 18574twdltZ81gheqqN7KVYYAo+5seMfP14QdthqzzBMo3pOeLG0JMVqQNisDPgn Tf4lWF/GR7ajKxyRbLdvUgRE7pFQ9VMAiP86GoIpBFmSZQQDwcecnoYxg60zsTwR yuf60gopfNsSWNmDqKT3td12PQyFQYHYT6ue1eW6Rb9P+yA++tZaGkvGFn7kHeNV ZeUqsKEy6a9l6cDrFzNmsCcdNZg/qmw9mKFfa/4RRulU5jlskt/e52NiLaLU2rsr 0Tot3j5tMufLLorZPprMI3Z/M9ohVAS5DkX6ttcZDs5v0iGQEUOOnq0cXmwlJQ9I 0CHr2ImjiDr9v2fS+5ixaRNSHfnQWnHxcqq79UZiTjtPW1Daauo= =twev -----END PGP SIGNATURE----- Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma Pull hmm updates from Jason Gunthorpe: "This series adds a selftest for hmm_range_fault() and several of the DEVICE_PRIVATE migration related actions, and another simplification for hmm_range_fault()'s API. - Simplify hmm_range_fault() with a simpler return code, no HMM_PFN_SPECIAL, and no customizable output PFN format - Add a selftest for hmm_range_fault() and DEVICE_PRIVATE related functionality" * tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: MAINTAINERS: add HMM selftests mm/hmm/test: add selftests for HMM mm/hmm/test: add selftest driver for HMM mm/hmm: remove the customizable pfn format from hmm_range_fault mm/hmm: remove HMM_PFN_SPECIAL drm/amdgpu: remove dead code after hmm_range_fault() mm/hmm: make hmm_range_fault return 0 or -1 |
||
Ilya Leoshkevich
|
e7ad28e6fd |
selftests/bpf: Add a default $(CXX) value
When using make kselftest TARGETS=bpf, tools/bpf is built with MAKEFLAGS=rR, which causes $(CXX) to be undefined, which in turn causes the build to fail with CXX test_cpp /bin/sh: 2: g: not found Fix by adding a default $(CXX) value, like tools/build/feature/Makefile already does. Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200602175649.2501580-3-iii@linux.ibm.com |
||
Ilya Leoshkevich
|
9bc499befe |
bpf, selftests: Use bpf_probe_read_kernel
Since commit
|
||
Alexei Starovoitov
|
7cec0b9271 |
selftests/bpf: Fix verifier test
Adjust verifier test due to addition of new field.
Fixes:
|
||
Andrii Nakryiko
|
9a5f25ad30 |
selftests/bpf: Fix sample_cnt shared between two threads
Make sample_cnt volatile to fix possible selftests failure due to compiler
optimization preventing latest sample_cnt value to be visible to main thread.
sample_cnt is incremented in background thread, which is then joined into main
thread. So in terms of visibility sample_cnt update is ok. But because it's
not volatile, compiler might make optimizations that would prevent main thread
to see latest updated value. Fix this by marking global variable volatile.
Fixes:
|
||
Daniel Borkmann
|
c4ba153b65 |
bpf, selftests: Adapt cls_redirect to call csum_level helper
Adapt bpf_skb_adjust_room() to pass in BPF_F_ADJ_ROOM_NO_CSUM_RESET flag and use the new bpf_csum_level() helper to inc/dec the checksum level by one after the encap/decap. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Lorenz Bauer <lmb@cloudflare.com> Link: https://lore.kernel.org/bpf/e7458f10e3f3d795307cbc5ad870112671d9c6f7.1591108731.git.daniel@iogearbox.net |
||
Jakub Sitnicki
|
06716e04a0 |
selftests/bpf: Extend test_flow_dissector to cover link creation
Extend the existing flow_dissector test case to run tests once using direct prog attachments, and then for the second time using indirect attachment via link. The intention is to exercises the newly added high-level API for attaching programs to network namespace with links (bpf_program__attach_netns). Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200531082846.2117903-13-jakub@cloudflare.com |
||
Jakub Sitnicki
|
b4b8a3bf9e |
selftests/bpf: Convert test_flow_dissector to use BPF skeleton
Switch flow dissector test setup from custom BPF object loader to BPF skeleton to save boilerplate and prepare for testing higher-level API for attaching flow dissector with bpf_link. To avoid depending on program order in the BPF object when populating the flow dissector PROG_ARRAY map, change the program section names to contain the program index into the map. This follows the example set by tailcall tests. Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200531082846.2117903-12-jakub@cloudflare.com |
||
Jakub Sitnicki
|
b8215dce7d |
selftests/bpf, flow_dissector: Close TAP device FD after the test
test_flow_dissector leaves a TAP device after it's finished, potentially
interfering with other tests that will run after it. Fix it by closing the
TAP descriptor on cleanup.
Fixes:
|
||
Jakub Sitnicki
|
1f043f87bb |
selftests/bpf: Add tests for attaching bpf_link to netns
Extend the existing test case for flow dissector attaching to cover: - link creation, - link updates, - link info querying, - mixing links with direct prog attachment. Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200531082846.2117903-10-jakub@cloudflare.com |
||
Linus Torvalds
|
533b220f7b |
arm64 updates for 5.8
- Branch Target Identification (BTI) * Support for ARMv8.5-BTI in both user- and kernel-space. This allows branch targets to limit the types of branch from which they can be called and additionally prevents branching to arbitrary code, although kernel support requires a very recent toolchain. * Function annotation via SYM_FUNC_START() so that assembly functions are wrapped with the relevant "landing pad" instructions. * BPF and vDSO updates to use the new instructions. * Addition of a new HWCAP and exposure of BTI capability to userspace via ID register emulation, along with ELF loader support for the BTI feature in .note.gnu.property. * Non-critical fixes to CFI unwind annotations in the sigreturn trampoline. - Shadow Call Stack (SCS) * Support for Clang's Shadow Call Stack feature, which reserves platform register x18 to point at a separate stack for each task that holds only return addresses. This protects function return control flow from buffer overruns on the main stack. * Save/restore of x18 across problematic boundaries (user-mode, hypervisor, EFI, suspend, etc). * Core support for SCS, should other architectures want to use it too. * SCS overflow checking on context-switch as part of the existing stack limit check if CONFIG_SCHED_STACK_END_CHECK=y. - CPU feature detection * Removed numerous "SANITY CHECK" errors when running on a system with mismatched AArch32 support at EL1. This is primarily a concern for KVM, which disabled support for 32-bit guests on such a system. * Addition of new ID registers and fields as the architecture has been extended. - Perf and PMU drivers * Minor fixes and cleanups to system PMU drivers. - Hardware errata * Unify KVM workarounds for VHE and nVHE configurations. * Sort vendor errata entries in Kconfig. - Secure Monitor Call Calling Convention (SMCCC) * Update to the latest specification from Arm (v1.2). * Allow PSCI code to query the SMCCC version. - Software Delegated Exception Interface (SDEI) * Unexport a bunch of unused symbols. * Minor fixes to handling of firmware data. - Pointer authentication * Add support for dumping the kernel PAC mask in vmcoreinfo so that the stack can be unwound by tools such as kdump. * Simplification of key initialisation during CPU bringup. - BPF backend * Improve immediate generation for logical and add/sub instructions. - vDSO - Minor fixes to the linker flags for consistency with other architectures and support for LLVM's unwinder. - Clean up logic to initialise and map the vDSO into userspace. - ACPI - Work around for an ambiguity in the IORT specification relating to the "num_ids" field. - Support _DMA method for all named components rather than only PCIe root complexes. - Minor other IORT-related fixes. - Miscellaneous * Initialise debug traps early for KGDB and fix KDB cacheflushing deadlock. * Minor tweaks to early boot state (documentation update, set TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections). * Refactoring and cleanup -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl7U9csQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNLBHCACs/YU4SM7Om5f+7QnxIKao5DBr2CnGGvdC yTfDghFDTLQVv3MufLlfno3yBe5G8sQpcZfcc+hewfcGoMzVZXu8s7LzH6VSn9T9 jmT3KjDMrg0RjSHzyumJp2McyelTk0a4FiKArSIIKsJSXUyb1uPSgm7SvKVDwEwU JGDzL9IGilmq59GiXfDzGhTZgmC37QdwRoRxDuqtqWQe5CHoRXYexg87HwBKOQxx HgU9L7ehri4MRZfpyjaDrr6quJo3TVnAAKXNBh3mZAskVS9ZrfKpEH0kYWYuqybv znKyHRecl/rrGePV8RTMtrwnSdU26zMXE/omsVVauDfG9hqzqm+Q =w3qi -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "A sizeable pile of arm64 updates for 5.8. Summary below, but the big two features are support for Branch Target Identification and Clang's Shadow Call stack. The latter is currently arm64-only, but the high-level parts are all in core code so it could easily be adopted by other architectures pending toolchain support Branch Target Identification (BTI): - Support for ARMv8.5-BTI in both user- and kernel-space. This allows branch targets to limit the types of branch from which they can be called and additionally prevents branching to arbitrary code, although kernel support requires a very recent toolchain. - Function annotation via SYM_FUNC_START() so that assembly functions are wrapped with the relevant "landing pad" instructions. - BPF and vDSO updates to use the new instructions. - Addition of a new HWCAP and exposure of BTI capability to userspace via ID register emulation, along with ELF loader support for the BTI feature in .note.gnu.property. - Non-critical fixes to CFI unwind annotations in the sigreturn trampoline. Shadow Call Stack (SCS): - Support for Clang's Shadow Call Stack feature, which reserves platform register x18 to point at a separate stack for each task that holds only return addresses. This protects function return control flow from buffer overruns on the main stack. - Save/restore of x18 across problematic boundaries (user-mode, hypervisor, EFI, suspend, etc). - Core support for SCS, should other architectures want to use it too. - SCS overflow checking on context-switch as part of the existing stack limit check if CONFIG_SCHED_STACK_END_CHECK=y. CPU feature detection: - Removed numerous "SANITY CHECK" errors when running on a system with mismatched AArch32 support at EL1. This is primarily a concern for KVM, which disabled support for 32-bit guests on such a system. - Addition of new ID registers and fields as the architecture has been extended. Perf and PMU drivers: - Minor fixes and cleanups to system PMU drivers. Hardware errata: - Unify KVM workarounds for VHE and nVHE configurations. - Sort vendor errata entries in Kconfig. Secure Monitor Call Calling Convention (SMCCC): - Update to the latest specification from Arm (v1.2). - Allow PSCI code to query the SMCCC version. Software Delegated Exception Interface (SDEI): - Unexport a bunch of unused symbols. - Minor fixes to handling of firmware data. Pointer authentication: - Add support for dumping the kernel PAC mask in vmcoreinfo so that the stack can be unwound by tools such as kdump. - Simplification of key initialisation during CPU bringup. BPF backend: - Improve immediate generation for logical and add/sub instructions. vDSO: - Minor fixes to the linker flags for consistency with other architectures and support for LLVM's unwinder. - Clean up logic to initialise and map the vDSO into userspace. ACPI: - Work around for an ambiguity in the IORT specification relating to the "num_ids" field. - Support _DMA method for all named components rather than only PCIe root complexes. - Minor other IORT-related fixes. Miscellaneous: - Initialise debug traps early for KGDB and fix KDB cacheflushing deadlock. - Minor tweaks to early boot state (documentation update, set TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections). - Refactoring and cleanup" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits) KVM: arm64: Move __load_guest_stage2 to kvm_mmu.h KVM: arm64: Check advertised Stage-2 page size capability arm64/cpufeature: Add get_arm64_ftr_reg_nowarn() ACPI/IORT: Remove the unused __get_pci_rid() arm64/cpuinfo: Add ID_MMFR4_EL1 into the cpuinfo_arm64 context arm64/cpufeature: Add remaining feature bits in ID_AA64PFR1 register arm64/cpufeature: Add remaining feature bits in ID_AA64PFR0 register arm64/cpufeature: Add remaining feature bits in ID_AA64ISAR0 register arm64/cpufeature: Add remaining feature bits in ID_MMFR4 register arm64/cpufeature: Add remaining feature bits in ID_PFR0 register arm64/cpufeature: Introduce ID_MMFR5 CPU register arm64/cpufeature: Introduce ID_DFR1 CPU register arm64/cpufeature: Introduce ID_PFR2 CPU register arm64/cpufeature: Make doublelock a signed feature in ID_AA64DFR0 arm64/cpufeature: Drop TraceFilt feature exposure from ID_DFR0 register arm64/cpufeature: Add explicit ftr_id_isar0[] for ID_ISAR0 register arm64: mm: Add asid_gen_match() helper firmware: smccc: Fix missing prototype warning for arm_smccc_version_init arm64: vdso: Fix CFI directives in sigreturn trampoline arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction ... |
||
Ferenc Fejes
|
9c441fe4c0 |
selftests/bpf: Add test for SO_BINDTODEVICE opt of bpf_setsockopt
This test intended to verify if SO_BINDTODEVICE option works in bpf_setsockopt. Because we already in the SOL_SOCKET level in this connect bpf prog its safe to verify the sanity in the beginning of the connect_v4_prog by calling the bind_to_device test helper. The testing environment already created by the test_sock_addr.sh script so this test assume that two netdevices already existing in the system: veth pair with names test_sock_addr1 and test_sock_addr2. The test will try to bind the socket to those devices first. Then the test assume there are no netdevice with "nonexistent_dev" name so the bpf_setsockopt will give use ENODEV error. At the end the test remove the device binding from the socket by binding it to an empty name. Signed-off-by: Ferenc Fejes <fejes@inf.elte.hu> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/3f055b8e45c65639c5c73d0b4b6c589e60b86f15.1590871065.git.fejes@inf.elte.hu |
||
John Fastabend
|
463bac5f1c |
bpf, selftests: Add test for ktls with skb bpf ingress policy
This adds a test for bpf ingress policy. To ensure data writes happen as expected with extra TLS headers we run these tests with data verification enabled by default. This will test receive packets have "PASS" stamped into the front of the payload. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/159079363965.5745.3390806911628980210.stgit@john-Precision-5820-Tower Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
David Ahern
|
d39aec79e5 |
selftest: Add tests for XDP programs in devmap entries
Add tests to verify ability to add an XDP program to a entry in a DEVMAP. Add negative tests to show DEVMAP programs can not be attached to devices as a normal XDP program, and accesses to egress_ifindex require BPF_XDP_DEVMAP attach type. Signed-off-by: David Ahern <dsahern@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20200529220716.75383-6-dsahern@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Andrii Nakryiko
|
c97099b0f2 |
bpf: Add BPF ringbuf and perf buffer benchmarks
Extend bench framework with ability to have benchmark-provided child argument parser for custom benchmark-specific parameters. This makes bench generic code modular and independent from any specific benchmark. Also implement a set of benchmarks for new BPF ring buffer and existing perf buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf and perfbuf:, - rb-libbpf utilizes stock libbpf ring_buffer manager for reading data; - rb-custom implements custom ring buffer setup and reading code, to eliminate overheads inherent in generic libbpf code due to callback functions and the need to update consumer position after each consumed record, instead of batching updates (due to pessimistic assumption that user callback might take long time and thus could unnecessarily hold ring buffer space for too long); - pb-libbpf uses stock libbpf perf_buffer code with all the default settings, though uses higher-performance raw event callback to minimize unnecessary overhead; - pb-custom implements its own custom consumer code to minimize any possible overhead of generic libbpf implementation and indirect function calls. All of the test support default, no data notification skipped, mode, as well as sampled mode (with --rb-sampled flag), which allows to trigger epoll notification less frequently and reduce overhead. As will be shown, this mode is especially critical for perf buffer, which suffers from high overhead of wakeups in kernel. Otherwise, all benchamrks implement similar way to generate a batch of records by using fentry/sys_getpgid BPF program, which pushes a bunch of records in a tight loop and records number of successful and dropped samples. Each record is a small 8-byte integer, to minimize the effect of memory copying with bpf_perf_event_output() and bpf_ringbuf_output(). Benchmarks that have only one producer implement optional back-to-back mode, in which record production and consumption is alternating on the same CPU. This is the highest-throughput happy case, showing ultimate performance achievable with either BPF ringbuf or perfbuf. All the below scenarios are implemented in a script in benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU. Single-producer, parallel producer ================================== rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s) rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s) pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s) pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s) Single-producer, parallel producer, sampled notification ======================================================== rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s) rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s) pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s) pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s) Single producer on one CPU, consumer on another one, both running at full speed. Curiously, rb-libbpf has higher throughput than objectively faster (due to more lightweight consumer code path) rb-custom. It appears that faster consumer causes kernel to send notifications more frequently, because consumer appears to be caught up more frequently. Performance of perfbuf suffers from default "no sampling" policy and huge overhead that causes. In sampled mode, rb-custom is winning very significantly eliminating too frequent in-kernel wakeups, the gain appears to be more than 2x. Perf buffer achieves even more impressive wins, compared to stock perfbuf settings, with 10x improvements in throughput with 1:500 sampling rate. The trade-off is that with sampling, application might not get next X events until X+1st arrives, which is not always acceptable. With steady influx of events, though, this shouldn't be a problem. Overall, single-producer performance of ring buffers seems to be better no matter the sampled/non-sampled modes, but it especially beats ring buffer without sampling due to its adaptive notification approach. Single-producer, back-to-back mode ================================== rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s) rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s) rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s) rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s) pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s) pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s) pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s) pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s) Here we test a back-to-back mode, which is arguably best-case scenario both for BPF ringbuf and perfbuf, because there is no contention and for ringbuf also no excessive notification, because consumer appears to be behind after the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs 16 million records per second exchanged between producer and consumer. Sampled mode actually hurts a bit due to slightly slower producer logic (it needs to fetch amount of data available to decide whether to skip or force notification). Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to no-sampling version. There also doesn't seem to be noticeable overhead from generic libbpf handling code. Perfbuf back-to-back, effect of sample rate =========================================== pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s) pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s) pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s) pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s) pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s) pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s) pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s) pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s) pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s) pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s) pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s) This benchmark shows the effect of event sampling for perfbuf. Back-to-back mode for highest throughput. Just doing every 5th record notification gives 3.5x speed up. 250-500 appears to be the point of diminishing return, with almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw and pb-custom. Ringbuf back-to-back, effect of sample rate =========================================== rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s) rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s) rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s) rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s) rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s) rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s) rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s) rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s) rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s) rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s) rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s) Similar benchmark for ring buffer also shows a great advantage (in terms of throughput) of skipping notifications. Skipping every 5th one gives 4x boost. Also similar to perfbuf case, 250-500 seems to be the point of diminishing returns, giving roughly 20x better results. Keep in mind, for this test, notifications are controlled manually with BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous benchmarks, adaptive notifications based on consumer's positions provides same (or even slightly better due to simpler load generator on BPF side) benefits in favorable back-to-back scenario. Over zealous and fast consumer, which is almost always caught up, will make thoughput numbers smaller. That's the case when manual notification control might prove to be extremely beneficial. Ringbuf back-to-back, reserve+commit vs output ============================================== reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s) output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s) Ringbuf sampled, reserve+commit vs output ========================================= reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s) output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s) BPF ringbuf supports two sets of APIs with various usability and performance tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output(). This benchmark clearly shows superiority of reserve+commit approach, despite using a small 8-byte record size. Single-producer, consumer/producer competing on the same CPU, low batch count ============================================================================= rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s) rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s) pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s) pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s) This benchmark shows one of the worst-case scenarios, in which producer and consumer do not coordinate *and* fight for the same CPU. No batch count and sampling settings were able to eliminate drops for ringbuffer, producer is just too fast for consumer to keep up. But ringbuf and perfbuf still able to pass through quite a lot of messages, which is more than enough for a lot of applications. Ringbuf, multi-producer contention ================================== rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s) rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s) rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s) rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s) Ringbuf uses a very short-duration spinlock during reservation phase, to check few invariants, increment producer count and set record header. This is the biggest point of contention for ringbuf implementation. This benchmark evaluates the effect of multiple competing writers on overall throughput of a single shared ringbuffer. Overall throughput drops almost 2x when going from single to two highly-contended producers, gradually dropping with additional competing producers. Performance drop stabilizes at around 20 producers and hovers around 2mln even with 50+ fighting producers, which is a 5x drop compared to non-contended case. Good kernel implementation in kernel helps maintain decent performance here. Note, that in the intended real-world scenarios, it's not expected to get even close to such a high levels of contention. But if contention will become a problem, there is always an option of sharding few ring buffers across a set of CPUs. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Andrii Nakryiko
|
cb1c9ddd55 |
selftests/bpf: Add BPF ringbuf selftests
Both singleton BPF ringbuf and BPF ringbuf with map-in-map use cases are tested. Also reserve+submit/discards and output variants of API are validated. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200529075424.3139988-4-andriin@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Andrii Nakryiko
|
457f44363a |
bpf: Implement BPF ring buffer and verifier support for it
This commit adds a new MPSC ring buffer implementation into BPF ecosystem, which allows multiple CPUs to submit data to a single shared ring buffer. On the consumption side, only single consumer is assumed. Motivation ---------- There are two distinctive motivators for this work, which are not satisfied by existing perf buffer, which prompted creation of a new ring buffer implementation. - more efficient memory utilization by sharing ring buffer across CPUs; - preserving ordering of events that happen sequentially in time, even across multiple CPUs (e.g., fork/exec/exit events for a task). These two problems are independent, but perf buffer fails to satisfy both. Both are a result of a choice to have per-CPU perf ring buffer. Both can be also solved by having an MPSC implementation of ring buffer. The ordering problem could technically be solved for perf buffer with some in-kernel counting, but given the first one requires an MPSC buffer, the same solution would solve the second problem automatically. Semantics and APIs ------------------ Single ring buffer is presented to BPF programs as an instance of BPF map of type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately rejected. One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce "same CPU only" rule. This would be more familiar interface compatible with existing perf buffer use in BPF, but would fail if application needed more advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses this with current approach. Additionally, given the performance of BPF ringbuf, many use cases would just opt into a simple single ring buffer shared among all CPUs, for which current approach would be an overkill. Another approach could introduce a new concept, alongside BPF map, to represent generic "container" object, which doesn't necessarily have key/value interface with lookup/update/delete operations. This approach would add a lot of extra infrastructure that has to be built for observability and verifier support. It would also add another concept that BPF developers would have to familiarize themselves with, new syntax in libbpf, etc. But then would really provide no additional benefits over the approach of using a map. BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so doesn't few other map types (e.g., queue and stack; array doesn't support delete, etc). The approach chosen has an advantage of re-using existing BPF map infrastructure (introspection APIs in kernel, libbpf support, etc), being familiar concept (no need to teach users a new type of object in BPF program), and utilizing existing tooling (bpftool). For common scenario of using a single ring buffer for all CPUs, it's as simple and straightforward, as would be with a dedicated "container" object. On the other hand, by being a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to implement a wide variety of topologies, from one ring buffer for each CPU (e.g., as a replacement for perf buffer use cases), to a complicated application hashing/sharding of ring buffers (e.g., having a small pool of ring buffers with hashed task's tgid being a look up key to preserve order, but reduce contention). Key and value sizes are enforced to be zero. max_entries is used to specify the size of ring buffer and has to be a power of 2 value. There are a bunch of similarities between perf buffer (BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics: - variable-length records; - if there is no more space left in ring buffer, reservation fails, no blocking; - memory-mappable data area for user-space applications for ease of consumption and high performance; - epoll notifications for new incoming data; - but still the ability to do busy polling for new data to achieve the lowest latency, if necessary. BPF ringbuf provides two sets of APIs to BPF programs: - bpf_ringbuf_output() allows to *copy* data from one place to a ring buffer, similarly to bpf_perf_event_output(); - bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs split the whole process into two steps. First, a fixed amount of space is reserved. If successful, a pointer to a data inside ring buffer data area is returned, which BPF programs can use similarly to a data inside array/hash maps. Once ready, this piece of memory is either committed or discarded. Discard is similar to commit, but makes consumer ignore the record. bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because record has to be prepared in some other place first. But it allows to submit records of the length that's not known to verifier beforehand. It also closely matches bpf_perf_event_output(), so will simplify migration significantly. bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory pointer directly to ring buffer memory. In a lot of cases records are larger than BPF stack space allows, so many programs have use extra per-CPU array as a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs completely. But in exchange, it only allows a known constant size of memory to be reserved, such that verifier can verify that BPF program can't access memory outside its reserved record space. bpf_ringbuf_output(), while slightly slower due to extra memory copy, covers some use cases that are not suitable for bpf_ringbuf_reserve(). The difference between commit and discard is very small. Discard just marks a record as discarded, and such records are supposed to be ignored by consumer code. Discard is useful for some advanced use-cases, such as ensuring all-or-nothing multi-record submission, or emulating temporary malloc()/free() within single BPF program invocation. Each reserved record is tracked by verifier through existing reference-tracking logic, similar to socket ref-tracking. It is thus impossible to reserve a record, but forget to submit (or discard) it. bpf_ringbuf_query() helper allows to query various properties of ring buffer. Currently 4 are supported: - BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer; - BPF_RB_RING_SIZE returns the size of ring buffer; - BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of consumer/producer, respectively. Returned values are momentarily snapshots of ring buffer state and could be off by the time helper returns, so this should be used only for debugging/reporting reasons or for implementing various heuristics, that take into account highly-changeable nature of some of those characteristics. One such heuristic might involve more fine-grained control over poll/epoll notifications about new data availability in ring buffer. Together with BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers, it allows BPF program a high degree of control and, e.g., more efficient batched notifications. Default self-balancing strategy, though, should be adequate for most applications and will work reliable and efficiently already. Design and implementation ------------------------- This reserve/commit schema allows a natural way for multiple producers, either on different CPUs or even on the same CPU/in the same BPF program, to reserve independent records and work with them without blocking other producers. This means that if BPF program was interruped by another BPF program sharing the same ring buffer, they will both get a record reserved (provided there is enough space left) and can work with it and submit it independently. This applies to NMI context as well, except that due to using a spinlock during reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock, in which case reservation will fail even if ring buffer is not full. The ring buffer itself internally is implemented as a power-of-2 sized circular buffer, with two logical and ever-increasing counters (which might wrap around on 32-bit architectures, that's not a problem): - consumer counter shows up to which logical position consumer consumed the data; - producer counter denotes amount of data reserved by all producers. Each time a record is reserved, producer that "owns" the record will successfully advance producer counter. At that point, data is still not yet ready to be consumed, though. Each record has 8 byte header, which contains the length of reserved record, as well as two extra bits: busy bit to denote that record is still being worked on, and discard bit, which might be set at commit time if record is discarded. In the latter case, consumer is supposed to skip the record and move on to the next one. Record header also encodes record's relative offset from the beginning of ring buffer data area (in pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only the pointer to the record itself, without requiring also the pointer to ring buffer itself. Ring buffer memory location will be restored from record metadata header. This significantly simplifies verifier, as well as improving API usability. Producer counter increments are serialized under spinlock, so there is a strict ordering between reservations. Commits, on the other hand, are completely lockless and independent. All records become available to consumer in the order of reservations, but only after all previous records where already committed. It is thus possible for slow producers to temporarily hold off submitted records, that were reserved later. Reservation/commit/consumer protocol is verified by litmus tests in Documentation/litmus-test/bpf-rb. One interesting implementation bit, that significantly simplifies (and thus speeds up as well) implementation of both producers and consumers is how data area is mapped twice contiguously back-to-back in the virtual memory. This allows to not take any special measures for samples that have to wrap around at the end of the circular buffer data area, because the next page after the last data page would be first data page again, and thus the sample will still appear completely contiguous in virtual memory. See comment and a simple ASCII diagram showing this visually in bpf_ringbuf_area_alloc(). Another feature that distinguishes BPF ringbuf from perf ring buffer is a self-pacing notifications of new data being availability. bpf_ringbuf_commit() implementation will send a notification of new record being available after commit only if consumer has already caught up right up to the record being committed. If not, consumer still has to catch up and thus will see new data anyways without needing an extra poll notification. Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that this allows to achieve a very high throughput without having to resort to tricks like "notify only every Nth sample", which are necessary with perf buffer. For extreme cases, when BPF program wants more manual control of notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data availability, but require extra caution and diligence in using this API. Comparison to alternatives -------------------------- Before considering implementing BPF ring buffer from scratch existing alternatives in kernel were evaluated, but didn't seem to meet the needs. They largely fell into few categores: - per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations outlined above (ordering and memory consumption); - linked list-based implementations; while some were multi-producer designs, consuming these from user-space would be very complicated and most probably not performant; memory-mapping contiguous piece of memory is simpler and more performant for user-space consumers; - io_uring is SPSC, but also requires fixed-sized elements. Naively turning SPSC queue into MPSC w/ lock would have subpar performance compared to locked reserve + lockless commit, as with BPF ring buffer. Fixed sized elements would be too limiting for BPF programs, given existing BPF programs heavily rely on variable-sized perf buffer already; - specialized implementations (like a new printk ring buffer, [0]) with lots of printk-specific limitations and implications, that didn't seem to fit well for intended use with BPF programs. [0] https://lwn.net/Articles/779550/ Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Anton Protopopov
|
43dd115b1f |
selftests/bpf: Add tests for write-only stacks/queues
For write-only stacks and queues bpf_map_update_elem should be allowed, but bpf_map_lookup_elem and bpf_map_lookup_and_delete_elem should fail with EPERM. Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200527185700.14658-6-a.s.protopopov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Anton Protopopov
|
efbc3b8fe1 |
selftests/bpf: Cleanup comments in test_maps
Make comments inside the test_map_rdonly and test_map_wronly tests consistent with logic. Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200527185700.14658-4-a.s.protopopov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Anton Protopopov
|
36ef9a2d3f |
selftests/bpf: Cleanup some file descriptors in test_maps
The test_map_rdonly and test_map_wronly tests should close file descriptors which they open. Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200527185700.14658-3-a.s.protopopov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Anton Protopopov
|
204fb0413a |
selftests/bpf: Fix a typo in test_maps
Trivial fix to a typo in the test_map_wronly test: "read" -> "write" Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200527185700.14658-2-a.s.protopopov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
John Fastabend
|
ee103e9f15 |
bpf, selftests: Test probe_* helpers from SCHED_CLS
Lets test using probe* in SCHED_CLS network programs as well just to be sure these keep working. Its cheap to add the extra test and provides a second context to test outside of sk_msg after we generalized probe* helpers to all networking types. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/159033911685.12355.15951980509828906214.stgit@john-Precision-5820-Tower Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
John Fastabend
|
1d9c037a89 |
bpf, selftests: Add sk_msg helpers load and attach test
The test itself is not particularly useful but it encodes a common pattern we have. Namely do a sk storage lookup then depending on data here decide if we need to do more work or alternatively allow packet to PASS. Then if we need to do more work consult task_struct for more information about the running task. Finally based on this additional information drop or pass the data. In this case the suspicious check is not so realisitic but it encodes the general pattern and uses the helpers so we test the workflow. This is a load test to ensure verifier correctly handles this case. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/159033909665.12355.6166415847337547879.stgit@john-Precision-5820-Tower Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Linus Torvalds
|
2227e5b21a |
The RCU updates for this cycle were:
- RCU-tasks update, including addition of RCU Tasks Trace for BPF use and TASKS_RUDE_RCU - kfree_rcu() updates. - Remove scheduler locking restriction - RCU CPU stall warning updates. - Torture-test updates. - Miscellaneous fixes and other updates. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7U/r0RHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1hSNxAAirKhPGBoLI9DW1qde4OFhZg+BlIpS+LD IE/0eGB8hGwhb1793RGbzIJfSnRQpSOPxWbWc6DJZ4Zpi5/ZbVkiPKsuXpM1xGxs kuBCTOhWy1/p3iCZ1JH/JCrCAdWGZkIzEoaV7ipnHtV/+UrRbCWH5PB7R0fYvcbI q5bUcWJyEp/bYMxQn8DhAih6SLPHx+F9qaGAqqloLSHstTYG2HkBhBGKnqcd/Jex twkLK53poCkeP/c08V1dyagU2IRWj2jGB1NjYh/Ocm+Sn/vru15CVGspjVjqO5FF oq07lad357ddMsZmKoM2F5DhXbOh95A+EqF9VDvIzCvfGMUgqYI1oxWF4eycsGhg /aYJgYuN23YeEe2DkDzJB67GvBOwl4WgdoFaxKRzOiCSfrhkM8KqM4G9Fz1JIepG abRJCF85iGcLslU9DkrShQiDsd/CRPzu/jz6ybK0I2II2pICo6QRf76T7TdOvKnK yXwC6OdL7/dwOht20uT6XfnDXMCWI4MutiUrb8/C1DbaihwEaI2denr3YYL+IwrB B38CdP6sfKZ5UFxKh0xb+sOzWrw0KA+ThSAXeJhz3tKdxdyB6nkaw3J9lFg8oi20 XGeAujjtjMZG5cxt2H+wO9kZY0RRau/nTqNtmmRrCobd5yJjHHPHH8trEd0twZ9A X5Wjh11lv3E= =Yisx -----END PGP SIGNATURE----- Merge tag 'core-rcu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RCU updates from Ingo Molnar: "The RCU updates for this cycle were: - RCU-tasks update, including addition of RCU Tasks Trace for BPF use and TASKS_RUDE_RCU - kfree_rcu() updates. - Remove scheduler locking restriction - RCU CPU stall warning updates. - Torture-test updates. - Miscellaneous fixes and other updates" * tag 'core-rcu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits) rcu: Allow for smp_call_function() running callbacks from idle rcu: Provide rcu_irq_exit_check_preempt() rcu: Abstract out rcu_irq_enter_check_tick() from rcu_nmi_enter() rcu: Provide __rcu_is_watching() rcu: Provide rcu_irq_exit_preempt() rcu: Make RCU IRQ enter/exit functions rely on in_nmi() rcu/tree: Mark the idle relevant functions noinstr x86: Replace ist_enter() with nmi_enter() x86/mce: Send #MC singal from task work x86/entry: Get rid of ist_begin/end_non_atomic() sched,rcu,tracing: Avoid tracing before in_nmi() is correct sh/ftrace: Move arch_ftrace_nmi_{enter,exit} into nmi exception lockdep: Always inline lockdep_{off,on}() hardirq/nmi: Allow nested nmi_enter() arm64: Prepare arch_nmi_enter() for recursion printk: Disallow instrumenting print_nmi_enter() printk: Prepare for nested printk_nmi_enter() rcutorture: Convert ULONG_CMP_LT() to time_before() torture: Add a --kasan argument torture: Save a few lines by using config_override_param initially ... |
||
Linus Torvalds
|
829f3b9401 |
Fixes and new features for pstore
- refactor pstore locking for safer module unloading (Kees Cook) - remove orphaned records from pstorefs when backend unloaded (Kees Cook) - refactor dump_oops parameter into max_reason (Pavel Tatashin) - introduce pstore/zone for common code for contiguous storage (WeiXiong Liao) - introduce pstore/blk for block device backend (WeiXiong Liao) - introduce mtd backend (WeiXiong Liao) -----BEGIN PGP SIGNATURE----- iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl7UbYYWHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpkgD/9/09OkJIWydwk2lr2T89HW5fSF 5uBT0a309/QDUpnV9yhcRsrESEicnvbtaGxD0kuYIInkiW/2cj1l689EkyRjUmy9 q3z4GzLqOlC7qvd7LUPFNGHmllBb09H/CxmXDxRP3aynB9oHzdpNQdPcpLBDA00r 0byp/AE48dFbKIhtT0QxpGUYZFOlyc7XVAaOkED4bmu148gx8q7MU1AxFgbx0Feb 9iPV0r6XYMgXJZ3sn/3PJsxF0V/giDSJ8ui2xsYRjCE408zVIYLdDs2e8dz+2yW6 +3Lyankgo+ofZc4XYExTYgn3WjhPFi+pjVRUaj+BcyTk9SLNIj2WmZdmcLMuzanh BaUurmED7ffTtlsH4PhQgn8/OY4FX2PO2MwUHwlU+87Y8YDiW0lpzTq5H822OO8p QQ8awql/6lLCJuyzuWIciVUsS65MCPxsZ4+LSiMZzyYpWu1sxrEY8ic3agzCgsA0 0i+4nZFlLG+Aap/oiKpegenkIyAunn2tDXAyFJFH6qLOiZJ78iRuws3XZqjCElhJ XqvyDJIfjkJhWUb++ckeqX7ThOR4CPSnwba/7GHv7NrQWuk3Cn+GQ80oxydXUY6b 2/4eYjq0wtvf9NeuJ4/LYNXotLR/bq9zS0zqwTWG50v+RPmuC3bNJB+RmF7fCiCG jo1Sd1LMeTQ7bnULpA== =7s1u -----END PGP SIGNATURE----- Merge tag 'pstore-v5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull pstore updates from Kees Cook: "Fixes and new features for pstore. This is a pretty big set of changes (relative to past pstore pulls), but it has been in -next for a while. The biggest change here is the ability to support a block device as a pstore backend, which has been desired for a while. A lot of additional fixes and refactorings are also included, mostly in support of the new features. - refactor pstore locking for safer module unloading (Kees Cook) - remove orphaned records from pstorefs when backend unloaded (Kees Cook) - refactor dump_oops parameter into max_reason (Pavel Tatashin) - introduce pstore/zone for common code for contiguous storage (WeiXiong Liao) - introduce pstore/blk for block device backend (WeiXiong Liao) - introduce mtd backend (WeiXiong Liao)" * tag 'pstore-v5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (35 commits) mtd: Support kmsg dumper based on pstore/blk pstore/blk: Introduce "best_effort" mode pstore/blk: Support non-block storage devices pstore/blk: Provide way to query pstore configuration pstore/zone: Provide way to skip "broken" zone for MTD devices Documentation: Add details for pstore/blk pstore/zone,blk: Add ftrace frontend support pstore/zone,blk: Add console frontend support pstore/zone,blk: Add support for pmsg frontend pstore/blk: Introduce backend for block devices pstore/zone: Introduce common layer to manage storage zones ramoops: Add "max-reason" optional field to ramoops DT node pstore/ram: Introduce max_reason and convert dump_oops pstore/platform: Pass max_reason to kmesg dump printk: Introduce kmsg_dump_reason_str() printk: honor the max_reason field in kmsg_dumper printk: Collapse shutdown types into a single dump reason pstore/ftrace: Provide ftrace log merging routine pstore/ram: Refactor ftrace buffer merging pstore/ram: Refactor DT size parsing ... |
||
Ido Schimmel
|
9959b38977 |
selftests: mlxsw: Add test for control packets
Generate packets matching the various control traps and check that the traps' stats increase accordingly. Signed-off-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Vitaly Kuznetsov
|
13ffbd8db1 |
KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test
vmx_tsc_adjust_test fails with:
IA32_TSC_ADJUST is -4294969448 (-1 * TSC_ADJUST_VALUE + -2152).
IA32_TSC_ADJUST is -4294969448 (-1 * TSC_ADJUST_VALUE + -2152).
IA32_TSC_ADJUST is 281470681738540 (65534 * TSC_ADJUST_VALUE + 4294962476).
==== Test Assertion Failure ====
x86_64/vmx_tsc_adjust_test.c:153: false
pid=19738 tid=19738 - Interrupted system call
1 0x0000000000401192: main at vmx_tsc_adjust_test.c:153
2 0x00007fe1ef8583d4: ?? ??:0
3 0x0000000000401201: _start at ??:?
Failed guest assert: (adjust <= max)
The problem is that is 'tsc_val' should be u64, not u32 or the reading
gets truncated.
Fixes:
|
||
Vitaly Kuznetsov
|
fb0cb6a821 |
KVM: selftests: update hyperv_cpuid with SynDBG tests
Update tests to reflect new CPUID capabilities with SYNDBG. Check that we get the right number of entries and that 0x40000000.EAX always returns the correct max leaf. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Jon Doron <arilou@gmail.com> Message-Id: <20200529134543.1127440-7-arilou@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Makarand Sonare
|
8d7fbf01f9 |
KVM: selftests: VMX preemption timer migration test
When a nested VM with a VMX-preemption timer is migrated, verify that the nested VM and its parent VM observe the VMX-preemption timer exit close to the original expiration deadline. Signed-off-by: Makarand Sonare <makarandsonare@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Message-Id: <20200526215107.205814-3-makarandsonare@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Vitaly Kuznetsov
|
8ec107c89b |
selftests: kvm: fix smm test on SVM
KVM_CAP_NESTED_STATE is now supported for AMD too but smm test acts like it is still Intel only. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20200529130407.57176-2-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Paolo Bonzini
|
10b910cb7e |
selftests: kvm: add a SVM version of state-test
The test is similar to the existing one for VMX, but simpler because we don't have to test shadow VMCS or vmptrld/vmptrst/vmclear. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Vitaly Kuznetsov
|
ed88129733 |
selftests: kvm: introduce cpu_has_svm() check
Many tests will want to check if the CPU is Intel or AMD in guest code, add cpu_has_svm() and put it as static inline to svm_util.h. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20200529130407.57176-1-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
David S. Miller
|
1806c13dc2 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
xdp_umem.c had overlapping changes between the 64-bit math fix for the calculation of npgs and the removal of the zerocopy memory type which got rid of the chunk_size_nohdr member. The mlx5 Kconfig conflict is a case where we just take the net-next copy of the Kconfig entry dependency as it takes on the ESWITCH dependency by one level of indirection which is what the 'net' conflicting change is trying to ensure. Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Petr Machata
|
3ed97037f0 |
selftests: forwarding: pedit_dsfield: Check counter value
A missing stats_update callback was recently added to act_pedit. Now that iproute2 supports JSON dumping for pedit, extend the pedit_dsfield selftest with a check that would have caught the fact that the callback was missing. Signed-off-by: Petr Machata <petrm@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Petr Machata
|
1c0522b4a2 |
selftests: forwarding: mirror_lib: Use mausezahn
Using ping in tests is error-prone, because ping is too smart. On a flaky system (notably in a simulator), when packets don't come quickly enough, more pings are sent, and that throws off counters. Instead use mausezahn to generate ICMP echo request packets. That allows us to send them in quicker succession as well, because the reason the ping was made slow in the first place was to make the tests work on simulated systems. Signed-off-by: Petr Machata <petrm@mellanox.com> Signed-off-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Kees Cook
|
d195c39052 |
pstore/platform: Use backend name for console registration
If the pstore backend changes, there's no indication in the logs what the console is (it always says "pstore"). Instead, pass through the active backend's name. (Also adjust the selftest to match.) Link: https://lore.kernel.org/lkml/20200510202436.63222-5-keescook@chromium.org/ Link: https://lore.kernel.org/lkml/20200526135429.GQ12456@shao2-debian Signed-off-by: Kees Cook <keescook@chromium.org> |
||
David S. Miller
|
f9e0ce3ddc |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Alexei Starovoitov says: ==================== pull-request: bpf 2020-05-29 The following pull-request contains BPF updates for your *net* tree. We've added 6 non-merge commits during the last 7 day(s) which contain a total of 4 files changed, 55 insertions(+), 34 deletions(-). The main changes are: 1) minor verifier fix for fmod_ret progs, from Alexei. 2) af_xdp overflow check, from Bjorn. 3) minor verifier fix for 32bit assignment, from John. 4) powerpc has non-overlapping addr space, from Petr. ==================== Signed-off-by: David S. Miller <davem@davemloft.net> |
||
John Fastabend
|
cf66c29bd7 |
bpf, selftests: Add a verifier test for assigning 32bit reg states to 64bit ones
Added a verifier test for assigning 32bit reg states to 64bit where 32bit reg holds a constant value of 0. Without previous kernel verifier.c fix, the test in this patch will fail. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/159077335867.6014.2075350327073125374.stgit@john-Precision-5820-Tower |
||
John Fastabend
|
e3effcdfe0 |
bpf, selftests: Verifier bounds tests need to be updated
After previous fix for zero extension test_verifier tests #65 and #66 now fail. Before the fix we can see the alu32 mov op at insn 10 10: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0) R1_w=invP(id=0, smin_value=4294967168,smax_value=4294967423, umin_value=4294967168,umax_value=4294967423, var_off=(0x0; 0x1ffffffff), s32_min_value=-2147483648,s32_max_value=2147483647, u32_min_value=0,u32_max_value=-1) R10=fp0 fp-8_w=mmmmmmmm 10: (bc) w1 = w1 11: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0) R1_w=invP(id=0, smin_value=0,smax_value=2147483647, umin_value=0,umax_value=4294967295, var_off=(0x0; 0xffffffff), s32_min_value=-2147483648,s32_max_value=2147483647, u32_min_value=0,u32_max_value=-1) R10=fp0 fp-8_w=mmmmmmmm After the fix at insn 10 because we have 's32_min_value < 0' the following step 11 now has 'smax_value=U32_MAX' where before we pulled the s32_max_value bound into the smax_value as seen above in 11 with smax_value=2147483647. 10: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0) R1_w=inv(id=0, smin_value=4294967168,smax_value=4294967423, umin_value=4294967168,umax_value=4294967423, var_off=(0x0; 0x1ffffffff), s32_min_value=-2147483648, s32_max_value=2147483647, u32_min_value=0,u32_max_value=-1) R10=fp0 fp-8_w=mmmmmmmm 10: (bc) w1 = w1 11: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0) R1_w=inv(id=0, smin_value=0,smax_value=4294967295, umin_value=0,umax_value=4294967295, var_off=(0x0; 0xffffffff), s32_min_value=-2147483648, s32_max_value=2147483647, u32_min_value=0, u32_max_value=-1) R10=fp0 fp-8_w=mmmmmmmm The fall out of this is by the time we get to the failing instruction at step 14 where previously we had the following: 14: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0) R1_w=inv(id=0, smin_value=72057594021150720,smax_value=72057594029539328, umin_value=72057594021150720,umax_value=72057594029539328, var_off=(0xffffffff000000; 0xffffff), s32_min_value=-16777216,s32_max_value=-1, u32_min_value=-16777216,u32_max_value=-1) R10=fp0 fp-8_w=mmmmmmmm 14: (0f) r0 += r1 We now have, 14: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0) R1_w=inv(id=0, smin_value=0,smax_value=72057594037927935, umin_value=0,umax_value=72057594037927935, var_off=(0x0; 0xffffffffffffff), s32_min_value=-2147483648,s32_max_value=2147483647, u32_min_value=0,u32_max_value=-1) R10=fp0 fp-8_w=mmmmmmmm 14: (0f) r0 += r1 In the original step 14 'smin_value=72057594021150720' this trips the logic in the verifier function check_reg_sane_offset(), if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { verbose(env, "value %lld makes %s pointer be out of bounds\n", smin, reg_type_str[type]); return false; } Specifically, the 'smin <= -BPF_MAX_VAR_OFF' check. But with the fix at step 14 we have bounds 'smin_value=0' so the above check is not tripped because BPF_MAX_VAR_OFF=1<<29. We have a smin_value=0 here because at step 10 the smaller smin_value=0 means the subtractions at steps 11 and 12 bring the smin_value negative. 11: (17) r1 -= 2147483584 12: (17) r1 -= 2147483584 13: (77) r1 >>= 8 Then the shift clears the top bit and smin_value is set to 0. Note we still have the smax_value in the fixed code so any reads will fail. An alternative would be to have reg_sane_check() do both smin and smax value tests. To fix the test we can omit the 'r1 >>=8' at line 13. This will change the err string, but keeps the intention of the test as suggseted by the title, "check after truncation of boundary-crossing range". If the verifier logic changes a different value is likely to be thrown in the error or the error will no longer be thrown forcing this test to be examined. With this change we see the new state at step 13. 13: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0) R1_w=invP(id=0, smin_value=-4294967168,smax_value=127, umin_value=0,umax_value=18446744073709551615, s32_min_value=-2147483648,s32_max_value=2147483647, u32_min_value=0,u32_max_value=-1) R10=fp0 fp-8_w=mmmmmmmm Giving the expected out of bounds error, "value -4294967168 makes map_value pointer be out of bounds" However, for unpriv case we see a different error now because of the mixed signed bounds pointer arithmatic. This seems OK so I've only added the unpriv_errstr for this. Another optino may have been to do addition on r1 instead of subtraction but I favor the approach above slightly. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/159077333942.6014.14004320043595756079.stgit@john-Precision-5820-Tower |
||
David Ahern
|
7c741868ce |
selftests: Add torture tests to nexthop tests
Add Nik's torture tests as a new set to stress the replace and cleanup paths. Torture test created by Nikolay Aleksandrov and then I adapted to selftest and added IPv6 version. Signed-off-by: David Ahern <dsahern@kernel.org> Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Stephen Worley
|
5a1b72cebc |
net: add large ecmp group nexthop tests
Add a couple large ecmp group nexthop selftests to cover
the remnant fixed by
|
||
Davide Caratti
|
bb2f930d6d |
net/sched: fix infinite loop in sch_fq_pie
this command hangs forever:
# tc qdisc add dev eth0 root fq_pie flows 65536
watchdog: BUG: soft lockup - CPU#1 stuck for 23s! [tc:1028]
[...]
CPU: 1 PID: 1028 Comm: tc Not tainted 5.7.0-rc6+ #167
RIP: 0010:fq_pie_init+0x60e/0x8b7 [sch_fq_pie]
Code: 4c 89 65 50 48 89 f8 48 c1 e8 03 42 80 3c 30 00 0f 85 2a 02 00 00 48 8d 7d 10 4c 89 65 58 48 89 f8 48 c1 e8 03 42 80 3c 30 00 <0f> 85 a7 01 00 00 48 8d 7d 18 48 c7 45 10 46 c3 23 00 48 89 f8 48
RSP: 0018:ffff888138d67468 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff13
RAX: 1ffff9200018d2b2 RBX: ffff888139c1c400 RCX: ffffffffffffffff
RDX: 000000000000c5e8 RSI: ffffc900000e5000 RDI: ffffc90000c69590
RBP: ffffc90000c69580 R08: fffffbfff79a9699 R09: fffffbfff79a9699
R10: 0000000000000700 R11: fffffbfff79a9698 R12: ffffc90000c695d0
R13: 0000000000000000 R14: dffffc0000000000 R15: 000000002347c5e8
FS: 00007f01e1850e40(0000) GS:ffff88814c880000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000067c340 CR3: 000000013864c000 CR4: 0000000000340ee0
Call Trace:
qdisc_create+0x3fd/0xeb0
tc_modify_qdisc+0x3be/0x14a0
rtnetlink_rcv_msg+0x5f3/0x920
netlink_rcv_skb+0x121/0x350
netlink_unicast+0x439/0x630
netlink_sendmsg+0x714/0xbf0
sock_sendmsg+0xe2/0x110
____sys_sendmsg+0x5b4/0x890
___sys_sendmsg+0xe9/0x160
__sys_sendmsg+0xd3/0x170
do_syscall_64+0x9a/0x370
entry_SYSCALL_64_after_hwframe+0x44/0xa9
we can't accept 65536 as a valid number for 'nflows', because the loop on
'idx' in fq_pie_init() will never end. The extack message is correct, but
it doesn't say that 0 is not a valid number for 'flows': while at it, fix
this also. Add a tdc selftest to check correct validation of 'flows'.
CC: Ivan Vecera <ivecera@redhat.com>
Fixes:
|