Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 8 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190523091650.663497195@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your optional any later version of the license
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520075212.713472955@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
memory and performance optimizations.
* x86: support for accessing memory not backed by struct page, fixes and refactoring
* Generic: dirty page tracking improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
=D0+p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for SVE and Pointer Authentication in guests
- PMU improvements
POWER:
- support for direct access to the POWER9 XIVE interrupt controller
- memory and performance optimizations
x86:
- support for accessing memory not backed by struct page
- fixes and refactoring
Generic:
- dirty page tracking improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
kvm: fix compilation on aarch64
Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
kvm: x86: Fix L1TF mitigation for shadow MMU
KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
tests: kvm: Add tests for KVM_SET_NESTED_STATE
KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
tests: kvm: Add tests to .gitignore
KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
KVM: Fix the bitmap range to copy during clear dirty
KVM: arm64: Fix ptrauth ID register masking logic
KVM: x86: use direct accessors for RIP and RSP
KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
KVM: x86: Omit caching logic for always-available GPRs
kvm, x86: Properly check whether a pfn is an MMIO or not
...
- Fix a bug, fix a spelling mistake, remove some useless code.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJc2kTEAAoJEJ2a6ncsY3GfS88IAImcIlKXMvzSKtHFxGpRap17
9LTZs5MQAUZHVMFJXmrJLBgogtGxUw53aX53woeyerytZsoGU4+YzwgLhk4XBEzA
5Kt5ahlxu82sa2ThH1zyLlNWFXiTECgD5ErNTdavLbNlaKE8YG160+65/mSyixGz
vs5wLSYGv/37no1ay6PIZ3DtwqdrYq5nJbuG+ZsaamUHPJOGprqHqg0gaTJ877NZ
yQDUS7OVuEJ1pdUUK/elP+cnlqR9smaP5OUNsXYMHWJgPJMjc27/thBJy93iS1kk
/zKQ8AFmxqoaePnR7ymTbqurfFFHBiSavUmyWopSQppNHCf4DDE8XjLs9MXKez8=
=Lco4
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
PPC KVM update for 5.2
* Support for guests to access the new POWER9 XIVE interrupt controller
hardware directly, reducing interrupt latency and overhead for guests.
* In-kernel implementation of the H_PAGE_INIT hypercall.
* Reduce memory usage of sparsely-populated IOMMU tables.
* Several bug fixes.
Second PPC KVM update for 5.2
* Fix a bug, fix a spelling mistake, remove some useless code.
To facilitate additional options to get_user_pages_fast() change the
singular write parameter to be gup_flags.
This patch does not change any functionality. New functionality will
follow in subsequent patches.
Some of the get_user_pages_fast() call sites were unchanged because they
already passed FOLL_WRITE or 0 for the write parameter.
NOTE: It was suggested to change the ordering of the get_user_pages_fast()
arguments to ensure that callers were converted. This breaks the current
GUP call site convention of having the returned pages be the final
parameter. So the suggestion was rejected.
Link: http://lkml.kernel.org/r/20190328084422.29911-4-ira.weiny@intel.com
Link: http://lkml.kernel.org/r/20190317183438.2057-4-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Mike Marshall <hubcap@omnibond.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a spelling mistake in a pr_err message, fix it.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 70ea13f6e6 ("KVM: PPC: Book3S HV: Flush TLB on secondary radix
threads", 2019-04-29) aimed to make radix guests that are using the
real-mode entry path load the LPID register and flush the TLB in the
same place where those things are done for HPT guests. However, it
omitted to remove a branch which branches around that code for radix
guests. The result is that with indep_thread_mode = N, radix guests
don't run correctly. (With indep_threads_mode = Y, which is the
default, radix guests use a different entry path.)
This removes the offending branch, and also the load and compare that
the branch depends on, since the cr7 setting is now unused.
Reported-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Tested-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Fixes: 70ea13f6e6 ("KVM: PPC: Book3S HV: Flush TLB on secondary radix threads")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Highlights:
- Support for Kernel Userspace Access/Execution Prevention (like
SMAP/SMEP/PAN/PXN) on some 64-bit and 32-bit CPUs. This prevents the kernel
from accidentally accessing userspace outside copy_to/from_user(), or
ever executing userspace.
- KASAN support on 32-bit.
- Rework of where we map the kernel, vmalloc, etc. on 64-bit hash to use the
same address ranges we use with the Radix MMU.
- A rewrite into C of large parts of our idle handling code for 64-bit Book3S
(ie. power8 & power9).
- A fast path entry for syscalls on 32-bit CPUs, for a 12-17% speedup in the
null_syscall benchmark.
- On 64-bit bare metal we have support for recovering from errors with the time
base (our clocksource), however if that fails currently we hang in __delay()
and never crash. We now have support for detecting that case and short
circuiting __delay() so we at least panic() and reboot.
- Add support for optionally enabling the DAWR on Power9, which had to be
disabled by default due to a hardware erratum. This has the effect of
enabling hardware breakpoints for GDB, the downside is a badly behaved
program could crash the machine by pointing the DAWR at cache inhibited
memory. This is opt-in obviously.
- xmon, our crash handler, gets support for a read only mode where operations
that could change memory or otherwise disturb the system are disabled.
Plus many clean-ups, reworks and minor fixes etc.
Thanks to:
Christophe Leroy, Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Andrew
Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Anton Blanchard, Ben Hutchings,
Bo YU, Breno Leitao, Cédric Le Goater, Christopher M. Riedl, Christoph
Hellwig, Colin Ian King, David Gibson, Ganesh Goudar, Gautham R. Shenoy,
George Spelvin, Greg Kroah-Hartman, Greg Kurz, Horia Geantă, Jagadeesh
Pagadala, Joel Stanley, Joe Perches, Julia Lawall, Laurentiu Tudor, Laurent
Vivier, Lukas Bulwahn, Madhavan Srinivasan, Mahesh Salgaonkar, Mathieu
Malaterre, Michael Neuling, Mukesh Ojha, Nathan Fontenot, Nathan Lynch,
Nicholas Piggin, Nick Desaulniers, Oliver O'Halloran, Peng Hao, Qian Cai, Ravi
Bangoria, Rick Lindsley, Russell Currey, Sachin Sant, Stewart Smith, Sukadev
Bhattiprolu, Thomas Huth, Tobin C. Harding, Tyrel Datwyler, Valentin
Schneider, Wei Yongjun, Wen Yang, YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJc1WbwAAoJEFHr6jzI4aWAv5cP/iDskai4Az/GCa6yLj4b+det
7mc7tTOaEzhUtvfrYYfHgvvdNNzo1ETv7rqTdZqtWJ3xfwdeowLFXXZwSywZKUDB
bi4pcl2v55Qlf9kxgx9RDr6+4fTwGG4nhO2qPDJDR1umEih9mG/2HJ7d+Wnq6Va2
E9srd+R6Fa0ty88+9vzBtdyllnDK1XHu3ahsxCH62aRm79ucuVrxyydWmbbs5lJe
a7g/OQIPgZmObHhfXvw9DFkOvkp5Pm6hfHOeyQH2nTB5X6k0judWv00uoHTJgOuP
DKxZtDhaGnajUfuhQYboDPOuFjY7lkfgEXaagyZsjdudqridTMmv1iU1o7iy8BT4
AId4DyJbvFFgqRJkCwKzhKRRHPfFMfM7KTJ38GPZuPmniuULk9uiIy6JyY0tXO+l
UQEclPzOTPkAE12FBaOBuqZqTRuBQuokWQF8ZDPOxbNAixHgFoRd4Z9diNwCPpLu
+KoyCwd2Gm5DyX+mC85sWG28IPKi9Hhhw2XBOA5F4A2kH6uFa1BnERSRGYomx+pc
BvEXHglf/vgV0XUQZfDCsiOecIKYuWxgre0/liLhhU5qMss2pxHczzffH4KtdykS
9y7o3mVRcS7Moitbmb6SAJoQxbR5QhzfN832DbSd6jEfKdg1ytZlfHTG0WZYHKDs
PHs6V1N+cQANdukutrJz
=cUkd
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.2-1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Slightly delayed due to the issue with printk() calling
probe_kernel_read() interacting with our new user access prevention
stuff, but all fixed now.
The only out-of-area changes are the addition of a cpuhp_state, small
additions to Documentation and MAINTAINERS updates.
Highlights:
- Support for Kernel Userspace Access/Execution Prevention (like
SMAP/SMEP/PAN/PXN) on some 64-bit and 32-bit CPUs. This prevents
the kernel from accidentally accessing userspace outside
copy_to/from_user(), or ever executing userspace.
- KASAN support on 32-bit.
- Rework of where we map the kernel, vmalloc, etc. on 64-bit hash to
use the same address ranges we use with the Radix MMU.
- A rewrite into C of large parts of our idle handling code for
64-bit Book3S (ie. power8 & power9).
- A fast path entry for syscalls on 32-bit CPUs, for a 12-17% speedup
in the null_syscall benchmark.
- On 64-bit bare metal we have support for recovering from errors
with the time base (our clocksource), however if that fails
currently we hang in __delay() and never crash. We now have support
for detecting that case and short circuiting __delay() so we at
least panic() and reboot.
- Add support for optionally enabling the DAWR on Power9, which had
to be disabled by default due to a hardware erratum. This has the
effect of enabling hardware breakpoints for GDB, the downside is a
badly behaved program could crash the machine by pointing the DAWR
at cache inhibited memory. This is opt-in obviously.
- xmon, our crash handler, gets support for a read only mode where
operations that could change memory or otherwise disturb the system
are disabled.
Plus many clean-ups, reworks and minor fixes etc.
Thanks to: Christophe Leroy, Akshay Adiga, Alastair D'Silva, Alexey
Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar,
Anton Blanchard, Ben Hutchings, Bo YU, Breno Leitao, Cédric Le Goater,
Christopher M. Riedl, Christoph Hellwig, Colin Ian King, David Gibson,
Ganesh Goudar, Gautham R. Shenoy, George Spelvin, Greg Kroah-Hartman,
Greg Kurz, Horia Geantă, Jagadeesh Pagadala, Joel Stanley, Joe
Perches, Julia Lawall, Laurentiu Tudor, Laurent Vivier, Lukas Bulwahn,
Madhavan Srinivasan, Mahesh Salgaonkar, Mathieu Malaterre, Michael
Neuling, Mukesh Ojha, Nathan Fontenot, Nathan Lynch, Nicholas Piggin,
Nick Desaulniers, Oliver O'Halloran, Peng Hao, Qian Cai, Ravi
Bangoria, Rick Lindsley, Russell Currey, Sachin Sant, Stewart Smith,
Sukadev Bhattiprolu, Thomas Huth, Tobin C. Harding, Tyrel Datwyler,
Valentin Schneider, Wei Yongjun, Wen Yang, YueHaibing"
* tag 'powerpc-5.2-1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (205 commits)
powerpc/64s: Use early_mmu_has_feature() in set_kuap()
powerpc/book3s/64: check for NULL pointer in pgd_alloc()
powerpc/mm: Fix hugetlb page initialization
ocxl: Fix return value check in afu_ioctl()
powerpc/mm: fix section mismatch for setup_kup()
powerpc/mm: fix redundant inclusion of pgtable-frag.o in Makefile
powerpc/mm: Fix makefile for KASAN
powerpc/kasan: add missing/lost Makefile
selftests/powerpc: Add a signal fuzzer selftest
powerpc/booke64: set RI in default MSR
ocxl: Provide global MMIO accessors for external drivers
ocxl: move event_fd handling to frontend
ocxl: afu_irq only deals with IRQ IDs, not offsets
ocxl: Allow external drivers to use OpenCAPI contexts
ocxl: Create a clear delineation between ocxl backend & frontend
ocxl: Don't pass pci_dev around
ocxl: Split pci.c
ocxl: Remove some unused exported symbols
ocxl: Remove superfluous 'extern' from headers
ocxl: read_pasid never returns an error, so make it void
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE7btrcuORLb1XUhEwjrBW1T7ssS0FAlzReuoACgkQjrBW1T7s
sS1uvBAA16pgnhRNxNTrp3LYft6lUWmF4n0baOTVtQNLhPjpwaOxHIrCBugkQCJB
QcQ9IQSOvIkaEW0XAQoPBaeLviiKhHOFw1Fv89OtW6xUidSfSV15lcI9f1F2pCm2
4yCL/8XvL6M0NhxiwftJAkWOXeDNLfjFnLwyLxBfgg3EeyqMgUB8raeosEID0ORR
gm2/g8DYS2r+KNqM/F4xvMSgabfi2bGk+8BtAaVnftJfstpRNrqKwWnSK3Wspj1l
5gkb8gSsiY6ns3V6RgNHrFlhevFg8V+VjcJt7FR+aUEjOkcoiXas/PhvamMzdsn/
FM1F/A0pM8FSybIUClhnnnxNPc+p8ZN/71YQAPs+Mnh3xvbtKea2lkhC+Xv4OpK3
edutSZWFaiIery82Rk00H3vqiSF1+kRIXSpZSS4mElk4FsVljkyH+nSP7rbmE2MR
EQe+kKnZl8QzWrVbnODC+EVvvVpA2bXDvENJmvKqus+t2G0OdV7Iku3F5E3KjF8k
S5RRV1zuBF3ugqnjmYrVmJtpEA8mxClmqvg6okru+qW6ngO5oOgVpPLjWn1CXcdj
wcuQ6Pe1QwAHS54e9WSWgCHVssLvm9nCdCqypdNaoyGWmbTWntwlrY7Y0JUQnAbB
6/G/DQQiCWY9y8bMZlTEydhIpgcsdROuPYv+oHF5+eQQthsWwHc=
=LH11
-----END PGP SIGNATURE-----
Merge tag 'pidfd-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull pidfd updates from Christian Brauner:
"This patchset makes it possible to retrieve pidfds at process creation
time by introducing the new flag CLONE_PIDFD to the clone() system
call. Linus originally suggested to implement this as a new flag to
clone() instead of making it a separate system call.
After a thorough review from Oleg CLONE_PIDFD returns pidfds in the
parent_tidptr argument. This means we can give back the associated pid
and the pidfd at the same time. Access to process metadata information
thus becomes rather trivial.
As has been agreed, CLONE_PIDFD creates file descriptors based on
anonymous inodes similar to the new mount api. They are made
unconditional by this patchset as they are now needed by core kernel
code (vfs, pidfd) even more than they already were before (timerfd,
signalfd, io_uring, epoll etc.). The core patchset is rather small.
The bulky looking changelist is caused by David's very simple changes
to Kconfig to make anon inodes unconditional.
A pidfd comes with additional information in fdinfo if the kernel
supports procfs. The fdinfo file contains the pid of the process in
the callers pid namespace in the same format as the procfs status
file, i.e. "Pid:\t%d".
To remove worries about missing metadata access this patchset comes
with a sample/test program that illustrates how a combination of
CLONE_PIDFD and pidfd_send_signal() can be used to gain race-free
access to process metadata through /proc/<pid>.
Further work based on this patchset has been done by Joel. His work
makes pidfds pollable. It finished too late for this merge window. I
would prefer to have it sitting in linux-next for a while and send it
for inclusion during the 5.3 merge window"
* tag 'pidfd-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
samples: show race-free pidfd metadata access
signal: support CLONE_PIDFD with pidfd_send_signal
clone: add CLONE_PIDFD
Make anon_inodes unconditional
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds code to ensure that after a XIVE or XICS-on-XIVE KVM device
is closed, KVM will not try to enable or disable any of the escalation
interrupts for the VCPUs. We don't have to worry about races between
clearing the pointers and use of the pointers by the XIVE context
push/pull code, because the callers hold the vcpu->mutex, which is
also taken by the KVM_RUN code. Therefore the vcpu cannot be entering
or exiting the guest concurrently.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Now that we have the possibility of a XIVE or XICS-on-XIVE device being
released while the VM is still running, we need to be careful about
races and potential use-after-free bugs. Although the kvmppc_xive
struct is not freed, but kept around for re-use, the kvmppc_xive_vcpu
structs are freed, and they are used extensively in both the XIVE native
and XICS-on-XIVE code.
There are various ways in which XIVE code gets invoked:
- VCPU entry and exit, which do push and pull operations on the XIVE hardware
- one_reg get and set functions (vcpu->mutex is held)
- XICS hypercalls (but only inside guest execution, not from
kvmppc_pseries_do_hcall)
- device creation calls (kvm->lock is held)
- device callbacks - get/set attribute, mmap, pagefault, release/destroy
- set_mapped/clr_mapped calls (kvm->lock is held)
- connect_vcpu calls
- debugfs file read callbacks
Inside a device release function, we know that userspace cannot have an
open file descriptor referring to the device, nor can it have any mmapped
regions from the device. Therefore the device callbacks are excluded,
as are the connect_vcpu calls (since they need a fd for the device).
Further, since the caller holds the kvm->lock mutex, no other device
creation calls or set/clr_mapped calls can be executing concurrently.
To exclude VCPU execution and XICS hypercalls, we temporarily set
kvm->arch.mmu_ready to 0. This forces any VCPU task that is trying to
enter the guest to take the kvm->lock mutex, which is held by the caller
of the release function. Then, sending an IPI to all other CPUs forces
any VCPU currently executing in the guest to exit.
Finally, we take the vcpu->mutex for each VCPU around the process of
cleaning up and freeing its XIVE data structures, in order to exclude
any one_reg get/set calls.
To exclude the debugfs read callbacks, we just need to ensure that
debugfs_remove is called before freeing any data structures. Once it
returns we know that no CPU can be executing the callbacks (for our
kvmppc_xive instance).
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When a P9 sPAPR VM boots, the CAS negotiation process determines which
interrupt mode to use (XICS legacy or XIVE native) and invokes a
machine reset to activate the chosen mode.
We introduce 'release' methods for the XICS-on-XIVE and the XIVE
native KVM devices which are called when the file descriptor of the
device is closed after the TIMA and ESB pages have been unmapped.
They perform the necessary cleanups : clear the vCPU interrupt
presenters that could be attached and then destroy the device. The
'release' methods replace the 'destroy' methods as 'destroy' is not
called anymore once 'release' is. Compatibility with older QEMU is
nevertheless maintained.
This is not considered as a safe operation as the vCPUs are still
running and could be referencing the KVM device through their
presenters. To protect the system from any breakage, the kvmppc_xive
objects representing both KVM devices are now stored in an array under
the VM. Allocation is performed on first usage and memory is freed
only when the VM exits.
[paulus@ozlabs.org - Moved freeing of xive structures to book3s.c,
put it under #ifdef CONFIG_KVM_XICS.]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Full support for the XIVE native exploitation mode is now available,
advertise the capability KVM_CAP_PPC_IRQ_XIVE for guests running on
PowerNV KVM Hypervisors only. Support for nested guests (pseries KVM
Hypervisor) is not yet available. XIVE should also have been activated
which is default setting on POWER9 systems running a recent Linux
kernel.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The KVM XICS-over-XIVE device and the proposed KVM XIVE native device
implement an IRQ space for the guest using the generic IPI interrupts
of the XIVE IC controller. These interrupts are allocated at the OPAL
level and "mapped" into the guest IRQ number space in the range 0-0x1FFF.
Interrupt management is performed in the XIVE way: using loads and
stores on the addresses of the XIVE IPI interrupt ESB pages.
Both KVM devices share the same internal structure caching information
on the interrupts, among which the xive_irq_data struct containing the
addresses of the IPI ESB pages and an extra one in case of pass-through.
The later contains the addresses of the ESB pages of the underlying HW
controller interrupts, PHB4 in all cases for now.
A guest, when running in the XICS legacy interrupt mode, lets the KVM
XICS-over-XIVE device "handle" interrupt management, that is to
perform the loads and stores on the addresses of the ESB pages of the
guest interrupts. However, when running in XIVE native exploitation
mode, the KVM XIVE native device exposes the interrupt ESB pages to
the guest and lets the guest perform directly the loads and stores.
The VMA exposing the ESB pages make use of a custom VM fault handler
which role is to populate the VMA with appropriate pages. When a fault
occurs, the guest IRQ number is deduced from the offset, and the ESB
pages of associated XIVE IPI interrupt are inserted in the VMA (using
the internal structure caching information on the interrupts).
Supporting device passthrough in the guest running in XIVE native
exploitation mode adds some extra refinements because the ESB pages
of a different HW controller (PHB4) need to be exposed to the guest
along with the initial IPI ESB pages of the XIVE IC controller. But
the overall mechanic is the same.
When the device HW irqs are mapped into or unmapped from the guest
IRQ number space, the passthru_irq helpers, kvmppc_xive_set_mapped()
and kvmppc_xive_clr_mapped(), are called to record or clear the
passthrough interrupt information and to perform the switch.
The approach taken by this patch is to clear the ESB pages of the
guest IRQ number being mapped and let the VM fault handler repopulate.
The handler will insert the ESB page corresponding to the HW interrupt
of the device being passed-through or the initial IPI ESB page if the
device is being removed.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Each source is associated with an Event State Buffer (ESB) with a
even/odd pair of pages which provides commands to manage the source:
to trigger, to EOI, to turn off the source for instance.
The custom VM fault handler will deduce the guest IRQ number from the
offset of the fault, and the ESB page of the associated XIVE interrupt
will be inserted into the VMA using the internal structure caching
information on the interrupts.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Each thread has an associated Thread Interrupt Management context
composed of a set of registers. These registers let the thread handle
priority management and interrupt acknowledgment. The most important
are :
- Interrupt Pending Buffer (IPB)
- Current Processor Priority (CPPR)
- Notification Source Register (NSR)
They are exposed to software in four different pages each proposing a
view with a different privilege. The first page is for the physical
thread context and the second for the hypervisor. Only the third
(operating system) and the fourth (user level) are exposed the guest.
A custom VM fault handler will populate the VMA with the appropriate
pages, which should only be the OS page for now.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The state of the thread interrupt management registers needs to be
collected for migration. These registers are cached under the
'xive_saved_state.w01' field of the VCPU when the VPCU context is
pulled from the HW thread. An OPAL call retrieves the backup of the
IPB register in the underlying XIVE NVT structure and merges it in the
KVM state.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When migration of a VM is initiated, a first copy of the RAM is
transferred to the destination before the VM is stopped, but there is
no guarantee that the EQ pages in which the event notifications are
queued have not been modified.
To make sure migration will capture a consistent memory state, the
XIVE device should perform a XIVE quiesce sequence to stop the flow of
event notifications and stabilize the EQs. This is the purpose of the
KVM_DEV_XIVE_EQ_SYNC control which will also marks the EQ pages dirty
to force their transfer.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This control will be used by the H_INT_SYNC hcall from QEMU to flush
event notifications on the XIVE IC owning the source.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This control is to be used by the H_INT_RESET hcall from QEMU. Its
purpose is to clear all configuration of the sources and EQs. This is
necessary in case of a kexec (for a kdump kernel for instance) to make
sure that no remaining configuration is left from the previous boot
setup so that the new kernel can start safely from a clean state.
The queue 7 is ignored when the XIVE device is configured to run in
single escalation mode. Prio 7 is used by escalations.
The XIVE VP is kept enabled as the vCPU is still active and connected
to the XIVE device.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
These controls will be used by the H_INT_SET_QUEUE_CONFIG and
H_INT_GET_QUEUE_CONFIG hcalls from QEMU to configure the underlying
Event Queue in the XIVE IC. They will also be used to restore the
configuration of the XIVE EQs and to capture the internal run-time
state of the EQs. Both 'get' and 'set' rely on an OPAL call to access
the EQ toggle bit and EQ index which are updated by the XIVE IC when
event notifications are enqueued in the EQ.
The value of the guest physical address of the event queue is saved in
the XIVE internal xive_q structure for later use. That is when
migration needs to mark the EQ pages dirty to capture a consistent
memory state of the VM.
To be noted that H_INT_SET_QUEUE_CONFIG does not require the extra
OPAL call setting the EQ toggle bit and EQ index to configure the EQ,
but restoring the EQ state will.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This control will be used by the H_INT_SET_SOURCE_CONFIG hcall from
QEMU to configure the target of a source and also to restore the
configuration of a source when migrating the VM.
The XIVE source interrupt structure is extended with the value of the
Effective Interrupt Source Number. The EISN is the interrupt number
pushed in the event queue that the guest OS will use to dispatch
events internally. Caching the EISN value in KVM eases the test when
checking if a reconfiguration is indeed needed.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The XIVE KVM device maintains a list of interrupt sources for the VM
which are allocated in the pool of generic interrupts (IPIs) of the
main XIVE IC controller. These are used for the CPU IPIs as well as
for virtual device interrupts. The IRQ number space is defined by
QEMU.
The XIVE device reuses the source structures of the XICS-on-XIVE
device for the source blocks (2-level tree) and for the source
interrupts. Under XIVE native, the source interrupt caches mostly
configuration information and is less used than under the XICS-on-XIVE
device in which hcalls are still necessary at run-time.
When a source is initialized in KVM, an IPI interrupt source is simply
allocated at the OPAL level and then MASKED. KVM only needs to know
about its type: LSI or MSI.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The user interface exposes a new capability KVM_CAP_PPC_IRQ_XIVE to
let QEMU connect the vCPU presenters to the XIVE KVM device if
required. The capability is not advertised for now as the full support
for the XIVE native exploitation mode is not yet available. When this
is case, the capability will be advertised on PowerNV Hypervisors
only. Nested guests (pseries KVM Hypervisor) are not supported.
Internally, the interface to the new KVM device is protected with a
new interrupt mode: KVMPPC_IRQ_XIVE.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This is the basic framework for the new KVM device supporting the XIVE
native exploitation mode. The user interface exposes a new KVM device
to be created by QEMU, only available when running on a L0 hypervisor.
Support for nested guests is not available yet.
The XIVE device reuses the device structure of the XICS-on-XIVE device
as they have a lot in common. That could possibly change in the future
if the need arise.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch from the powerpc tree to get
patches which touch both general powerpc code and KVM code, one of
which is a prerequisite for following patches.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9 and later processors where the host can schedule vcpus on a
per thread basis, there is a streamlined entry path used when the guest
is radix. This entry path saves/restores the fp and vr state in
kvmhv_p9_guest_entry() by calling store_[fp/vr]_state() and
load_[fp/vr]_state(). This is the same as the old entry path however the
old entry path also saved/restored the VRSAVE register, which isn't done
in the new entry path.
This means that the vrsave register is now volatile across guest exit,
which is an incorrect change in behaviour.
Fix this by saving/restoring the vrsave register in kvmhv_p9_guest_entry().
This restores the old, correct, behaviour.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When running on POWER9 with kvm_hv.indep_threads_mode = N and the host
in SMT1 mode, KVM will run guest VCPUs on offline secondary threads.
If those guests are in radix mode, we fail to load the LPID and flush
the TLB if necessary, leading to the guest crashing with an
unsupported MMU fault. This arises from commit 9a4506e11b ("KVM:
PPC: Book3S HV: Make radix handle process scoped LPID flush in C,
with relocation on", 2018-05-17), which didn't consider the case
where indep_threads_mode = N.
For simplicity, this makes the real-mode guest entry path flush the
TLB in the same place for both radix and hash guests, as we did before
9a4506e11b, though the code is now C code rather than assembly code.
We also have the radix TLB flush open-coded rather than calling
radix__local_flush_tlb_lpid_guest(), because the TLB flush can be
called in real mode, and in real mode we don't want to invoke the
tracepoint code.
Fixes: 9a4506e11b ("KVM: PPC: Book3S HV: Make radix handle process scoped LPID flush in C, with relocation on")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This replaces assembler code in book3s_hv_rmhandlers.S that checks
the kvm->arch.need_tlb_flush cpumask and optionally does a TLB flush
with C code in book3s_hv_builtin.c. Note that unlike the radix
version, the hash version doesn't do an explicit ERAT invalidation
because we will invalidate and load up the SLB before entering the
guest, and that will invalidate the ERAT.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The code in book3s_hv_rmhandlers.S that pushes the XIVE virtual CPU
context to the hardware currently assumes it is being called in real
mode, which is usually true. There is however a path by which it can
be executed in virtual mode, in the case where indep_threads_mode = N.
A virtual CPU executing on an offline secondary thread can take a
hypervisor interrupt in virtual mode and return from the
kvmppc_hv_entry() call after the kvm_secondary_got_guest label.
It is possible for it to be given another vcpu to execute before it
gets to execute the stop instruction. In that case it will call
kvmppc_hv_entry() for the second VCPU in virtual mode, and the XIVE
vCPU push code will be executed in virtual mode. The result in that
case will be a host crash due to an unexpected data storage interrupt
caused by executing the stdcix instruction in virtual mode.
This fixes it by adding a code path for virtual mode, which uses the
virtual TIMA pointer and normal load/store instructions.
[paulus@ozlabs.org - wrote patch description]
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes a bug in the XICS emulation on POWER9 machines which is
triggered by the guest doing a H_IPI with priority = 0 (the highest
priority). What happens is that the notification interrupt arrives
at the destination at priority zero. The loop in scan_interrupts()
sees that a priority 0 interrupt is pending, but because xc->mfrr is
zero, we break out of the loop before taking the notification
interrupt out of the queue and EOI-ing it. (This doesn't happen
when xc->mfrr != 0; in that case we process the priority-0 notification
interrupt on the first iteration of the loop, and then break out of
a subsequent iteration of the loop with hirq == XICS_IPI.)
To fix this, we move the prio >= xc->mfrr check down to near the end
of the loop. However, there are then some other things that need to
be adjusted. Since we are potentially handling the notification
interrupt and also delivering an IPI to the guest in the same loop
iteration, we need to update pending and handle any q->pending_count
value before the xc->mfrr check, rather than at the end of the loop.
Also, we need to update the queue pointers when we have processed and
EOI-ed the notification interrupt, since we may not do it later.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
I made the same typo when trying to grep for uses of smp_wmb and figured
I might as well fix it.
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
We already allocate hardware TCE tables in multiple levels and skip
intermediate levels when we can, now it is a turn of the KVM TCE tables.
Thankfully these are allocated already in 2 levels.
This moves the table's last level allocation from the creating helper to
kvmppc_tce_put() and kvm_spapr_tce_fault(). Since such allocation cannot
be done in real mode, this creates a virtual mode version of
kvmppc_tce_put() which handles allocations.
This adds kvmppc_rm_ioba_validate() to do an additional test if
the consequent kvmppc_tce_put() needs a page which has not been allocated;
if this is the case, we bail out to virtual mode handlers.
The allocations are protected by a new mutex as kvm->lock is not suitable
for the task because the fault handler is called with the mmap_sem held
but kvmhv_setup_mmu() locks kvm->lock and mmap_sem in the reverse order.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The kvmppc_tce_to_ua() helper is called from real and virtual modes
and it works fine as long as CONFIG_DEBUG_LOCKDEP is not enabled.
However if the lockdep debugging is on, the lockdep will most likely break
in kvm_memslots() because of srcu_dereference_check() so we need to use
PPC-own kvm_memslots_raw() which uses realmode safe
rcu_dereference_raw_notrace().
This creates a realmode copy of kvmppc_tce_to_ua() which replaces
kvm_memslots() with kvm_memslots_raw().
Since kvmppc_rm_tce_to_ua() becomes static and can only be used inside
HV KVM, this moves it earlier under CONFIG_KVM_BOOK3S_HV_POSSIBLE.
This moves truly virtual-mode kvmppc_tce_to_ua() to where it belongs and
drops the prmap parameter which was never used in the virtual mode.
Fixes: d3695aa4f4 ("KVM: PPC: Add support for multiple-TCE hcalls", 2016-02-15)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The trace_hardirqs_on() sets current->hardirqs_enabled and from here
the lockdep assumes interrupts are enabled although they are remain
disabled until the context switches to the guest. Consequent
srcu_read_lock() checks the flags in rcu_lock_acquire(), observes
disabled interrupts and prints a warning (see below).
This moves trace_hardirqs_on/off closer to __kvmppc_vcore_entry to
prevent lockdep from being confused.
DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)
WARNING: CPU: 16 PID: 8038 at kernel/locking/lockdep.c:4128 check_flags.part.25+0x224/0x280
[...]
NIP [c000000000185b84] check_flags.part.25+0x224/0x280
LR [c000000000185b80] check_flags.part.25+0x220/0x280
Call Trace:
[c000003fec253710] [c000000000185b80] check_flags.part.25+0x220/0x280 (unreliable)
[c000003fec253780] [c000000000187ea4] lock_acquire+0x94/0x260
[c000003fec253840] [c00800001a1e9768] kvmppc_run_core+0xa60/0x1ab0 [kvm_hv]
[c000003fec253a10] [c00800001a1ed944] kvmppc_vcpu_run_hv+0x73c/0xec0 [kvm_hv]
[c000003fec253ae0] [c00800001a1095dc] kvmppc_vcpu_run+0x34/0x48 [kvm]
[c000003fec253b00] [c00800001a1056bc] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm]
[c000003fec253b90] [c00800001a0f3618] kvm_vcpu_ioctl+0x460/0x850 [kvm]
[c000003fec253d00] [c00000000041c4f4] do_vfs_ioctl+0xe4/0x930
[c000003fec253db0] [c00000000041ce04] ksys_ioctl+0xc4/0x110
[c000003fec253e00] [c00000000041ce78] sys_ioctl+0x28/0x80
[c000003fec253e20] [c00000000000b5a4] system_call+0x5c/0x70
Instruction dump:
419e0034 3d220004 39291730 81290000 2f890000 409e0020 3c82ffc6 3c62ffc5
3884be70 386329c0 4bf6ea71 60000000 <0fe00000> 3c62ffc6 3863be90 4801273d
irq event stamp: 1025
hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>] (null)
---[ end trace 31180adcc848993e ]---
possible reason: unannotated irqs-off.
irq event stamp: 1025
hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>] (null)
Fixes: 8b24e69fc4 ("KVM: PPC: Book3S HV: Close race with testing for signals on guest entry", 2017-06-26)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Implement a real mode handler for the H_CALL H_PAGE_INIT which can be
used to zero or copy a guest page. The page is defined to be 4k and must
be 4k aligned.
The in-kernel real mode handler halves the time to handle this H_CALL
compared to handling it in userspace for a hash guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Implement a virtual mode handler for the H_CALL H_PAGE_INIT which can be
used to zero or copy a guest page. The page is defined to be 4k and must
be 4k aligned.
The in-kernel handler halves the time to handle this H_CALL compared to
handling it in userspace for a radix guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch maps vmalloc, IO and vmemap regions in the 0xc address range
instead of the current 0xd and 0xf range. This brings the mapping closer
to radix translation mode.
With hash 64K page size each of this region is 512TB whereas with 4K config
we are limited by the max page table range of 64TB and hence there regions
are of 16TB size.
The kernel mapping is now:
On 4K hash
kernel_region_map_size = 16TB
kernel vmalloc start = 0xc000100000000000
kernel IO start = 0xc000200000000000
kernel vmemmap start = 0xc000300000000000
64K hash, 64K radix and 4k radix:
kernel_region_map_size = 512TB
kernel vmalloc start = 0xc008000000000000
kernel IO start = 0xc00a000000000000
kernel vmemmap start = 0xc00c000000000000
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds a flag so that the DAWR can be enabled on P9 via:
echo Y > /sys/kernel/debug/powerpc/dawr_enable_dangerous
The DAWR was previously force disabled on POWER9 in:
9654153158 powerpc: Disable DAWR in the base POWER9 CPU features
Also see Documentation/powerpc/DAWR-POWER9.txt
This is a dangerous setting, USE AT YOUR OWN RISK.
Some users may not care about a bad user crashing their box
(ie. single user/desktop systems) and really want the DAWR. This
allows them to force enable DAWR.
This flag can also be used to disable DAWR access. Once this is
cleared, all DAWR access should be cleared immediately and your
machine once again safe from crashing.
Userspace may get confused by toggling this. If DAWR is force
enabled/disabled between getting the number of breakpoints (via
PTRACE_GETHWDBGINFO) and setting the breakpoint, userspace will get an
inconsistent view of what's available. Similarly for guests.
For the DAWR to be enabled in a KVM guest, the DAWR needs to be force
enabled in the host AND the guest. For this reason, this won't work on
POWERVM as it doesn't allow the HCALL to work. Writes of 'Y' to the
dawr_enable_dangerous file will fail if the hypervisor doesn't support
writing the DAWR.
To double check the DAWR is working, run this kernel selftest:
tools/testing/selftests/powerpc/ptrace/ptrace-hwbreak.c
Any errors/failures/skips mean something is wrong.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Make the anon_inodes facility unconditional so that it can be used by core
VFS code and pidfd code.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[christian@brauner.io: adapt commit message to mention pidfds]
Signed-off-by: Christian Brauner <christian@brauner.io>
All architectures except MIPS were defining it in the same way,
and memory slots are handled entirely by common code so there
is no point in keeping the definition per-architecture.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is a hardware bug in some POWER9 processors where a treclaim in
fake suspend mode can cause an inconsistency in the XER[SO] bit across
the threads of a core, the workaround being to force the core into SMT4
when doing the treclaim.
The FAKE_SUSPEND bit (bit 10) in the PSSCR is used to control whether a
thread is in fake suspend or real suspend. The important difference here
being that thread reconfiguration is blocked in real suspend but not
fake suspend mode.
When we exit a guest which was in fake suspend mode, we force the core
into SMT4 while we do the treclaim in kvmppc_save_tm_hv().
However on the new exit path introduced with the function
kvmhv_run_single_vcpu() we restore the host PSSCR before calling
kvmppc_save_tm_hv() which means that if we were in fake suspend mode we
put the thread into real suspend mode when we clear the
PSSCR[FAKE_SUSPEND] bit. This means that we block thread reconfiguration
and the thread which is trying to get the core into SMT4 before it can
do the treclaim spins forever since it itself is blocking thread
reconfiguration. The result is that that core is essentially lost.
This results in a trace such as:
[ 93.512904] CPU: 7 PID: 13352 Comm: qemu-system-ppc Not tainted 5.0.0 #4
[ 93.512905] NIP: c000000000098a04 LR: c0000000000cc59c CTR: 0000000000000000
[ 93.512908] REGS: c000003fffd2bd70 TRAP: 0100 Not tainted (5.0.0)
[ 93.512908] MSR: 9000000302883033 <SF,HV,VEC,VSX,FP,ME,IR,DR,RI,LE,TM[SE]> CR: 22222444 XER: 00000000
[ 93.512914] CFAR: c000000000098a5c IRQMASK: 3
[ 93.512915] PACATMSCRATCH: 0000000000000001
[ 93.512916] GPR00: 0000000000000001 c000003f6cc1b830 c000000001033100 0000000000000004
[ 93.512928] GPR04: 0000000000000004 0000000000000002 0000000000000004 0000000000000007
[ 93.512930] GPR08: 0000000000000000 0000000000000004 0000000000000000 0000000000000004
[ 93.512932] GPR12: c000203fff7fc000 c000003fffff9500 0000000000000000 0000000000000000
[ 93.512935] GPR16: 2000000000300375 000000000000059f 0000000000000000 0000000000000000
[ 93.512951] GPR20: 0000000000000000 0000000000080053 004000000256f41f c000003f6aa88ef0
[ 93.512953] GPR24: c000003f6aa89100 0000000000000010 0000000000000000 0000000000000000
[ 93.512956] GPR28: c000003f9e9a0800 0000000000000000 0000000000000001 c000203fff7fc000
[ 93.512959] NIP [c000000000098a04] pnv_power9_force_smt4_catch+0x1b4/0x2c0
[ 93.512960] LR [c0000000000cc59c] kvmppc_save_tm_hv+0x40/0x88
[ 93.512960] Call Trace:
[ 93.512961] [c000003f6cc1b830] [0000000000080053] 0x80053 (unreliable)
[ 93.512965] [c000003f6cc1b8a0] [c00800001e9cb030] kvmhv_p9_guest_entry+0x508/0x6b0 [kvm_hv]
[ 93.512967] [c000003f6cc1b940] [c00800001e9cba44] kvmhv_run_single_vcpu+0x2dc/0xb90 [kvm_hv]
[ 93.512968] [c000003f6cc1ba10] [c00800001e9cc948] kvmppc_vcpu_run_hv+0x650/0xb90 [kvm_hv]
[ 93.512969] [c000003f6cc1bae0] [c00800001e8f620c] kvmppc_vcpu_run+0x34/0x48 [kvm]
[ 93.512971] [c000003f6cc1bb00] [c00800001e8f2d4c] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm]
[ 93.512972] [c000003f6cc1bb90] [c00800001e8e3918] kvm_vcpu_ioctl+0x460/0x7d0 [kvm]
[ 93.512974] [c000003f6cc1bd00] [c0000000003ae2c0] do_vfs_ioctl+0xe0/0x8e0
[ 93.512975] [c000003f6cc1bdb0] [c0000000003aeb24] ksys_ioctl+0x64/0xe0
[ 93.512978] [c000003f6cc1be00] [c0000000003aebc8] sys_ioctl+0x28/0x80
[ 93.512981] [c000003f6cc1be20] [c00000000000b3a4] system_call+0x5c/0x70
[ 93.512983] Instruction dump:
[ 93.512986] 419dffbc e98c0000 2e8b0000 38000001 60000000 60000000 60000000 40950068
[ 93.512993] 392bffff 39400000 79290020 39290001 <7d2903a6> 60000000 60000000 7d235214
To fix this we preserve the PSSCR[FAKE_SUSPEND] bit until we call
kvmppc_save_tm_hv() which will mean the core can get into SMT4 and
perform the treclaim. Note kvmppc_save_tm_hv() clears the
PSSCR[FAKE_SUSPEND] bit again so there is no need to explicitly do that.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
for 32-bit guests
s390: interrupt cleanup, introduction of the Guest Information Block,
preparation for processor subfunctions in cpu models
PPC: bug fixes and improvements, especially related to machine checks
and protection keys
x86: many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations; plus AVIC fixes.
Generic: memcg accounting
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
=XIzU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- some cleanups
- direct physical timer assignment
- cache sanitization for 32-bit guests
s390:
- interrupt cleanup
- introduction of the Guest Information Block
- preparation for processor subfunctions in cpu models
PPC:
- bug fixes and improvements, especially related to machine checks
and protection keys
x86:
- many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations
- AVIC fixes
Generic:
- memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
kvm: vmx: fix formatting of a comment
KVM: doc: Document the life cycle of a VM and its resources
MAINTAINERS: Add KVM selftests to existing KVM entry
Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
KVM: PPC: Fix compilation when KVM is not enabled
KVM: Minor cleanups for kvm_main.c
KVM: s390: add debug logging for cpu model subfunctions
KVM: s390: implement subfunction processor calls
arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
KVM: arm/arm64: Remove unused timer variable
KVM: PPC: Book3S: Improve KVM reference counting
KVM: PPC: Book3S HV: Fix build failure without IOMMU support
Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
x86: kvmguest: use TSC clocksource if invariant TSC is exposed
KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
...
Add KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST &
KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE to the characteristics returned
from the H_GET_CPU_CHARACTERISTICS H-CALL, as queried from either the
hypervisor or the device tree.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When activating CONFIG_THREAD_INFO_IN_TASK, linux/sched.h includes
asm/current.h. This generates a circular dependency. To avoid that,
asm/processor.h shall not be included in mmu-hash.h.
In order to do that, this patch moves into a new header called
asm/task_size_64/32.h all the TASK_SIZE related constants, which can
then be included in mmu-hash.h directly.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Split out all the TASK_SIZE constants not just 64-bit ones]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There are no major new features this time, just a collection of bug
fixes and improvements in various areas, including machine check
handling and context switching of protection-key-related registers.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJcb3lEAAoJEJ2a6ncsY3GflNwH/2ezxhHv7CRy18d2D3F+Kna+
YQs3V/pJfBRvVdV7ZLxnR03H/NmzAK3UOzRfqGodYUtbF+gUDqSuM27lAxMKrjBv
S87X5g/1ZdiQNnqYK7PIBn75Tx27vnw2kJAif8rXTfqbj8qLUsXcNhsziA16sJOA
azbD5PBp9mOVzTojawyriJ3H8LYqw+vinad0idvFrApFCuNmMxv56FR6H+IBadt7
1UJyx6AegQACdhxvy0CzmZjzzXw02z9zeFUa4lakm2sORc4fbbyyZ68CtkGURg7A
8rt2j9SGt649ExpjfG2Cz/UihMGIMXSAOrpqTZMfyd9UPzPgHeKx2FidnxASUBc=
=PIT8
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into kvm-next
PPC KVM update for 5.1
There are no major new features this time, just a collection of bug
fixes and improvements in various areas, including machine check
handling and context switching of protection-key-related registers.