Commit 4dd836e46c ("NFC: trf7970a: Reset FIFO when
'End of TX' Interrupt Occurs") fixes the issue that
it was meant to fix but adds the unfortunate side
effect of causing the driver to report an error
when the TX low-watermark level is passed during
transmits. This can be fixed by checking whether
the IRQ status indicates that the low-watermark
has been passed when transmitting. If it has been
passed and the FIFO is empty, then its safe to reset
the FIFO. Otherwise, silently continue since another
TX interrupt will be generated and the FIFO will be
reset then.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Handle the case where trf7970a_fill_fifo() is
called but there is no room in the FIFO for
more TX data. When this happens, wait for
another interrupt indicating that there is
now space (and set a timer in case that
interrupt never occurs).
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
When refilling the FIFO with more TX data (using a new
SPI transaction), the driver must prefix the TX data with
a write to the FIFO I/O Register. This tells the trf7970a
that the following data is destined for the FIFO so it can
be transmitted.
To accomplish this, the driver cannot simply push the
prefix data just before the next set of TX data that
is to be transmitted because that will overwrite part
of the TX data provided by the digital layer. Instead,
separate the prefix data and the TX data when calling
trf7970a_transmit(). trf7970a_transmit() can then send
the prefix and TX data from different memory locations
with one spi_sync() operation. This also means that
the driver doesn't require any skb "tx_headroom" as
provided by the digital layer (see
nfc_digital_allocate_device() and digital_skb_alloc()).
Also ensure that the prefix is of type 'u8' and not
'char'.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
It is no longer necessary to reset the FIFO and
read the 'RSSI Levels and Oscillator Status Register'
so remove that code.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The trf7970a occasionally generates spurious interrupts
which can confuse the driver. To help alleviate this,
clear any interrupts by reading the 'IRQ Status Register'
before starting a new transaction.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Some of the timeout values used in the driver
are not long enough to handle worst-case scenarios
so they need to be recalculated.
The time to wait for the FIFO to drain past the
low-watermark is now 20 ms because it can take
around 14.35 ms to send 95 bytes (127 bytes in
full FIFO minus 32 bytes where the low-watermark
interrupt will fire). 95 bytes will take around
14.35 ms at 6.62 kbps (the lowest supported bit
rate used by ISO/IEC 15693) so 20 ms should be a
safe value.
The time to wait before issuing an EOF to complete
an ISO/IEC 15693 write or lock command is 40 ms--
20 ms to drain the FIFO and another 20 ms to ensure
the wait is long enough before sending an EOF.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
When turning on the RF field, the driver must wait
an RF-technology-specific amount of time (known as
the guard time) before modulating the field.
Currently, the driver waits 5 ms but that is too
short for NFCF and too long for ISO/IEC 15693.
Fix this by determining the guard time when the
RF technology is set and delaying that amount
of time when turning on the RF field.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Currently, the trf7970a is reset & initialized only
when the pm_runtime resume hook is called. Instead,
initialize it every time the RF is enabled to ensure
that the trf7970a is quiesced and in a known state
before being set up for another RF technology.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Currently, support for providing the external
SYS_CLK signal on pin 27 is not supported so
turn it off by writing to the 'Modulator and
SYS_CLK Control' register immediately after
reset.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
There is no need to sleep for 1-2 ms before
transmitting a new command.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Despite what the manual says, the FIFO size
on the trf7970a is really 127 bytes so make
the code respect that.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The Overflow bit in the 'FIFO Status Register' has
proven to be untrustworthy so ignore it.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
To more efficiently handle long continuous reads,
use spi_sync() instead of spi_write_then_read().
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Call spi_setup() to configure SPI communication
with the trf7970a. This will ensure that the
correct SPI parameters are used.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Currently, the digital layer 'tg_listen_mdaa'
hook is not used and it isn't necessary to have
a stub routine so remove it.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
of_property_read_u32() does not take a reference
to the specified OF node so don't call of_node_put()
in trf7970a_get_autosuspend_delay().
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Smatch says that skb->data is untrusted so we need to check to make sure
that the memcpy() doesn't overflow.
Fixes: cfad1ba871 ('NFC: Initial support for Inside Secure microread')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Make the labels for the two gpio enable lines
more user friendly by prefixing them with the
driver name.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
A bug has been discovered in the trf7970a where it
will generate an RF field even in passive target
mode when EN2 is asserted. To work around this,
add support for the 'en2-rf-quirk' device tree
property which indicates that EN2 must remain low.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The quirk indicating whether the trf7970a has
the "IRQ Status Read" erratum or not is currently
implemented using the 'driver_data' member of the
'spi_device_id' structure. That requires the
driver to be modified to turn the quirk off when
a version of the trf7970a that doesn't have the
erratum is being used. To fix that, create a
new device tree property called
'irq-status-read-quirk' that indicates that the
trf7970a being used has the erratum.
While at it, rename 'TRF7970A_QUIRK_IRQ_STATUS_READ_ERRATA'
to 'TRF7970A_QUIRK_IRQ_STATUS_READ' to make it
less of an eyesore.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The trf7970a driver uses the voltage from the
power/regulator subsystem to determine what the
voltage on the VIN pin is. Normally, this is
the right thing to do but sometimes the board
that the trf7970a is on may change the voltage.
This is the case for the trf7970atb board from
Texas Instruments where it boosts the VIN voltage
from 3.3V to 5V (see http://www.ti.com/tool/trf7970atb).
To handle this, add support for the 'vin-voltage-override'
device tree property which overrides the voltage value
given by the regulator subsystem. When the DT property
is not present, the value from the regulator subsystem
is used.
The value of 'vin-voltage-override' is in uVolts.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Support for Initiator and Target mode with ISO18092 commands support:
- ATR_REQ/ATR_RES
- PSL_REQ/PSL_RES
- DEP_REQ/DEP_RES
Work based on net/nfc/digital_dep.c.
st21nfca is using:
- Gate reader F for P2P in initiator mode.
- Gate card F for P2P in target mode.
Felica tag and p2p are differentiated with NFCID2.
When starting with 01FE it is acting in p2p mode.
On complete_target_discovered on ST21NFCA_RF_READER_F_GATE
supported_protocols is set to NFC_PROTO_NFC_DEP_MASK
for P2P.
Tested against: Nexus S, Galaxy S2, Galaxy S3, Galaxy S3 Mini,
Nexus 4 & Nexus 5.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Send DM_DISCONNECT command to disconnect Terminal Host from the HCI network.
- The persistent states of the terminal host pipes, including registry values,
are not modifies. Therefore, there is no NVRAM update to disconnect the
terminal host.
- The terminal host RF card gates are disabled which means that there will be no event
related to card RF gates until communication has been restored.
- The terminal host RF reader request is reset so the RF reader polling for terminal
host is disabled.
To restore the communication, the terminal host can send any HCI command or event.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
A DEP_RES with a SUPERVISOR PDU can be up to 16 bytes long.
In order to avoid useless read during p2p, extend first read
sequence to 16 and reduce third sequence to 12 to keep same
total on the full sequence.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
A start of frame is 7E 00 not only 7E. Make sure the first read sequence is
starting with 7E 00.
For example: 7E FF FF FF FF is as a correct crc but it is a bad frame.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In case no data are retrieve through i2c or one specific case is not handled.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add driver for STMicroelectronics ST21NFCB NFC controller.
ST21NFCB is using NCI protocol and a proprietary low level transport
protocol called NDLC used on top.
NDLC:
The protocol defines 2 types of frame:
- One type carrying NCI data (referred as DATAFRAME frames).
- One type carrying protocol information used for flow control and error
control mechanisms (referred as SUPERVISOR frames).
After each frame transmission to the NFC controller, the device host
SHALL waitfor an ACK (SUPERVISOR frame) reception before sending a
new frame.
The NFC controller MAY send a frame at anytime to the device host.
The NFC controller MAY send a specific WAIT supervisor frame to indicate
to device host that a NCI data packet has been received but that it could
take significant time before the NFC controller sends an ACK and thus
allows next data reception.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add support for the Felica protocol and Type 3 tags.
Both 212 and 424 kbps are supported.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This patch adds support for ISO-DEP protocol over NFC-B rf technology
by adding NFC_PROTO_ISO14443_B to the supported protocols and an entry
for framing configuration.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add support for ISO/IEC 15693 RF technology and Type 5 tags.
ISO15963 is using proprietary gate 12.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In case anybody uses previous patchset with the CLF, add a check to make sure
missing pipe are created.
st21nfca returns its pipe list in the creation order (most recent latest).
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add functions to recover hardware resources from the device-tree
when not provided by the platform data.
Based on pn544 devicetree implementation
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
When a bad frame is detected for a bad crc.
We were reallocating and loosing the previous frame pointer.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Stabilize communication by using a mutex.
This avoids running a write transaction during a read retry or a read
transaction during a write retry.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
A frame starts with ST21NFCA_SOF_EOF(0x7e) + 0x00.
A frame ends with ST21NFCA_SOF_EOF(0x7e).
It is possible that the i2c macrocell is stopped for other
communication interfaces with highest priority(RF or SWP).
This can be seen with some 0xFF data at the end of a received shdlc buffer.
If this happen we need to discard the frame because the CLF will repeat it.
In order to push accurate data to hci layer, we add the following fix:
- Instead of looking for the first 0x7e in the frame, check that the last
received byte is 0x7e.
- Check that the first frame reception block start with start of
frame(0x7e 0x00). If not, clear the buffer.
- Check that the next frame reception block do not start with start of
frame(0x7e). If so, clear the buffer.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
There is no byte stuffing when data are stored in skb.
TAILROOM is 2 byte crc + 1 byte eof.
st21nfca_hci_remove_len_crc was doing an incorrect operation on
the TAILROOM data.
If shdlc timer T2 is triggered, it will request to send the same data.
Before every hci data was lost after st21nfca_hci_remove_len_crc.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Byte stuffing was not correctly removed after a i2c read operation.
This was causing improper crc calculation when byte stuffing was
applied to more than 1 byte.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Change in st21nfca_hci_platform_init in order to handle in a better way the
internal reboot command.
Once the reboot is completed, the driver expect to receive a 0x7e filled
buffer.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Remove struct st21nfca_i2c_phy* as this parameter can be retrieve
through i2c_get_clientdata(client)
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
st21nfca_hci_probe return 0 in case of successful call and a different
value in any other cases.
There is no need to check for st21nfca_hci_probe return as this will be
checked after st21nfca_hci_i2c_probe is completed.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
wait_tab variable is already global and may create conflicts.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Fixing "sparse: cast to restricted __be16" message when building with
make C=1 CF=-D__CHECK_ENDIAN__
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Fixes a null pointer exception occurring when the IRQ request in
pn544_hci_i2c_probe fails and no platform data is available.
Signed-off-by: Clément Perrochaud <clement.perrochaud@nxp.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Now that the NFC digital layer has support for the ISO/IEC 14443-B
protocol and type 4B tags, add the corresponding support to the
trf7970a driver.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The trf7970a driver currently uses a fixed autosuspend delay of 30 seconds.
To enable users to customize the delay as they see fit, add support for the
new 'autosuspend-delay' DTS property (part of the nfc node) which can
override the default 30 seconds.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
trf7970a_switch_rf_on() no longer returns anything other than 0 so make
it void and clean up the code that checks for errors when its called.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add pm_runtime support by moving the code that enables the trf7970a to
the pm_runtime hook routines. The pm_runtime 'autosuspend' feature is
used so that the device isn't disabled until at least 30 seconds have
passed since trf7970a_switch_rf_off() was last called.
The result is that when trf7970a_switch_rf_on() is called, the device
will be enabled and initialized (if it isn't already). When
trf7970a_switch_rf_off() is called, it will turn off the RF immediately
but leave the device enabled for at least 30 seconds.
If 30 seconds have passed and the pm_runtime facility decides to suspend
the driver, the device will be disabled then.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The NFC digital layer calls the 'switch_rf' hook to turn the RF on before
it configures the RF technology and framing. There is potential to confuse
a tag doing it this way so don't enable the RF until the RF technology and
initial framing have been configured.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Currently, the trf7970a driver assumes that the Vin voltage is 5V when
it writes to the 'Chip Status Control' register. That may not be correct
so use the regulator facility to get the Vin voltage and set the VRS5_3
bit correctly when writing to that register.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Currently the driver writes the same value to the 'Modulator and SYS_CLK
Control' register no matter what RF technology is being used. That works
for now but new RF technologies (e.g., ISO/IEC 14443-B) will require
different values to be written to that register. To support this, add a
member to the trf7970a structure which is set by the RF technology handling
code and used by the framing code when it writes to that register.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Writing to the 'ISO Control' register may cause the contents of the
'Modulator and SYS_CLK Control' register to change so be sure to write
to 'Modulator and SYS_CLK Control' after writing to 'ISO Control'.
Note that writing to the 'Modulator and SYS_CLK Control' register
shouldn't be necessary at all according to the trf790a manual but testing
shows that it is necessary.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The current code always writes to the 'ISO Control' register when the
RF framing is set. That's not necessary since the register's value
doesn't always change. Instead, only write to it when its value is
actually being changed.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Sometimes after sending a frame there is tx data leftover in the FIFO
which the driver will think is part of the receive frame. That data can
be cleared when an 'End of TX' interrupt is received by issuing the
'FIFO Reset' command.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Due to a trf7970a erratum, the 'NFC Target Detection Level' register
(0x18) must be cleared after power-up.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Only initiate the abort command process when there is an active command.
If the abort process were started and there wasn't an active command
then the next command issued by the digital layer would be incorrectly
aborted.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
After further testing periods of ~16 ms have been observed
between interrupts indicating that there is receive data in
the FIFO. To accomodate that, increase the time the driver
waits before deciding there is no more data to receive to
20 ms. The macro that represents that delay is
'TRF7970A_WAIT_FOR_RX_DATA_TIMEOUT'.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add functions to recover hardware resources from the device-tree when not
provided by the platform data.
Signed-off-by: Clément Perrochaud <clement.perrochaud@nxp.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This implementation rely on the ST21NFCA_DEVICE_MGNT_GATE and
ST21NFCA_DM_GETINFO proprietary gates commands.
First we are retrieving a pipe list available on the CLF with the
ST21NFCA_DM_GETINFO_PIPE_LIST parameter. A gate<->pipe table match
is done with ST21NFCA_DM_GETINFO_PIPE_INFO for each pipe.
If the pipe is created and open, we fill st21nfca_gates table.
If the pipe is create but closed or is not created we keep the gate
with NFC_HCI_INVALID_PIPE.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add driver for STMicroelectronics ST21NFCA NFC controller.
ST21NFCA is using HCI protocol, shdlc as LLC layer & I2C as
communication protocol.
Adding support for Reader/Writer mode with Tag type 1/2/3/4 A & B.
It is using proprietary gate 15 for ISO14443-3 such as type 1 &
type 2 tags. It is using proprietary gate 14 for type F tags.
ST21NFCA_DEVICE_MGNT_GATE gives access to proprietary CLF configuration.
Standard gate for ISO14443-4 A (13) & B (11) are also used.
ST21NFCA specific mecanism:
One particular point to notice for the data handling is that frame
does not contain any length value. Therefore the i2c part of this driver
is managing the reception with a read length sequence until the end of
frame (0x7e) is reached.
In order to avoid conflict between sof & eof a mecanism
called byte stuffing concist of an escape byte (0x7d) insertion before
special byte (0x7e, 0x7d). The special byte is then xored with 0x20.
In this driver, When data are available in the CLF, the interrupt
gpio is driven to active state and triggered an interrupt.
Once the i2c_master_recv start, the interrupt gpio is driven to idle
state until its complete. If the frame is incomplete or data are still
available, interrupts will be triggered again.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add support for ISO/IEC 15693 RF technology and Type 5 tags.
Note that Type 5 tags used to be referred to as Type V tags.
CC: Erick Macias <emacias@ti.com>
CC: Felipe Balbi <balbi@ti.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add support for Type 4A Tags which includes
supporting the underlying ISO/IEC 14443-A
protocol.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add a driver for the Texas Instruments TRF7970a RFID/NFC/15693
transceiver. The driver currently supports ISO/IEC 14443 Type 2
tags only (MIFARE Ultralight and Ultralight C but not Classic).
CC: Erick Macias <emacias@ti.com>
CC: Felipe Balbi <balbi@ti.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This adds support for ISO-DEP protocol over NFC-A rf technology. The
port100 already supports NFC-A and ATS request and response for type 4A
tags are handled at digital level. This patch adds NFC_PROTO_ISO14443
to the supported protocols and an entry for framing configuration which
is the same as NFC-A standard frame with CRC handling.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The arrays for protocols and rf techs must define a number of entries
corresponding to their maximum possible index values.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
PN544 C3 firmwares already contain the command frames to be sent, but as
they may exceed the i2c maximum payload, we need to fragment them into
secure chunks and send them through the secure write command.
Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Different pn544 hardware variant may use different commands to download
new firmwares. The C2 does a regular firmware download while the C3 uses
a more secure protocol.
As a consequence we need to pass the hardware variant from the HCI SW
version command reply down to the pn544 i2c layer, in order to use the
right protocol at run time.
Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This patch fixes memory leaks in the error paths of
nfcmrvl_nci_register_dev() routine.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Amitkumar Karwar <akarwar@marvell.com>
Signed-off-by: Bing Zhao <bzhao@marvell.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Marvell nfc device provides support for external coexistance
control. It allows Device Host to inhibit the NFCC from polling
when required by asserting a GPIO pin. A second pin allows the
DH to have feedback on the current NFCC state.
The required configuration for this feature is done in setup
handler.
Signed-off-by: Amitkumar Karwar <akarwar@marvell.com>
Signed-off-by: Bing Zhao <bzhao@marvell.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
port100_probe() calls usb_get_dev(), but there is no usb_put_dev()
in port100_disconnect(). The patch adds one.
Found by Linux Driver Verification project (linuxtesting.org).
Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Some ACR122 firmwares seem to send 0 length data frames. Before using
that length as a data index, we check that it's not 0. If it is we
report the frame as being invalid.
Reported-by: Arthur Taylor <arthur@advancedtelematic.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Some of the EEPROM configurations that are assigned by the PN544 driver
are set by the firmware and should not be modified by the driver. Others
are certain user mode configurations that are currently getting set to values
that shouldn't necessarily be dictated by the driver. This patch changes
most user and system mode configurations to the firmware defaults.
Signed-off-by: Arman Uguray <armansito@chromium.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Using kfree_skb() instead of kfree() for struct sk_buff
Signed-off-by: Salil Kapur <salilkapur93@gmail.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Several files refer to an old address for the Free Software Foundation
in the file header comment. Resolve by replacing the address with
the URL <http://www.gnu.org/licenses/> so that we do not have to keep
updating the header comments anytime the address changes.
CC: linux-wireless@vger.kernel.org
CC: Lauro Ramos Venancio <lauro.venancio@openbossa.org>
CC: Aloisio Almeida Jr <aloisio.almeida@openbossa.org>
CC: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This implements the target NFC digital operations tg_configure_hw(),
tg_listen(), tg_listen_mdaa(), and tg_send_cmd().
The target mode supports NFC-A technology at 106kbits/s and NFC-F
technologies at 212 and 424kbits/s.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Cc: Stephen Tiedemann <stephen.tiedemann@gmail.com>
Tested-by: Cho, Yu-Chen <acho@suse.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This patch implements the initiator NFC operations in_configure_hw()
and in_send_cmd(). It also implements the switch_rf() operation.
The initiator mode supports NFC-A technology at 106kbits/s and NFC-F
technologies at 212 and 424kbits/s.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Cc: Stephen Tiedemann <stephen.tiedemann@gmail.com>
Tested-by: Cho, Yu-Chen <acho@suse.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This patch implements the command handling mechanism. The digital stack
serializes all commands sent to the driver. This means that the digital
stack waits for the reply of the current command before sending a new
one. So there is no command queue managed at driver level.
All Port-100 commands are asynchronous. If the command has been sent
successfully to the device, it replies with an ACK frame. Then the
command response is received (or actually no-response in case of
timeout or error) and a command complete work on the system workqueue
is responsible for sending the response (or the error) back to the
digital stack.
The digital stack requires some commands to be synchronous, mainly
hardware configuration ones. These commands use the asynchronous
command path but are made synchronous by using a completion object.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Cc: Stephen Tiedemann <stephen.tiedemann@gmail.com>
Tested-by: Cho, Yu-Chen <acho@suse.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This adds support for the Sony NFC USB dongle RC-S380, based on the
Port-100 chip. This dongle is an analog frontend and does not implement
the digital layer. This driver uses the nfc_digital module which is an
implementation of the NFC Digital Protocol stack.
This patch is a skeleton. It only registers the dongle against the NFC
digital protocol stack. All NFC digital operation functions are stubbed
out.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Cc: Stephen Tiedemann <stephen.tiedemann@gmail.com>
Tested-by: Cho, Yu-Chen <acho@suse.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In target mode, when we want to send frames larger than the max length
(PN533_CMD_DATAEXCH_DATA_MAXLEN), we have to split the frame in smaller
chunks and send them, using a specific working queue, with the TgSetMetaData
command. TgSetMetaData sets his own MI bit in the PFB.
The last chunk is sent using the TgSetData command.
Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This code processes, for Target Mode, incoming fragmented frames.
If the MI bit is present, we start a working queue to grab and aggregate
all the parts (using TmGetData between each parts). On the last one, as
there's no more MI bit, we jump on the usual behavior.
Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The fragmentation routine (used to split big frames) could be used in
target or initiator mode (TgSetMetaData vs InDataExchange), but the
MI/TG bytes are not needed in target mode (TgSetMetaData), so we
add a check on the mode
Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Local symbols used only in this file are made static.
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Driver core sets driver data to NULL upon failure or remove.
Cc: Ilan Elias <ilane@ti.com>
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
If we start the polling loop from a listening cycle, we need to start
the corresponding timer as well.
This bug showed up after commit dfccd0f5 as it was impossible to start
from a listening cycle before it.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In order to improve active devices detection, we send an ATR_REQ between
each passive detection cycle. Without this algorithm, Android 4.3 based
devices running the Broadcom stack are hardly detected.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Use standardized styles to minimize coding defects.
Always use nfc_<level> where feasible.
Add \n to formats where appropriate.
Typo "it it" correction.
Add #define pr_fmt where appropriate.
Remove function tracing logging messages.
Remove OOM messages.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Use a more standard kernel style macro logging name.
Standardize the spacing of the "NFC: " prefix.
Add \n to uses, remove from macro.
Fix the defective uses that already had a \n.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Use the generic kernel function instead of a home-grown
one that does the same thing.
Add \n to uses not at the macro. Don't add \n where
the nfc_dev_dbg macro mistakenly had them already.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
To enable the UICC secure element, we first enable the UICC gate list in
order for the SE to be able to use all RF technologies.
For the embedded SE, we just turn the eSE default mode to ON.
Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
For the SWP secure element, we send the proprietary SELF_TEST_SWP
command and check the response.
For the WI secure element, we simply try to switch to the default
embedded SE mode. If that works, it means we have an embedded SE.
Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The pn544 can enter a firmware update mode where firmware blobs can be
pushed through the i2c line and flashed on the target.
A special command allows to verify that blobs are correctly flashed and
this is what we do for every downloaded firmware blob.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The firmware operation callback is passed by the physical layer to the
hci driver during probe. All the driver does is to store it and call it
when the fw_upload hci ops is invoked.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This is in preparation for pn544-i2c firmware download feature, where we
need to know if we're in regular or firmware upload mode.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
By not always starting the polling loop from the same modulation, we
avoid entering infinite loops where devices exporting 2 targets (on 2
different modulations) get the same target activated over and over.
If this target is not readable (e.g. a wallet emulating a tag), we will
stay in an error loop for ever.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
It seems that some pn533 firmwares go belly up when being asked to send
poll frames too frequently. Adding a 10ms delay between each of them
calm the chip down and prevent it from crashing.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The extended information frame are sent by PN533 to exchange frames
larger than 255 bytes. These extended frame are very close from the
standard ones except for the header size length. On each incoming
frame, we set the correct header length, and we do that only for the
standard pn533 chipsets as the acr122 does not seem to support extended
frames properly.
Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
On sending large frames (size > 262), we split it in multiple chunks and
send them asynchronously with MI bit.
Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Extended Information frames are slightly different from standard frames
as they can (theorically) handle datas up tu 64kB. PN533 firmware only
supports packet data up to 265 (incl. TFI byte)
This kind of frame are used when the pn533 wants to exchange more than
255 bytes, and this patch handles the reception of such frames.
Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The AUTO RFCA bit forbids the pn533 chipset to turn its radio on
whenever an external field is present.
Without this bit set, some devices seems to get over flood by the
pn533 rf field and thus become hardly detectable.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
p2p devices must be able to support 424 kbps, so we should always select
that bitrate in initiator mode.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
By turning the radio off after each failed polling try, we dramatically
improve the pn533 polling loop efficiency.
Without this fix, all Android phones running the broadcom NFC stack are
almost never detected.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
By using the standard setting for the regular pn533 dongles, we no
longer wait for ever for an ATR_RES. Without this, a failing ATR_REQ
will put the hardware into a busy loop, constantly waiting for an
ATR_RES.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This patch fixes 3 sparse warnings:
nfcsim.c:63:25: sparse: symbol 'wq' was not declared.
nfcsim.c:484:12: sparse: symbol 'nfcsim_init' was not declared.
nfcsim.c:525:13: sparse: symbol 'nfcsim_exit' was not declared.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Pull networking updates from David Miller:
"This is a re-do of the net-next pull request for the current merge
window. The only difference from the one I made the other day is that
this has Eliezer's interface renames and the timeout handling changes
made based upon your feedback, as well as a few bug fixes that have
trickeled in.
Highlights:
1) Low latency device polling, eliminating the cost of interrupt
handling and context switches. Allows direct polling of a network
device from socket operations, such as recvmsg() and poll().
Currently ixgbe, mlx4, and bnx2x support this feature.
Full high level description, performance numbers, and design in
commit 0a4db187a9 ("Merge branch 'll_poll'")
From Eliezer Tamir.
2) With the routing cache removed, ip_check_mc_rcu() gets exercised
more than ever before in the case where we have lots of multicast
addresses. Use a hash table instead of a simple linked list, from
Eric Dumazet.
3) Add driver for Atheros CQA98xx 802.11ac wireless devices, from
Bartosz Markowski, Janusz Dziedzic, Kalle Valo, Marek Kwaczynski,
Marek Puzyniak, Michal Kazior, and Sujith Manoharan.
4) Support reporting the TUN device persist flag to userspace, from
Pavel Emelyanov.
5) Allow controlling network device VF link state using netlink, from
Rony Efraim.
6) Support GRE tunneling in openvswitch, from Pravin B Shelar.
7) Adjust SOCK_MIN_RCVBUF and SOCK_MIN_SNDBUF for modern times, from
Daniel Borkmann and Eric Dumazet.
8) Allow controlling of TCP quickack behavior on a per-route basis,
from Cong Wang.
9) Several bug fixes and improvements to vxlan from Stephen
Hemminger, Pravin B Shelar, and Mike Rapoport. In particular,
support receiving on multiple UDP ports.
10) Major cleanups, particular in the area of debugging and cookie
lifetime handline, to the SCTP protocol code. From Daniel
Borkmann.
11) Allow packets to cross network namespaces when traversing tunnel
devices. From Nicolas Dichtel.
12) Allow monitoring netlink traffic via AF_PACKET sockets, in a
manner akin to how we monitor real network traffic via ptype_all.
From Daniel Borkmann.
13) Several bug fixes and improvements for the new alx device driver,
from Johannes Berg.
14) Fix scalability issues in the netem packet scheduler's time queue,
by using an rbtree. From Eric Dumazet.
15) Several bug fixes in TCP loss recovery handling, from Yuchung
Cheng.
16) Add support for GSO segmentation of MPLS packets, from Simon
Horman.
17) Make network notifiers have a real data type for the opaque
pointer that's passed into them. Use this to properly handle
network device flag changes in arp_netdev_event(). From Jiri
Pirko and Timo Teräs.
18) Convert several drivers over to module_pci_driver(), from Peter
Huewe.
19) tcp_fixup_rcvbuf() can loop 500 times over loopback, just use a
O(1) calculation instead. From Eric Dumazet.
20) Support setting of explicit tunnel peer addresses in ipv6, just
like ipv4. From Nicolas Dichtel.
21) Protect x86 BPF JIT against spraying attacks, from Eric Dumazet.
22) Prevent a single high rate flow from overruning an individual cpu
during RX packet processing via selective flow shedding. From
Willem de Bruijn.
23) Don't use spinlocks in TCP md5 signing fast paths, from Eric
Dumazet.
24) Don't just drop GSO packets which are above the TBF scheduler's
burst limit, chop them up so they are in-bounds instead. Also
from Eric Dumazet.
25) VLAN offloads are missed when configured on top of a bridge, fix
from Vlad Yasevich.
26) Support IPV6 in ping sockets. From Lorenzo Colitti.
27) Receive flow steering targets should be updated at poll() time
too, from David Majnemer.
28) Fix several corner case regressions in PMTU/redirect handling due
to the routing cache removal, from Timo Teräs.
29) We have to be mindful of ipv4 mapped ipv6 sockets in
upd_v6_push_pending_frames(). From Hannes Frederic Sowa.
30) Fix L2TP sequence number handling bugs, from James Chapman."
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1214 commits)
drivers/net: caif: fix wrong rtnl_is_locked() usage
drivers/net: enic: release rtnl_lock on error-path
vhost-net: fix use-after-free in vhost_net_flush
net: mv643xx_eth: do not use port number as platform device id
net: sctp: confirm route during forward progress
virtio_net: fix race in RX VQ processing
virtio: support unlocked queue poll
net/cadence/macb: fix bug/typo in extracting gem_irq_read_clear bit
Documentation: Fix references to defunct linux-net@vger.kernel.org
net/fs: change busy poll time accounting
net: rename low latency sockets functions to busy poll
bridge: fix some kernel warning in multicast timer
sfc: Fix memory leak when discarding scattered packets
sit: fix tunnel update via netlink
dt:net:stmmac: Add dt specific phy reset callback support.
dt:net:stmmac: Add support to dwmac version 3.610 and 3.710
dt:net:stmmac: Allocate platform data only if its NULL.
net:stmmac: fix memleak in the open method
ipv6: rt6_check_neigh should successfully verify neigh if no NUD information are available
net: ipv6: fix wrong ping_v6_sendmsg return value
...
Pull trivial tree updates from Jiri Kosina:
"The usual stuff from trivial tree"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (34 commits)
treewide: relase -> release
Documentation/cgroups/memory.txt: fix stat file documentation
sysctl/net.txt: delete reference to obsolete 2.4.x kernel
spinlock_api_smp.h: fix preprocessor comments
treewide: Fix typo in printk
doc: device tree: clarify stuff in usage-model.txt.
open firmware: "/aliasas" -> "/aliases"
md: bcache: Fixed a typo with the word 'arithmetic'
irq/generic-chip: fix a few kernel-doc entries
frv: Convert use of typedef ctl_table to struct ctl_table
sgi: xpc: Convert use of typedef ctl_table to struct ctl_table
doc: clk: Fix incorrect wording
Documentation/arm/IXP4xx fix a typo
Documentation/networking/ieee802154 fix a typo
Documentation/DocBook/media/v4l fix a typo
Documentation/video4linux/si476x.txt fix a typo
Documentation/virtual/kvm/api.txt fix a typo
Documentation/early-userspace/README fix a typo
Documentation/video4linux/soc-camera.txt fix a typo
lguest: fix CONFIG_PAE -> CONFIG_x86_PAE in comment
...
This driver declares two virtual NFC devices supporting NFC-DEP protocol.
An LLCP connection can be established between them and all packets sent
from one device is sent back to the other, acting as loopback devices.
Once established, the LLCP link can be disconnected by disabling the target
device (with rfkill, nfctool, or neard disable-adapter test script).
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Instead of dumping ACR122 frames as errors, we use the print_hex_dump()
dynamic debug APIs.
We also print an accurate IC version, as the ACR122 is pn532 based.
Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Supported secure elements are typically found during a discovery process
initiated when the NFC controller is up and running. For a given NFC
chipset there can be many configurations (embedded SE or not, with or
without a SIM card wired to the NFC controller SWP interface, etc...) and
thus driver code will never know before hand which SEs are available.
So we remove this field, it will be replaced by a real SE discovery
mechanism.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
When using NFC-F we should copy the NFCID2 buffer that we got from
SENSF_RES through the ATR_REQ NFCID3 buffer. Not doing so violates
NFC Forum digital requirement #189.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
skb->dev is used for carrying a net_device pointer and not
an nci_dev pointer.
Remove usage of skb-dev to carry nci_dev and replace it by parameter
in nci_recv_frame(), nci_send_frame() and driver send() functions.
NfcWilink driver is also updated to use those functions.
Signed-off-by: Frederic Danis <frederic.danis@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Fix to return -ENOMEM in the nfc device alloc error handling
case instead of 0, as done elsewhere in this function.
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
There is no builtin command for driver to check the presence of
Felica and Jewel device, it is more reasonable for the userspace
daemon neard to build seperate commands to check the presence of
the card.
Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
NFCID2 is defined as the first 2 manufacturer ID (IDm) bytes.
NFC DEP (NFC peer to peer) devices Type-F NFCID2 must start with
0x01fe according to the NFC Digital Specification.
By checking those first 2 bytes we send the right command either to the
reader gate when NFCID2 != 0x1fe (The NFC tag case) or to the NFCIP1 gate
when seeing an NFC DEP device (The NFC peer to peer case).
Without this fix, Felica (Type F) tags are not properly detected with this
driver.
Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The callback registration starts a waiting read, so it needs to be fired
everytime the device is enabled. Otherwise following writes will never get
an answer back.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
With the new mei_phy NFC driver API, the pn544 MEI physical layer is
minimal and similar to the microread one.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This isolates the common code that is required to use an mei bus nfc
device from an NFC HCI drivers. This prepares for future drivers for
NFC chips connected behind an Intel Management Engine controller.
The microread_mei HCI driver is also modified to use that common code.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add missing usb_put_dev on failure path in pn533_probe().
Found by Linux Driver Verification project (linuxtesting.org).
Signed-off-by: Marina Makienko <makienko@ispras.ru>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Major features added in 0.2 version:
* frame ops added to support wider set of devices
* support of ACS ACR122U
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
pn533_abort_cmd() aborts last command sent to the controller
and cancels already requested urb.
As ACR122U does not support any mechanism (as ACK for standard
PN533) which aborts last command this cannot be issued for this
device. Otherwise, acr122u will behave in an unstable way.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
ACS ACR122U is an USB NFC reader, PC/SC and CCID compilant, based
on NXP PN532 chip.
Internally, it's build of MCU, PN532 and an antenna. MCU makes the
device CCID and PC/SC compilant and provide USB connection.
In this achitecture, a host cannot talk directly to PN532 and must
rely on MCU. Luckily, MCU exposes pseud-APDU through PC/SC Escape
mechanism which let the host to transmit standard PN532 commands
directly to PN532 chip with some limitations.
The frame roughly looks like:
CCID header | APDU header | PN532 header
(pc_to_rdr_escape) | (pseudo apdu Direct Tramsmit) | (len, TFI, cmd, params)
Accordign to limitations, ACR122U does't provide any mechanism to
abort last issued command.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
As not all devices require ACK confirmation of every request sent to the
controller, differentiate two protocol types.
First one, request-ack-response and the second one request-response type.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Rename 'wq_in_error' field to more relevant 'status'
and move it to cmd context struct.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In all cases (send_cmd_async, send_data_async and send_sync)
pn533_send_async_complete() handles all responses internally,
so there is no need to pass this as a callback.
Cmd context is passed to __pn533_send_frame_async in all the
cases as well. It's already kept in struct pn533 which is
available all the time the device is attached. So we can make
use of it instead.
Therefore, cmd_complete and cmd_complete_arg are no needed any more.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
We must free 'cmd_complete_mi_arg' and not 'cmd_complete_arg'
when getting send error handling fragmented response.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Keep cmd context in pn533 struct instead of only cmd code.
The context already includes cmd_code.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Use struct pn533_cmd instead of pn533_send_async_complete_arg
to track the context of the issued cmd.
This way pn533_send_async_complete_arg struct is no needed
anymore. Just move issuer complete callback to pn533_cmd struct.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In case of error from __pn533_send_frame_async() while sending
next cmd from the queue (cmd_wq), cmd->req, cmd->resp and
cmd->arg pointers won't be freed.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Define explicitely it is Pasori specific reset command.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Remove duplicated authors info from the header as well.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
For better debugging as the codes are defined in hex in the spec.
Signed-off-by: Waldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>