hpd_gpio is no longer used by the OMAP4 HDMI IP driver, and we can thus
remove the unnecessary code.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The TRM tells to set PHY to TXON only after getting LINK_CONNECT, and to
set PHY to OFF or LDOON after getting LINK_DISCONNECT, in order to avoid
damage to the PHY.
We don't currently do it quite like that. Instead of using the HDMI
interrupts, we use HPD signal. This works, but is not actually quite
correct, as HPD comes at a different time than LINK_CONNECT and
LINK_DISCONNECT interrupts. Also, the HPD GPIO is a property of the TPD
level shifter, not HDMI IP, so handling the GPIO in the HDMI driver is
wrong.
This patch implements the PHY power handling correctly, using the
interrupts.
There is a corner case that causes some additional difficulties: we may
get both LINK_CONNECT and LINK_DISCONNECT interrupts at the same time.
This is handled in the code by retrying: turning off the PHY, clearing
the interrupt status, and re-enabling the PHY. This causes a new
LINK_CONNECT interrupt to happen if a cable is connected.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently omapfb returns EPROBE_DEFER if no displays have been probed at
the time omapfb is probed. However, sometimes some of the displays have
been probed at that time, but not all. We can't return EPROBE_DEFER in
that case, because then one missing driver would cause omapfb to defer
always, preventing any display from working.
However, if the user has defined a default display, we can presume that
the driver for that display is eventually loaded. Thus, this patch
changes omapfb to return EPROBE_DEFER in case default display is not
found.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Now that omap_dss_output has been combined into omap_dss_device, we can
add ref counting for the relevant output functions also.
This patch adds omap_dss_get_device() calls to the various find_output()
style functions. This, of course, means that the users of those
find_output functions need to do a omap_dss_put_device() after use.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omap_dss_get_device() should be called for omap_dss_device before it is
used to increase its refcount. Currently we only increase the refcount
for the underlying device.
This patch adds managing the ref count to the underlying module also,
which contains the ops for the omap_dss_device.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently have omap_dss_device, which represents an external display
device, sometimes an external encoder, sometimes a panel. Then we have
omap_dss_output, which represents DSS's output encoder.
In the future with new display device model, we construct a video
pipeline from the display blocks. To accomplish this, all the blocks
need to be presented by the same entity.
Thus, this patch combines omap_dss_output into omap_dss_device. Some of
the fields in omap_dss_output are already found in omap_dss_device, but
some are not. This means we'll have DSS output specific fields in
omap_dss_device, which is not very nice. However, it is easier to just
keep those output specific fields there for now, and after transition to
new display device model is made, they can be cleaned up easier than
could be done now.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_start_device() and omap_dss_stop_device(), called by the
DSS output drivers, are old relics. They originally did something
totally else, but nowadays they increase the module ref count for panels
that are enabled.
This model is quite broken: the panel modules may be used even before
they are enabled. For example, configuring the panel requires calls to
functions located in the panel modules.
In the following patches we try to improve the ref count management for
the modules and display devices. The first step, however, is to remove
the omap_dss_start/stop_device() totally.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We are about to remove the dss bus support, which also means that the
omap_dss_device won't be a real device anymore. This means that the
embedded "dev" struct needs to be removed from omap_dss_device.
After we've finished the removal of the dss bus, we see the following
changes:
- struct omap_dss_device won't be a real Linux device anymore, but more
like a "display entity".
- struct omap_dss_driver won't be a Linux device driver, but "display
entity ops".
- The panel devices/drivers won't be omapdss devices/drivers, but
platform/i2c/spi/etc devices/drivers, whichever fits the control
mechanism of the panel.
- The panel drivers will create omap_dss_device and omap_dss_driver,
fill the required fields, and register the omap_dss_device to
omapdss.
- omap_dss_device won't have an embedded dev struct anymore, but a
dev pointer to the actual device that manages the omap_dss_device.
The model described above resembles the model that has been discussed
with CDF (common display framework).
For the duration of the conversion, we temporarily have two devs in the
dssdev, the old "old_dev", which is a full embedded device struct, and the
new "dev", which is a pointer to the device. "old_dev" will be removed
in the future.
For devices belonging to dss bus the dev is initialized to point to
old_dev. This way all the code can just use the dev, for both old and
new style panels.
Both the new and old style panel drivers work during the conversion, and
only after the dss bus support is removed will the old style panels stop
to compile.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We aim to remove the custom omapdss bus totally, as it's quite a strange
construct and won't be compatible with common display framework. One
problem on the road is that we have sysfs files for each display, and
they depend on the omapdss bus.
This patch creates the display sysfs files independent of the omapdss
bus. This gives us backwards compatibility without using the omapdss bus
for the sysfs files.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We have support functions to suspend and resume all the displays that
are used with system suspend. These functions use the dss bus to iterate
the display devices.
As we aim to remove the custom dss bus totally, this patch removes the
explicit use of dss bus from these functions. Instead the
for_each_dss_dev() macro is used to go through the devices.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omap_dss_get_next_device() uses the dss bus to iterate over the
displays. This patch changes omap_dss_get_next_device() to use the new
panel list instead.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently use the omapdss bus (which contains all the available
displays) to iterate the displays. As the omapdss bus is on its way out,
this needs to be changed.
Instead of using the dss bus to iterate displays, this patch adds our
own list of displays which we manage. The panels on the dss bus are
automatically added to this new list.
An "alias" field is also added to omap_dss_device. This field is
set to "display%d", the same way as omap_dss_device's dev name is set.
This alias is later used to keep backward compatibility, when the
embedded dev is no longer used.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
In the future the "dssdev" parameter passed to output drivers will
change its meaning. Instead of being a pointer to the panel device, it's
a pointer to the output instance.
To make the transition easier, some of the uses for this dssdev
parameter can be easily removed.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add helper functions to convert between omapdss specific video timings
and the common videomode.
Eventually omapdss will be changed to use only the common video timings,
and these helper functions will make the transition easier.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Clean up the VENC driver's regulator init to remove the (unused)
omap_dss_device parameter, renaming the function to a more sensible
name, and making the code slightly clearer.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
SDI requires a regulator to operate. This regulator is, for some reason,
currently attached to the virtual omapdss device, instead of the SDI
device. This does not work for DT, as the regulator mappings need to be
described in the DT data, and the virtual omapdss device is not present
there.
Fix the issue by acquiring the regulator in the SDI device. To retain
compatibility with the current board files, the old method of getting
the regulator is kept. The old method can be removed when the board
files have been changed to pass the regulator to SDI.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Clean up the SDI driver's regulator init to remove the (unused)
omap_dss_device parameter, renaming the function to a more sensible
name, and making the code slightly clearer.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
On some platforms DPI requires a regulator to be enabled to power up the
output pins. This regulator is, for some reason, currently attached to
the virtual omapdss device, instead of the DPI device. This does not
work for DT, as the regulator mappings need to be described in the DT
data, and the virtual omapdss device is not present there.
Fix the issue by acquiring the regulator in the DPI device. To retain
compatibility with the current board files, the old method of getting
the regulator is kept. The old method can be removed when the board
files have been changed to pass the regulator to DPI.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently have two steps in panel initialization and startup: probing
and enabling. After the panel has been probed, it's ready and can be
configured and later enabled.
This model is not enough with more complex display pipelines, where we
may have, for example, two panels, of which only one can be used at a
time, connected to the same video output.
To support that kind of scenarios, we need to add new step to the
initialization: connect.
This patch adds support for connecting and disconnecting panels. After
probe, but before connect, no panel ops should be called. When the
connect is called, a proper video pipeline is established, and the panel
is ready for use. If some part in the video pipeline is already
connected (by some other panel), the connect call fails.
One key difference with the old style setup is that connect() handles
also connecting to the overlay manager. This means that the omapfb (or
omapdrm) no longer needs to figure out which overlay manager to use, but
it can just call connect() on the panel, and the proper overlay manager
is connected by omapdss.
This also allows us to add back the support for dynamic switching
between two exclusive panels. However, the current panel device model is
not changed to support this, as the new device model is implemented in
the following patches and the old model will be removed. The new device
model supports dynamic switching.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently omapdrm creates crtcs, which map directly to DSS overlay
managers, only on demand at init time. This would make it difficult to
manage connecting the display entities in the future, as the code cannot
just search for a suitable overlay manager.
We cannot fix this the sane way, which would be to create crtcs for each
overlay manager, because we need an overlay for each crtc. With limited
number of overlays, that's not possible.
So the solution for now is to detach the overlay manager from the crtc.
crtcs are still created on demand at init time, but all overlay managers
are always initialized by the omapdss.
This way we can create and connect whole display pipelines from the
overlay manager to the display, regardless of which crtcs omapdrm would
create.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Split the function that creates overlay manager structs into two: one
that creates just the structs, and one that creates the sysfs files for
the manager.
This will help us use the overlay manager structs with omapdrm in the
following patches, while still leaving the sysfs files out.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add two helper functions that can be used to find either the DSS output
or the overlay manager that is connected to the given display.
This hides how the output and the manager are actually connected, making
it easier to change the connections in the future.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When using DT, dss device does not have platform data. However,
dss_get_ctx_loss_count() uses dss device's platform data to find the
get_ctx_loss_count function pointer.
To fix this, dss_get_ctx_loss_count() needs to be changed to get the
platform data from the omapdss device, which is a "virtual" device and
always has platform data.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add a support function to find a DSS output by given DT node. This is
used in later patches to link the panels to DSS outputs.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add a support function to find a DSS output by given name. This is used
in later patches to link the panels to DSS outputs.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapdss output drivers always read the platform data. This crashes when
there's no platform data when using DT.
Add a check to read the platform data only if it exists.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We can currently set the default display (i.e. the initial display) in
the omapdss platform data by using a pointer to the default
omap_dss_device. Internally omapdss uses the device's name to resolve
the default display.
As it's difficult to get the omap_dss_device pointer in the future,
after we've changed the omapdss device model, this patch adds a new way
to define the default display, by using the name of the display.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
When booting with DT, there's a crash when omapfb is probed. This is
caused by the fact that omapdss+DT is not yet supported, and thus
omapdss is not probed at all. On the other hand, omapfb is always
probed. When omapfb tries to use omapdss, there's a NULL pointer
dereference crash. The same error should most likely happen with omapdrm
and omap_vout also.
To fix this, add an "initialized" state to omapdss. When omapdss has
been probed, it's marked as initialized. omapfb, omapdrm and omap_vout
check this state when they are probed to see that omapdss is actually
there.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Tested-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
devm_ioremap_resource does sanity checks on the given resource. No need to
duplicate this in the driver.
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
devm_ioremap_resource does sanity checks on the given resource. No need to
duplicate this in the driver.
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Pull drm updates from Dave Airlie:
"This is the main drm pull request for 3.10.
Wierd bits:
- OMAP drm changes required OMAP dss changes, in drivers/video, so I
took them in here.
- one more fbcon fix for font handover
- VT switch avoidance in pm code
- scatterlist helpers for gpu drivers - have acks from akpm
Highlights:
- qxl kms driver - driver for the spice qxl virtual GPU
Nouveau:
- fermi/kepler VRAM compression
- GK110/nvf0 modesetting support.
Tegra:
- host1x core merged with 2D engine support
i915:
- vt switchless resume
- more valleyview support
- vblank fixes
- modesetting pipe config rework
radeon:
- UVD engine support
- SI chip tiling support
- GPU registers initialisation from golden values.
exynos:
- device tree changes
- fimc block support
Otherwise:
- bunches of fixes all over the place."
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (513 commits)
qxl: update to new idr interfaces.
drm/nouveau: fix build with nv50->nvc0
drm/radeon: fix handling of v6 power tables
drm/radeon: clarify family checks in pm table parsing
drm/radeon: consolidate UVD clock programming
drm/radeon: fix UPLL_REF_DIV_MASK definition
radeon: add bo tracking debugfs
drm/radeon: add new richland pci ids
drm/radeon: add some new SI PCI ids
drm/radeon: fix scratch reg handling for UVD fence
drm/radeon: allocate SA bo in the requested domain
drm/radeon: fix possible segfault when parsing pm tables
drm/radeon: fix endian bugs in atom_allocate_fb_scratch()
OMAPDSS: TFP410: return EPROBE_DEFER if the i2c adapter not found
OMAPDSS: VENC: Add error handling for venc_probe_pdata
OMAPDSS: HDMI: Add error handling for hdmi_probe_pdata
OMAPDSS: RFBI: Add error handling for rfbi_probe_pdata
OMAPDSS: DSI: Add error handling for dsi_probe_pdata
OMAPDSS: SDI: Add error handling for sdi_probe_pdata
OMAPDSS: DPI: Add error handling for dpi_probe_pdata
...
If the I2C adapter needed by the TFP410 device is not available yet,
return EPROBE_DEFER so that the device will get probed again.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for venc_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the VENC driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for hdmi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the HDMI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for rfbi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the RFBI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for dsi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the DSI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for sdi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the SDI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for dpi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the DPI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapfb requires the panel drivers to have been probed when omapfb is
initialized. omapfb does not support insertion of new panels after its
probe. This causes a problem in case omapdss or the panel probes have
been deferred due to EPROBE_DEFER error, as omapfb won't find any
displays.
As a quick fix, this patch changes the omapfb probe so that if omapfb
does not find any displays, it'll return EPROBE_DEFER. This is not
perfect, as with a board with no displays, omapfb will get deferred
forever. Also, if the board has multiple displays, but only some of them
have been probed, omapfb will start and leave the unprobed displays out.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Instead of using platform_driver_probe(), use module_platform_driver()
so that we can support deferred probing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapfb requires the panels to have been probed before omapfb's probe. We
currently manage that by having omapfb in late initcall level. However,
a much simpler way is to just change the makefile so that omapfb is
after the panel drivers.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Commit 100c826235 (OMAPDSS: DPI: use new
clock calculation code) breaks dpi.c compilation if DSI is not enabled
in the kernel configuration.
Fix compilation by adding dummy inline functions for the ones that dpi.c
references. The functions will never be called, as dpi.c knows that
there is no DSI device available.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use vm_iomap_memory() instead of [io_]remap_pfn_range().
vm_iomap_memory() gives us much simpler API to map memory to userspace,
and reduces possibilities for bugs.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When not using DSI PLL to generate the pixel clock, but DSS FCK, the
possible pixel clock rates are rather limited. DSS FCK is currently used
on OMAP2 and OMAP3.
When using Beagleboard with a monitor that supports high resolutions,
the clock rates do not match (at least for me) for the monitor's pixel
clocks within the current threshold in the code, which is +/- 1MHz.
This patch widens the search up to +/- 15MHz. The search is done in
steps, i.e. it first tries to find a rather exact clock, than a bit less
exact, etc. so this should not change the cases where a clock was
already found.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSS func clock is calculated with prate / div * m. However, the current
omapdss code calculates it with prate * m / div, which yields a slightly
different result when there's a remainder. For example, 432000000 / 14 *
2 = 61714284, but 432000000 * 2 / 14 = 61714285.
In addition to that, the clock framework wants the clock rate given with
clk_set_rate to be higher than the actual (truncated) end result. So, if
prate is 432000000, and div is 14, the real result is 30857142.8571...
We need to call clk_set_rate with 30857143, which gives us a clock of
30857142. That's why we need to use DIV_ROUND_UP() when calling
clk_set_rate.
This patch fixes the clock calculation.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
This patch converts the drivers to use the
module_platform_driver_probe() macro which makes the code smaller and
a bit simpler.
Signed-off-by: Fabio Porcedda <fabio.porcedda@gmail.com>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Acked-by: Nicolas Ferre <nicolas.ferre@atmel.com> # atmel_lcdfb.c
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> # amifb.c
Cc: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use devm_clk_get() instead of clk_get() for dss, and for outputs hdmi
and venc. This reduces code and simplifies error handling.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use dev_pm_ops instead of the deprecated legacy suspend/resume callbacks.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DISPC on OMAP5 has a more optimised mechanism of asserting Mstandby to achieve
more power savings when DISPC is configured in Smart Standby mode. This
mechanism leads to underflows when multiple DISPC pipes are enabled.
There is a register field which can let us revert to the older mechanism of
asserting Mstandby. Configure this field to prevent underflows.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When using a DISPC video pipeline to a fetch a NV12 buffer in a 2D container, we
need to set set a doublestride bit in the video pipe's ATTRIBUTES register. This
is needed because the stride for the UV plane(using a 16 bit Tiler container) is
double the stride for the Y plane(using a 8 bit Tiler container) for the 0 or
180 degree views. The ROW_INC register is meant for the Y plane, and the HW will
calculate the row increment needed for the UV plane by using double the stride
value based on whether this bit is set or not.
Set the bit when we are using a 2D Tiler buffer and when rotation is 0 or 180
degrees. The stride value is the same for 90 and 270 degree Tiler views, hence
the bit shouldn't be set.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Increase the DSS_FCLK and DSI_FCLK max supported frequencies, these come because
some frequencies were increased from OMAP5 ES1 to OMAP5 ES2. We support only
OMAP5 ES2 in the kernel, so replace the ES1 values with ES2 values. Increase the
DSI PLL Fint range, this was previously just copied from the OMAP4 param range
struct.
Fix the maximum DSS_FCLK on OMAP2, it's 133 Mhz according to the TRM.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Each version of OMAP has a limitation on the maximum pixel clock frequency
supported by an overlay manager. This limit isn't checked by omapdss. Add
dispc feats for lcd and tv managers and check whether the target timings can
be supported or not.
The pixel clock limitations are actually more complex. They depend on which OPP
OMAP is in, and they also depend on which encoder is the manager connected to.
The OPP dependence is ignored as DSS forces the PM framework to be on OPP100
when DSS is enabled, and the encoder dependencies are ignored by DISPC for now.
These limits should come from the encoder driver.
The OMAP2 TRM doesn't mention the maximum pixel clock limit. This value is left
as half of DSS_FCLK, as OMAP2 requires the PCD to be atleast 2.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use PTR_RET function instead of IS_ERR and PTR_ERR.
Patch found using coccinelle.
Signed-off-by: Alexandru Gheorghiu <gheorghiuandru@gmail.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The platform_enable/disable callbacks in board files for VENC omap_dss_device
instances don't do anything. Hence, we can remove these callbacks from the VENC
driver.
Signed-off-by: Archit Taneja <archit@ti.com>
The n8x0 panel driver now manages the gpios required to configure the panel.
This was previously done in panel_n8x0_data's platform_enable/disable callbacks
defined in board files using this panel.
All the board files using this panel now pass the gpio information as platform
data via the panel_n8x0_data struct, which is needed by the panel driver to
configure the gpios connected to the panel. Hence, the uses of
platform_enable/disable ops can be safely removed now.
Signed-off-by: Archit Taneja <archit@ti.com>
The n8x0 panel driver leaves gpio configurations to the platform_enable and
disable calls in the platform's board file. These should happen in the panel
driver itself.
A platform data struct called panel_n8x0_data already exists to hold gpio
numbers and other platform data. However, the gpio requests are expected to be
done in the board file and not the panel driver.
Request all the gpios in the panel driver so that the board files which use
the the panel don't need to do it. This will help in removing the need for the
panel drivers to have platform related callbacks.
Signed-off-by: Archit Taneja <archit@ti.com>
The picodlp panel driver now manages the gpios required to configure the
panel. This was previously done in omap_dss_device's platform_enable/disable
callbacks defined in board files using this panel.
All the board files using this panel now pass the gpio information as platform
data via the panel_generic_dpi_data struct, which is needed by the panel driver
to configure the gpios connected to the panel. Hence, the
platform_enable/disable ops can be safely removed now.
Signed-off-by: Archit Taneja <archit@ti.com>
The picodlp panel driver leaves gpio requests to the platform's board file.
These should happen in the panel driver itself.
A platform data struct called picodlp_panel_data already exists to hold gpio
numbers and other platform data. Request all the gpios in the panel driver so
that the board files which use the the panel don't need to do it.
This will help in removing the need for the panel drivers to have platform
related callbacks.
Signed-off-by: Archit Taneja <archit@ti.com>
The tpo-td043 panel driver now manages the gpios required to configure the panel.
This was previously done in omap_dss_device's platform_enable/disable callbacks
defined in board files using this panel.
All the board files using this panel now pass the gpio information as platform
data via the panel_tpo_td043_data struct, which is needed by the panel driver to
configure the gpios connected to the panel. Hence, the platform_enable/disable
ops can be safely removed now.
Signed-off-by: Archit Taneja <archit@ti.com>
The tpo-td043mtea1 panel driver leaves gpio configurations to the
platform_enable and disable calls in the platform's board file. These should
happen in the panel driver itself.
Create a platform data struct for the panel, this contains the reset gpio
number used by the panel driver, this struct will be passed to the panel driver
as platform data. The driver will request and configure the reset gpio rather
than leaving it to platform callbacks in board files.
This will help in removing the need for the panel drivers to have platform
related callbacks.
Signed-off-by: Archit Taneja <archit@ti.com>
The nec-nl8048 panel driver now manages the gpios required to configure the
panel. This was previously done in omap_dss_device's platform_enable/disable
callbacks defined in board files using this panel.
All the board files using this panel now pass the gpio information as platform
data via the panel_nec_nl8048_data struct, which is needed by the panel driver
to configure the gpios connected to the panel. Hence, the
platform_enable/disable ops can be safely removed now.
Signed-off-by: Archit Taneja <archit@ti.com>
The nec-nl8048hl11-01 panel driver leaves gpio configurations to the
platform_enable and disable calls in the platform's board file. These should
happen in the panel driver itself.
Create a platform data struct for the panel, this contains the gpio numbers
used by the panel driver, this struct will be passed to the panel driver as
platform data. The driver will request and configure these gpios rather than
leaving it to platform callbacks in board files.
This will help in removing the need for the panel drivers to have platform
related callbacks.
Signed-off-by: Archit Taneja <archit@ti.com>
The acx565akm panel driver leaves gpio configurations to the platform_enable
and disable calls in the platform's board file. These should happen in the panel
driver itself.
Create a platform data struct for the panel, this contains the reset gpio number
used by the panel driver, this struct will be passed to the panel driver as
platform data. The driver will request and configure the reset gpio rather than
leaving it to platform callbacks in board files.
This will help in removing the need for the panel drivers to have platform
related callbacks.
Signed-off-by: Archit Taneja <archit@ti.com>
The sharp-ls panel driver now manages the gpios required to configure the panel.
This was previously done in omap_dss_device's platform_enable/disable callbacks
defined in board files using this panel.
All the board files using this panel now pass the gpio information as platform
data via the panel_sharp_ls037v7dw01_data struct, which is needed by the panel
driver to configure the gpios connected to the panel. Hence, the
platform_enable/disable ops can be safely removed now.
Signed-off-by: Archit Taneja <archit@ti.com>
Move the GPIO handling from board file's platform callbacks to the panel
driver, which gets the gpios via platform data.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The generic dpi panel driver now sets the gpios required to configure the panel.
This was previously done in platform_enable/disable callbacks in board files.
All the board files using generic dpi panel now correctly pass the gpio related
information as platform data, which is needed by the panel driver to configure
the panel. Hence, the platform_enable/disable ops can be safely removed now.
Signed-off-by: Archit Taneja <archit@ti.com>
The lgphilips panel driver now manages the gpios required to configure the
panel. This was previously done in omap_dss_device's platform_enable/disable
callbacks defined in board files using this panel.
All the board files using this panel now pass the gpio information as platform
data via the panel_generic_dpi_data struct, which is needed by the panel driver
to configure the gpios connected to the panel. Hence, the
platform_enable/disable ops can be safely removed now.
Signed-off-by: Archit Taneja <archit@ti.com>
The lgphilips panel driver leaves gpio configurations to the platform_enable
and disable calls in the platform's board file. These should happen in the
panel driver itself.
Use the platform data as defined for generic dpi panels to pass gpio information
to the lgphilips driver.
This will help in removing the need for the panel drivers to have platform
related callbacks.
Signed-off-by: Archit Taneja <archit@ti.com>
The generic dpi panel driver leaves gpio configurations to the platform_enable
and disable calls in the platform's board file. These should happen in the
panel driver itself.
Add a generic way of passing gpio information to the generic dpi panel driver
via it's platform_data. This information includes the number of gpios used by
the panel, the gpio number and logic level (active high/low) for each gpio. This
gpio data will be used by the driver to request and configure the gpios required
by the panel.
This will help in removing the need for the panel drivers to have platform
related callbacks.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Archit Taneja <archit@ti.com>
The omap_dss_device structs's max_backlight_level is used to pass maximum
backlight level for the platform. However, no board file using this panel
populates this field. Therefore, we remove it's usage from the panel driver.
Signed-off-by: Archit Taneja <archit@ti.com>
Use devm_kzalloc instead of kzalloc to allocate driver data for the picodlp
panel driver. This simplifies the driver's probe and remove functions.
Signed-off-by: Archit Taneja <archit@ti.com>
Use devm_kzalloc instead of kzalloc to allocate driver data for the lg phillips
panel driver. This simplifies the driver's probe and remove functions.
Cc: Steve Sakoman <steve@sakoman.com>
Signed-off-by: Archit Taneja <archit@ti.com>
Use devm_kzalloc instead of kzalloc to allocate driver data for the generic dpi
panel driver. This simplifies the driver's probe and remove functions.
Signed-off-by: Archit Taneja <archit@ti.com>
The n8x0 panel contains support to call platform backlight functions.
These are not used by any board, and can be removed.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Archit Taneja <archit@ti.com>
NEC-nl8048hl11 driver contains support to call platform backlight
functions. These are not used by any board, and can be removed.
Signed-off-by: Archit Taneja <archit@ti.com>
Sharp ls037v7dw01 driver contains support to call platform backlight
functions. These are not used by any board, and can be removed.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Archit Taneja <archit@ti.com>
acx565akm has support to call set_backlight/get_backlight in platform
code. They are not used by any board, and thus can be removed from the
driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Archit Taneja <archit@ti.com>
Use the new clock calculation code in the DSI driver.
The new code does not need DSI video mode parameters from the panel
driver, like the old code does. Instead the new code is given the normal
video timings, and a few DSI parameters, which are used to create DSI
video timings.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add new way to iterate over DSI PLL and HSDIV clock divisors.
dsi_pll_calc() and dss_hsdiv_calc() provide a generic way to go over
all the divisors, within given clock range. The functions will call a
callback function for each divider set, making the function reusable for
all use cases.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add new way to iterate over DSS clock divisors. dss_div_calc() provides
a generic way to go over all the divisors, within given clock range.
dss_div_calc() will call a callback function for each divider set,
making the function reusable for all use cases.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>